

SEHGAL-GUSEMAN-TYPE FIXED POINT THEOREM IN B-RECTANGULAR METRIC SPACES

Asmita Yadav^a and Dr. A.S. Saluja^b

Department of Mathematics, Institute for Excellence in Higher Education (IEHE), Bhopal - 462016, Madhya Pradesh, India.
Email: asmitay201@gmail.com

ABSTRACT: In this paper, a Sehgal-Guseman-type fixed point theorem is proven in b-rectangular metric spaces. This provides a complete solution to an open problem posed by Zoran D. Mitrovic regarding a Banach's fixed point theorem in b-rectangular metric space and b-metric spaces. the result generalizes and unifies certain findings in fixed point theory.

Keywords: fixed point; b-metric space; rectangular metric space ;b-rectangular metric space.

1. INTRODUCTION

Fixed point theory plays a crucial role in non linear functional analysis and applied mathematics. Since the publication of the Banach contraction principle, numerous researchers have expended and generalized it. Sehgal[1] contributed to this area by exploring fixed points for mappings with contractive iterates.

Theorem 1. Let (X, d) be a metric space and let $T:X \rightarrow X$ be a continuous mapping which satisfies the condition that there exists a real number $k, 0 \leq k < 1$ such that for each x there exists a positive integer $l(x)$ such that, for each $y \in X$,

$$d(T^{l(x)}x, T^{l(x)}y) \leq kd(x, y)$$

Then ,T has a unique fixed point.

Later, Guseman [2], Matkowsk [3] and others [4] discussed it in depth.

Many researchers have explored the Banach contraction principle with in various generalized metric spaces.

For instance, Branciari introduced rectangular metric spaces and established a Banach contraction principle. Bakhtin developed b-metric spaces. In 2015, George et al. introduced b-rectangular metric spaces, generalizing both rectangular and b-

metric spaces. They proved analogues of the Banach contraction principle and Kannan's fixed point theorem.

In 2018, Mitrovic relaxed the contraction coefficient in the Banach contraction principle for b-rectangular metric spaces from $k \in (0, \frac{1}{s})$ to $k \in (0,1)$.

This paper proves the Sehgal -Guseman-type theorem in b-rectangular metric spaces, answering Mitrovic's question. The result generalizes and unifies findings in fixed point theory.

2. PRELIMINARIES

Definition 2.1.([6,11]) Let X be a non-empty set, $s \geq 1$ be a given real number and let $d: X \times X \rightarrow [0, \infty)$ be a mapping, such that for all $x, y, z \in X$, the following conditions hold :

$$(b1) \quad d(x, y) = 0 \Leftrightarrow x = y$$

$$(b2) \quad d(x, y) = d(y, x) \text{ for all } x, y \in X$$

$$(b3) \quad d(x, y) \leq s[d(x, z) + d(z, y)] \quad (\text{b-triangular in equality})$$

Then the pair (X, d) is called a b-metric space.

Definition 2.2.([5]) let X be a non empty set, and let $d: X \times X \rightarrow [0, \infty)$ be a mapping such that for all $x, y \in X$ and distinct points $u, v \in X$, each distinct from x and y :

$$(r1) \quad d(x, y) = 0 \text{ if and only if } x = y;$$

$$(r2) \quad d(x, y) = d(y, x);$$

$$(r3) \quad d(x, y) \leq d(x, u) + d(u, v) + d(v, y) \quad (\text{rectangular inequality})$$

Then (X, d) is called a rectangular metric space or generalized metric space.

Definition 2.3.([7]) let X be a non empty set, $s \geq 1$ be a given real number and let $d: X \times X \rightarrow [0, \infty)$ be a mapping such that for all $x, y \in X$ and distinct points $u, v \in X$, each distinct from x and y

$$(rb1) \quad d(x, y) = 0 \text{ if and only if } x = y$$

$$(rb2) \quad d(x, y) = d(y, x);$$

$$(rb3) \quad d(x, y) \leq s[d(x, u) + d(u, v) + d(v, y)] \quad (\text{b-rectangular inequality})$$

Then (X, d) is called a b-rectangular metric space or b-generalized metric space.

From the above definitions it is clear that every metric space is a rectangular metric space and a b-metric space. Also every rectangular metric space or every b-metric space is a b-rectangular metric space. Converse is not necessarily true.

3. MAIN RESULT

Theorem 3.1: let (X, d) be a b-rectangular metric space with coefficient $s > 2$ and let $T: X \rightarrow X$ be a mapping which satisfies the condition that there exists a real number k , $0 \leq k < \frac{1}{2}$ such that for each x there exists a positive integer $p(x)$ such that, for each $y \in X$,

$$d(T^{p(x)}x, T^{p(x)}y) \leq kd(x, y)$$

Then, T has a unique fixed point.

Proof : Firstly we prove the theorem in case when $0 \leq k < \frac{1}{s}$

Let x_0 be an arbitrary point in X . Consider a sequence $\{x_n\}$ by

$$x_1 = T^{p(x_0)}x_0$$

$$x_2 = T^{p(x_1)}x_1$$

.

$$x_{n+1} = T^{p(x_n)}x_n$$

If $x_{n_0} = x_{n_0+1}$ for some $n_0 \in N$, then x_{n_0} is a fixed point of T .

Since $x_{n_0} = T^{p(x_{n_0})}x_{n_0}$, x_{n_0} is a fixed point of $T^{p(x_{n_0})}$

To prove that x_{n_0} is a fixed point of T , we firstly prove that x_{n_0} is the unique fixed point of $T^{p(x_{n_0})}$.

$$\begin{aligned} T^{p(x_{n_0})}v = v \text{ for some } v \neq x_{n_0}, \text{ then } d(x_{n_0}, v) &= d(T^{p(x_{n_0})}x_{n_0}, T^{p(x_{n_0})}v) \\ &\leq kd(x_{n_0}, v) \\ d(x_{n_0}, v) &\leq kd(x_{n_0}, v) \end{aligned}$$

Which is a contradiction, since $0 \leq k < \frac{1}{2}$

$$\text{Now } Tx_{n_0} = TT^{p(x_{n_0})}x_{n_0}$$

$$= T^{p(x_{n_0})}Tx_{n_0}$$

That is, Tx_{n_0} is also a fixed point of $T^{p(x_{n_0})}$.

By the uniqueness of fixed point of $T^{p(x_{n_0})}$, we have $Tx_{n_0} = x_{n_0}$, which shows that x_{n_0} is a fixed point of

In what follows, we suppose that $x_n \neq x_{n+1} \forall n \in N$.

Step-2:

Now we suppose that $x_m \neq x_n$ for $m \neq n$.

Without any loss of generality, suppose $m > n$.

If $x_m = x_n$ for $m \neq n$ then $d(x_m, x_{m+1}) = d(T^{p(x_{m-1})}x_{m-1}, T^{p(x_m)}T^{p(x_{m-1})}x_{m-1})$

$$\begin{aligned} &= d(T^{p(x_{m-1})}x_{m-1}, T^{p(x_{m-1})}x_{m-1}) \\ &\leq kd(x_{m-1}, T^{p(x_m)}x_{m-1}) \\ &= kd(T^{p(x_{m-2})}x_{m-2}, T^{p(x_m)}T^{p(x_{m-2})}x_{m-2}) \\ &= k^2d(x_{m-2}, T^{p(x_m)}x_{m-2}) \\ &\leq \dots \\ &\leq k^{m-n}d(x_n, T^{p(x_m)}x_n) \\ &= k^{m-n}d(x_n, T^{p(x_m)}x_m) \\ &= k^{m-n}d(x_m, x_{m+1}) \end{aligned}$$

Which is a contradiction since $0 \leq k < \frac{1}{2}$.

Step 3: For $x \in X$, $q(x) = \sup n d(T^n x, x)$ is finite.

Let $x \in X$ and let $h(x) = \{d(T^k x, x) : k = 1, 2, \dots, p(x), p(x) + 1, \dots, 2p(x)\}$

If n is a positive integer, then there exists an integer $\alpha \geq 0$ such that

$$\alpha p(x) < n \leq (\alpha + 1)p(x).$$

We can assume that $T^n x, T^{p(x)} x, T^{2p(x)} x, x$ are different from each other. Otherwise the conclusion is

$$\begin{aligned} d(T^n x, x) &\leq s[d(T^n x, T^{p(x)} x) + d(T^{p(x)} x, T^{2p(x)} x) + d(T^{2p(x)} x, x)] \\ &\leq s[kd(T^{n-p(x)} x, x) + kd(x, T^{p(x)} x) + d(T^{2p(x)} x, x)] \\ &\leq skd(T^{n-p(x)} x, x) + skz(x) + sz(x) \\ &\leq s^2 k [d(T^{n-p(x)} x, T^{p(x)} x) + d(T^{p(x)} x, T^{2p(x)} x) + d(T^{2p(x)} x, x)] + skz(x) + sz(x) \\ &\leq s^2 k^2 d(t^{n-2p(x)} x, x) + s^2 k^2 d(x, T^{p(x)} x) + s^2 k d(T^{2p(x)} x, x) + skz(x) + sz(x) \\ &\leq s^2 k^2 d(t^{n-2p(x)} x, x) + s^2 k^2 z(x) + s^2 k z(x) + skz(x) + sz(x) \\ &\leq \dots \\ &\leq s^\alpha k^\alpha d(t^{n-\alpha p(x)} x, x) + (sz(x) + s^2 k z(x) + \dots) \\ &\quad + (skz(x) + s^2 k^2 z(x) + s^3 k^3 z(x) + \dots) \\ &\leq s^\alpha k^\alpha z(x) + \frac{sz(x)}{1-sk} + \frac{skz(x)}{1-sk} \\ &\leq z(x) + \frac{sz(x)}{1-sk} + \frac{skz(x)}{1-sk} \end{aligned}$$

Hence $q(x) = \sup n d(T^n x, x)$ is finite.

Step 4: $d(x_n, x_{n+1}) = 0$

$$\begin{aligned}
d(x_n, x_{n+1}) &= d(T^{p(x_{n-1})}x_{n-1}, T^{p(x_n)}T^{p(x_{n-1})}x_{n-1}) \\
&= d(T^{p(x_{n-1})}x_{n-1}, T^{p(x_{n-1})}T^{p(x_n)}x_{n-1}) \\
&\leq kd(x_{n-1}, T^{p(x_n)}x_{n-1}) \\
&\quad \cdots \quad \cdots \\
&\leq k^n d(x_0, T^{p(x_n)}x_0) \\
&\leq k^n qx_0
\end{aligned}$$

Then $d(x_n, x_{n+1}) = 0$

Step 5: $\{x_n\}$ is a Cauchy sequence in X .

For the sequence $\{x_n\}$, we consider $d(x_n, x_{n+l})$ in two cases. For the sake of convenience, we denote $q(x_0)$ by q_0 .

If l is odd say $2m + 1$ then by step 2 and (rb3)

$$\begin{aligned}
d(x_n, x_{n+2m+1}) &\leq s[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+2m+1})] \\
&\leq sk^n q_0 + sk^{n+1} q_0 + s^2 [d(x_{n+2}, x_{n+3}) + d(x_{n+3}, x_{n+4}) + d(x_{n+4}, x_{n+2m+1})] \\
&\quad \leq \cdots \quad \cdots \\
&\leq sk^n q_0 + sk^{n+1} q_0 + s^2 k^{n+2} q_0 + s^2 k^{n+3} q_0 + s^3 k^{n+4} q_0 + s^3 k^{n+5} q_0 + \cdots + s^m k^{n+m} q_0 \\
&\leq sk^n q_0 [1 + sk^2 + s^2 k^4 + \cdots] + sk^{n+1} q_0 [1 + sk^2 + s^2 k^2 + \cdots] \\
&\leq sk^n q_0 \left(\frac{1}{1 - sk^2} \right) + sk^{n+1} q_0 \times \left(\frac{1}{1 - sk^2} \right) \\
&\leq sk^n q_0 \left[\frac{1}{1 - sk^2} + \frac{k}{1 - sk^2} \right] \\
&\leq \frac{1+k}{1 - sk^2} sk^n q_0
\end{aligned}$$

If l is even, say $2m$, then by step 2 and (rb3)

$$\begin{aligned}
d(x_n, x_{n+2m}) &\leq s[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+2m})] \\
&\leq sk^n q_0 + sk^{n+1} q_0 + s^2 [d(x_{n+2}, x_{n+3}) + d(x_{n+3}, x_{n+4}) + d(x_{n+4}, x_{n+2m})] \\
&\quad \leq \cdots \quad \cdots \\
&\leq sk^n q_0 + sk^{n+1} q_0 + s^2 k^{n+2} q_0 + s^2 k^{n+3} q_0 + \cdots + s^{m-1} k^{n+2m-4} q_0 \\
&\quad + s^{m-1} k^{n+2m-3} q_0 + s^{m-1} k^{n+2m-2} q_0 d(x_0, T^{n+2m-1} T^{n+2m-2} x_0) \\
&\leq sk^n q_0 [1 + sk^2 + s^2 k^2 + \cdots] + sk^{n+1} q_0 [1 + sk^2 + s^2 k^2 + \cdots] + s^{m-1} k^{n+2m-2} q_0 \\
&\leq \frac{1+k}{1 - sk^2} sk^n q_0 + (sk)^{2m} k^{n-2} q_0 \\
&\leq \frac{1+k}{1 - sk^2} sk^n q_0 + k^{n-2} q_0
\end{aligned}$$

Then it follows from above argument

$$d(x_n, x_{n+l}) = 0 \text{ for all } l > 0.$$

Thus sequence $\{x_n\}$ is a Cauchy sequence in X .

Since X is complete, there exist a point $u \in X$ such that $x_n = u$

Step 6:

u is a fixed point of T .

By(3.1), $d(T^{p(u)}u, T^{p(u)}x_n) \leq d(u, x_n)$, then $d(T^{p(u)}u, T^{p(u)}x_n) = 0$

$$\begin{aligned} d(T^{p(u)}x_n, x_n) &= d(T^{p(u)}T^{p(x_{n-1})}x_{n-1}, T^{p(x_{n-1})}x_{n-1}) \\ &= d(T^{p(x_{n-1})}x_{n-1}, T^{p(x_{n-1})}T^{p(u)}x_{n-1}) \\ &\leq kd(x_{n-1}, T^{p(u)}x_{n-1}) \\ &\leq \dots \dots \\ &\leq k^n d(x_0, T^{p(u)}x_0) \end{aligned}$$

That is $\lim_{n \rightarrow \infty} d(T^{p(u)}x_n, x_n) = 0$

By (rb3),

$$d(T^{p(u)}u, x_{n+1}) \leq s(d(T^{p(u)}u, T^{p(u)}x_n) + d(T^{p(u)}x_n, x_n) + d(x_n, x_{n+1}))$$

Then $\lim_{n \rightarrow \infty} d(T^{p(u)}u, x_{n+1}) = 0$

Therefore by (rb3), we have

$$d(u, T^{p(u)}u) \leq s(d(u, x_n) + d(x_n, x_{n+1}) + d(x_{n+1}, T^{p(u)}u))$$

Putting limit $n \rightarrow \infty$ in the above inequality, we have

$$d(u, T^{p(u)}u) = 0$$

This means that $T^{p(u)}u = u$; that is u is a fixed point of $T^{p(u)}$.

Now, $d(u, Tu) = d(T^{p(u)}u, TT^{p(u)}u)$

$$\begin{aligned} &= d(T^{p(u)}u, T^{p(u)}Tu) \\ &\leq kd(u, Tu) \end{aligned}$$

Then $d(u, Tu) = 0$, that is u is a fixed point of T .

Step 7: u is the unique fixed point of T .

To prove that u is the unique fixed point of $T^{p(u)}$.

Let $T^{p(u)}v = v$ for some $v \neq u$, then

$$\begin{aligned} d(u, v) &= d(T^{p(u)}u, T^{p(u)}v) \\ &\leq kd(u, v) \end{aligned}$$

Which is a contradiction. Since $0 \leq k < \frac{1}{2}$

If w is another fixed point of T , then $w = Tw = T^2w = \dots = T^{p(u)}w$

w is a fixed point of $T^{p(u)}$ too.

By the uniqueness of fixed point of $T^{p(u)}$, we have $u = w$.

Therefore T has a unique fixed point.

4. Conclusion

This paper establishes a Sehgal -Guseman -type fixed point theorem in b-rectangular metric spaces , resolving an open question posed by Mitrovic. The findings presented here broaden and consolidate existing result in fixed point theory.

References

1. Bakhtin, I. A. (1989). The contraction principle in quasi metric spaces, *Funct. Anal. Unianowsk Gos. Ped. Inst*, 30, 26-37.
2. Branciari, A. (2000). A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. *Publ. Math. Debrecen*, 57(1-2), 31-37.
3. Czerwinski, S. (1993). Contraction mappings in $\$ b \$$ -metric spaces. *Acta mathematica et informatica universitatis ostraviensis*, 1(1), 5-11.
4. Ding, H. S., Imdad, M., Radenović, S., & Vujaković, J. (2016). On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. *Arab Journal of Mathematical Sciences*, 22(2), 151-164.
5. Ding, H. S., Öztürk, V., & Radenovic, S. (2015). On some new fixed point results in b-rectangular metric spaces. *Journal of Nonlinear Sciences and Applications*, 8(4).
6. George, R., Radenovic, S., Reshma, K. P., & Shukla, S. (2015). Rectangular b-metric space and contraction principles. *J. Nonlinear Sci. Appl*, 8(6), 1005-1013.
7. Guseman, L. F. (1970). Fixed point theorems for mappings with a contractive iterate at a point. *Proceedings of the American Mathematical Society*, 26(4), 615-618.
8. Karapinar, E. (2018). A short survey on the recent fixed point results on $\$ b \$$ -metric spaces. *Constructive Mathematical Analysis*, 1(1), 15-44.
9. Matkowski, J. (1977). Fixed point theorems for mappings with a contractive iterate at a point. *Proceedings of the American Mathematical Society*, 62(2), 344-348.
10. Mitrović, Z. D. (2018). A note on a Banach's fixed point theorem in b-rectangular metric space and b-metric space. *Mathematica Slovaca*, 68(5), 1113-1116.