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ABSTRACT: In this paper, a Sehgal-Guseman-type fixed point theorem is proven in b-
rectangular metric spaces. This provides a complete solution to an open problem posed by
Zoran D. Mitrovic regarding a Banach's fixed point theorem in b-rectangular metric space
and b-metric spaces. the result generalizes and unifies certain findings in fixed point
theory.
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1. INTRODUCTION
Fixed point theory plays a crucial role in non linear functional analysis and applied
mathematics. Since the publication of the Banach contraction principle, numerous
researchers have expended and generalized it. Sehgal[1] contributed to this area by
exploring fixed points for mappings with contractive iterates.
Theorem 1. Let (X, d) be a metric space and let T:X— X be a continuous mapping
which satisfies the condition that there exists a real number k,0 < k < 1 such that
for each x there exists a positive integer [(x) such that, for each y € X,

d(T'®x, T'®y) < kd(x,y)
Then ,T has a unique fixed point.

Later, Guseman [2], Matkowsk [3] and others [4] discussed it in depth.

Many researchers have explored the Banach contraction principle with in various
generalized metric spaces.

For instance, Branciari introduced rectangular metric spaces and established a
Banach contraction principle. Bakhtin developed b-metric spaces. In 2015, George

et al. introduced b-rectangular metric spaces, generalizing both rectangular and b-
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metric spaces. They proved analogues of the Banach contraction principle and
Kannan's fixed point theorem.

In 2018, Mitrovic relaxed the contraction coefficient in the Banach contraction
principle for b-rectangular metric spaces from k € (O, i) tok € (0,1).

This paper proves the Sehgal -Guseman-type theorem in b-rectangular metric
spaces, answering Mitrovic's question. The result generalizes and unifies findings
in fixed point theory.

2. PRELIMINARIES

Definition 2.1.([6,11]) Let X be a non-empty set, s = 1 be a given real number and let

d: X X X — [0, o) be a mapping, such that for all x,y,z € X, the following conditions hold

(bl) dx,y) =0 x=y

(b2) d(x,y) =d(y,x) forallx,y € X

(b3) d(x,y) <s[d(x,z) +d(z,y)] (b-triangular in equality)
Then the pair (X, d) is called a b-metric space.

Definition 2.2.(|5]) let X be a non empty set, and let d: X X X — [0, 00) be a mapping such

that for all x, y € X and distinct points u, v € X, each distinct from x and y :
(r1) d(x,y) = 0 ifand only if x = y;
(r2) d(x,y) = d(y,x);
r3)d(x,y) <d(x,u) +dw,v) +dw,vy) (rectangular inequality)
Then (X, d) is called a rectangular metric space or generalized metric space.

Definition 2.3.([7]) let X be a non empty set, s = 1 be a given real number and let
d: X X X — [0, o) be a mapping such that for all x,y € X and distinct points u, v € X, each

distinct from x and y
(rb1) d(x,y) = 0 ifand only if x = y
(rb2) d(x,y) = d(y,x);
(rb3) d(x,y) < sld(x,u) + d(u,v) + d(v,y)] (b-rectangular inequality)

Then ,(X,d) is called a b-rectangular metric space or b-generalized metric space.
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From the above definitions it is clear that every metric space is a rectangular metric space
and a b-metric space. Also every rectangular metric space or every b-metric space is a b-

rectangular metric space. Converse is not necessarily true.

3. MAIN RESULT
Theorem 3.1:let (X,d) be a b-rectangular metric space with coefficient s > 2 and let

T:X — X be a mapping which satisfies the condition that there exists a real number
k,0<k< % such that for each x there exists a positive integer p(x) such that , for

eachy € X,

d(TP@x, TP®y) < kd(x,y)
Then , T has a unique fixed point.

Proof : Firstly we prove the theorem in case when 0 < k < g

Let x, be an arbitrary point in X. Consider a sequence {x,} by

Xn+1 = Tp(xn)xn
If X, = Xpy4+1for some ng € N, then x,, is a fixed point of T.

Since x,, = Tp(xno)xno, Xn, is a fixed point of 7P (xno)
To prove that x,, is a fixed point of T, we firstly prove that x,, is the unique fixed point of TP (o),
TPGmo)y = v for some v # Xn,, then d(xno,v) =d (Tp(xno)xno, Tp(x"o)v)

< kd(xno,v)
d(xno,v) < kd(xno,v)

Which is a contradiction, since 0 < k < %
Now Tx,, = TTp(x"o)an

- Tp(an)Tan

That is, Tx,, is also a fixed point of TP 0emo),
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By the uniqueness of fixed point of Tp(xno), we have Tx, = x, , which shows that x,,  is a fixed point of

In what follows, we suppose that x,, # x,,,V n € N.

Step-2:

Now we suppose that x,,, # x,, form # n.

Without any loss of generality, suppose m > n.

If x,,, = x,, form # n then d(x,,, X;p41) = d(Tp(xm—l)xm_l, Tp(xm)Tp(xm—l)xm_l)

= d(Tp(xm_l)Xm_l, Tp(xm—1)xm_1)
< kd (X1, TPO™ )
= kd(Tp(xm—Z)xm_z,Tp(xm)Tp(xm—z)xm_z)
= k2d(x,n_o, TPCmx,, 5)
< k™ (x, TP,
= k™ (x, TPEx,,)
= k™ "d (X, Xme1)

C. . ) 1
Which is a contradiction since 0 < k < >

Step 3: Forx € X, q(x) = supnd(T"x, x) is finite.
Letx € X and let h(x) = {d(T*x,x):k = 1,2 ...,p(x), p(x) + 1, ... 2p(x)}
If n is a positive integer, then there exists an integer @ > 0 such that

ap(x) <n < (a+ Dp(x).
We can assume that T™x, TP®x, T2P® x, x are different from each other. Otherwise the conclusion is

d(T™x,x) < s[d(T"x, TPWx) + d(TPWx, T?PXx) + d(T?Fx, x)]
< s[kd(T”‘p(x)x,x) + kd(x, Tp(x)x) +d(T?®y, x)
< skd(T"‘p(x)x, x) + skz(x) + sz(x)
< s2k[d(T™P@x, TPPx) + d(TPPx, T2PXx) + d(T?PXx, x)| + skz(x) + sz(x)
< s2k2d (" 2P®x, x) + s2k2d (x, TP®x) + s2kd(T?*®x, x) + skz(x) + sz(x)
< s2k2d(t"2P™x, x) + s2k2z(x) + s?kz(x) + skz(x) + sz(x)
< e .
< s%k*d (", x) + (sz(x) + s2kz(x) + )
+ (skz(x) + s?k?z(x) + s3k3z(x) + -++)

< capa N sz(x) N skz(x)
< s%2(x) 1—-sk 1-sk

sz(x) N skz(x)
1—-sk 1-sk

<z(x)+

Hence q(x) = sup n d(T™x, x) is finite.

Step 4: d(x,, Xp41) =0
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d(x,, Xpeq) = d(Tp(xn—l)xn_l’ Tp(xn)Tp(xn—1)xn_1)
= d(TPCUn-Vy, |, TPOn-DTP(n)y Y
< kd(xn_l,Tp(xn)xn_l)

< k"d(xo, Tp(xn)xo)
< k™ gx,
Then d(x,, xpeq) =0

Step 5: {x,} is a Cauchy sequence in X.

For the sequence {x,}, we consider d(x,, x,,4+;) in two cases. For the sake of convenience, we

denote q(xy) by q,.

If [ is odd say 2m + 1 then by step 2 and (rb3)

d(xn'xn+2m+1) < S[d(xnﬂxn+1) + d(xn+1'xn+2) + d(xn+27xn+2m+1)]
< sk™qo + sk™'qo + s*[d(Xn42) Xn+3) + A(Xniss Xnsa) + d(Xnsas Xns2mer)]
< .. ..
< Sk"qo + Skn+1q0 + Szkn+2q0 + szkn+3q0 + SSkn+4q0 + S3kn+5q0 + ot Smkn+mqO
< sk™qoll + sk? + s%k* + -]+ sk™1q[1 + sk? + s2k? + -]

1 1
< sk™q, ( ) + sk™t1q, x ( )
1 — sk? 1 — sk?

1 k
< sk™q, [ + ]
11 —sk?2  1-—sk?
- +k .
—1-—sk? o

If | is even, say 2m, then by step 2 and (rb3)

d(xnrxn+2m) < S[d(xnﬂxn+1) + d(xn+1'xn+2) + d(xn+27xn+2m)]
< Skn% + Skn+1q0 + 52 [d(xn+2' xn+3) + d(xn+3ﬂxn+4) + d(xn+4' xn+2m)]
< .. ..
< Sknqo + Skn+1qo + Szkn+2q0 + Szkn+3q0 4+ o+ Sm—lkn+2m—4q0
+ Sm—lkn+2m—3q0 + Sm—lkn+2m—2q0d(x0’Tn+2m—1Tn+2m—2x0)
< sk™qoll + sk? + s2k? + - | + sk™*1qy[1 + sk? + s2k? + --- ] + smgnt2m=24,
< 1+ k k™ k kan—z
STk S qo + (sk) do
1+k
1— sk?
Then it follows from above argument

<

sk™qo+k™ 2q,

d(xp, Xpe) = 0 foralll > 0.
Thus sequence {x,} is a Cauchy sequence in X.
Since X is complete, there exist a point u € X such that x,, = u
Step 6:

u is a fixed point of T.
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By(3.1), d(Tp(”)u, Tp(”)xn) < d(u,x,), then d(Tp(“)u,Tp(”)xn) =0

d(Tp(”)xn, xn) = d(Tp(u)Tp(xn—l)xn_l' Tp(xn—l)xn_l)
= d(TPCOn-y, |, TPOn-DTP@yx
< kd(xn_l,Tp(“)xn_l)
<
< k"d(xo,Tp(”)xO)
That is limd(TP®Wx,, x,) = 0

n—-oo

By (1b3),

d(Tp(u)u' xn+1) <s (d(Tp(u)U., Tp(u)xn) + d(Tp(u)xn' xn) + d(xn,xn+1))
Then lim d(TP™u, x,,,) = 0

n—-oo

Therefore by (1b3), we have

d(u,T”(”)u) <s (d(u, X,) +d(x,, Xpeq) + d(xn+1, Tp(”)u))

Putting limit n — oo in the above inequality, we have

d(u,Tp(”)u) =0
This means that TPy = y; that is u is a fixed point of TP®).

Now, d(u, Tu) = d(TP®™u, TTPWy)

< kd(u,Tu)
Then d(u, Tu) = 0, that is u is a fixed point of T.
Step 7: u is the unique fixed point of T.
To prove that u is the unique fixed point of TP,

Let TPy = v for some v # u, then

d(u,v) = d(Tp(”), Tp(”)v)
< kd(u,v)
Which is a contradiction. Since 0 < k < i

If w is another fixed point of T, thenw = Tw = T?w = ... = TPy
w is a fixed point of TP™ too.
By the uniqueness of fixed point of T?™), we have u = w.

Therefore T has a unique fixed point.
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4.

Conclusion

This paper establishes a Sehgal -Guseman -type fixed point theorem in b-rectangular metric

spaces , resolving an open question posed by Mitrovic. The findings presented here broaden

and consolidate existing result in fixed point theory.
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