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ABSTRACT: In this paper, a Sehgal-Guseman-type fixed point theorem is proven in b-

rectangular metric spaces. This provides a complete solution to an open problem posed by 

Zoran D. Mitrovic regarding a Banach`s fixed point theorem in b-rectangular metric space 

and b-metric spaces. the result generalizes and unifies certain findings in fixed point 

theory.      
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1. INTRODUCTION 

Fixed point theory plays a crucial role in non linear functional analysis and applied 

mathematics. Since the publication of the Banach contraction principle, numerous 

researchers have expended and generalized it. Sehgal[1] contributed to this area by 

exploring fixed points for mappings with contractive iterates.  

Theorem 1. Let (𝑋, 𝑑) be a metric space and let T:X→ X be a continuous mapping 

which satisfies the condition that there exists a real number k,0 ≤ 𝑘 < 1 such that 

for each x there exists a positive integer 𝑙(𝑥) such that, for each 𝑦 ∈ 𝑋,  

𝑑0𝑇!(#)𝑥, 𝑇!(#)𝑦2 ≤ 𝑘𝑑(𝑥, 𝑦) 
Then ,T has a unique fixed point.  

Later, Guseman [2], Matkowsk [3] and others [4] discussed it in depth. 

Many researchers have explored the Banach contraction principle with in various 

generalized metric spaces.  

For instance, Branciari introduced rectangular metric spaces and established a 

Banach contraction principle. Bakhtin developed b-metric spaces. In 2015, George 

et al. introduced b-rectangular metric spaces, generalizing both rectangular and b-
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metric spaces. They proved analogues of the Banach contraction principle and 

Kannan`s fixed point theorem. 

In 2018, Mitrovic relaxed the contraction coefficient in the Banach contraction 

principle for b-rectangular metric spaces from 𝑘 ∈ 30, %
&
4 to 𝑘 ∈ (0,1). 

This paper proves the Sehgal -Guseman-type theorem in b-rectangular metric 

spaces, answering Mitrovic`s question. The result generalizes and unifies findings 

in fixed point theory.   

2. PRELIMINARIES 

Definition 2.1.([6,11])   Let X be a non-empty set, 𝑠 ≥ 1 be a given real number and let  

𝑑: 𝑋 × 𝑋 → [0,∞) be a mapping, such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions hold 

:  

(b1)  𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦 

(b2)  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(b3)  𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)]     (b-triangular in equality) 

Then the pair (𝑋, 𝑑) is called a b-metric space.  

Definition 2.2.([5]) let X be a non empty set, and let 𝑑: 𝑋 × 𝑋 → [0,∞) be a mapping such 

that for all 𝑥, 𝑦 ∈ 𝑋 and distinct points 𝑢, 𝑣 ∈ 𝑋, each distinct from 𝑥	𝑎𝑛𝑑	𝑦 ∶  

     (r1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 

    (r2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); 

    (r3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑦)          (rectangular inequality) 

Then (𝑋, 𝑑) is called a rectangular metric space or generalized metric space. 

Definition 2.3.([7]) let X be a non empty set, 𝑠 ≥ 1 be a given real number and let 

𝑑: 𝑋 × 𝑋 → [0,∞) be a mapping such that for all 𝑥, 𝑦	 ∈ 𝑋 and distinct points 𝑢, 𝑣 ∈ 𝑋, each 

distinct from 𝑥	𝑎𝑛𝑑	𝑦 

   (rb1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 

   (rb2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); 

   (rb3) 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑢) + 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑦)]                 (b-rectangular inequality) 

Then ,(X,d) is called a b-rectangular metric space or b-generalized metric space.  

http://www.ijesm.co.in/
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From the above definitions it is clear that every metric space is a rectangular metric space 

and a b-metric space. Also every rectangular metric space or every b-metric space is a b-

rectangular metric space. Converse is not necessarily true.  

3. MAIN RESULT 

Theorem 3.1:let (X,𝑑) be a b-rectangular metric space with coefficient 𝑠 > 2 and let 

𝑇: 𝑋 → 𝑋 be a mapping which satisfies the condition that there exists a real number 

𝑘, 0 ≤ 𝑘 < %
'
  such that for each 𝑥 there exists a positive integer 𝑝(𝑥) such that , for 

each 𝑦 ∈ 𝑋, 

𝑑0𝑇((#)𝑥, 𝑇((#)𝑦2 ≤ 𝑘𝑑(𝑥, 𝑦) 
Then , T has a unique fixed point. 

Proof : Firstly we prove the theorem in case when 0 ≤ 𝑘 < %
&
  

Let 𝑥) be an arbitrary point in X. Consider a sequence {𝑥*} by  

𝑥% = 𝑇((#!)𝑥) 
 

𝑥' = 𝑇((#")𝑥% 
. 

. 

. 

𝑥*+% = 𝑇((##)𝑥* 
If 𝑥*! = 𝑥*!+%for some 𝑛) ∈ 𝑁, then 𝑥*! is a fixed point of T. 

Since 𝑥*! = 𝑇(,##!-𝑥*! , 𝑥*! is a fixed point of 𝑇(,##!- 

To prove that 𝑥*! is a fixed point of T, we firstly prove that 𝑥*!is the unique fixed point of 𝑇(,##!-. 

𝑇(,##!-𝑣 = 𝑣 for some 𝑣 ≠ 𝑥*! , then 𝑑0𝑥*! , 𝑣2 = 𝑑 3𝑇(,##!-𝑥*! , 𝑇
(,##!-𝑣4 

≤ 𝑘𝑑0𝑥*! , 𝑣2 
𝑑0𝑥*! , 𝑣2 ≤ 𝑘𝑑0𝑥*! , 𝑣2 

Which is a contradiction, since 0 ≤ 𝑘 < %
'
 

Now T𝑥*! = 𝑇𝑇(,##!-𝑥*! 

= 𝑇(,##!-𝑇𝑥*! 
That is, 𝑇𝑥*! is also a fixed point of 𝑇(,##!-. 

http://www.ijesm.co.in/


 ISSN: 2320-0294 &Impact Factor: 6.765  

24 International Journal of Engineering, Science and Mathematics 
http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

By the uniqueness of fixed point of 𝑇(,##!-, we have 𝑇𝑥*! = 𝑥*! , which shows that 𝑥*! is a fixed point of T. 

In what follows, we suppose that 𝑥* ≠ 𝑥*+%∀	𝑛 ∈ 𝑁. 

Step-2: 

Now we suppose that 𝑥. ≠ 𝑥* for 𝑚 ≠ 𝑛. 

Without any loss of generality, suppose 𝑚 > 𝑛. 

If 𝑥. = 𝑥*	for 𝑚 ≠ 𝑛 then 𝑑(𝑥., 𝑥.+%) = 𝑑0𝑇((#$%")𝑥./%, 𝑇((#$)𝑇((#$%")𝑥./%2 

= 𝑑0𝑇((#$%")𝑥./%, 𝑇((#$%")𝑥./%2 
≤ 𝑘𝑑(𝑥./%, 𝑇((#$)𝑥./%) 

= 𝑘𝑑0𝑇((#$%&)𝑥./', 𝑇((#$)𝑇((#$%&)𝑥./'2 
= 𝑘'𝑑0𝑥./', 𝑇((#$)𝑥./'2 

≤ ⋯ 
≤ 𝑘./*𝑑0𝑥*, 𝑇((#$)𝑥*2 
= 𝑘./*𝑑0𝑥*, 𝑇((#$)𝑥.2 
= 𝑘./*𝑑(𝑥., 𝑥.+%) 

Which is a contradiction since 0 ≤ 𝑘 < %
'
. 

Step 3: For 𝑥 ∈ 𝑋, 𝑞(𝑥) = 𝑠𝑢𝑝	𝑛	𝑑(𝑇*𝑥, 𝑥)	 is finite. 

Let 𝑥 ∈ 𝑋 and let ℎ(𝑥) = {𝑑(𝑇0𝑥, 𝑥): 𝑘 = 1,2… , 𝑝(𝑥), 𝑝(𝑥) + 1,…2𝑝(𝑥)}	 

If 𝑛 is a positive integer, then there exists an integer 𝛼 ≥ 0 such that  

𝛼𝑝(𝑥) < 𝑛 ≤ (𝛼 + 1)𝑝(𝑥). 
We can assume that 𝑇*𝑥, 𝑇((#)𝑥, 𝑇'((#)𝑥, 𝑥 are different from each other. Otherwise the conclusion is  

𝑑(𝑇*𝑥, 𝑥) ≤ 𝑠[𝑑(	𝑇*𝑥, 𝑇((#)𝑥) + 𝑑0𝑇((#)𝑥, 𝑇'((#)𝑥2 + 𝑑(𝑇'((#)𝑥, 𝑥)]	 
≤ 𝑠[𝑘𝑑0𝑇*/((#)𝑥, 𝑥2 + 𝑘𝑑0𝑥, 𝑇((#)𝑥2 + 𝑑(𝑇'((#)𝑥, 𝑥) 

≤ 𝑠𝑘𝑑0𝑇*/((#)𝑥, 𝑥2 + 𝑠𝑘𝑧(𝑥) + 𝑠𝑧(𝑥) 
≤ 𝑠'𝑘V𝑑0𝑇*/((#)𝑥, 𝑇((#)𝑥2 + 𝑑0𝑇((#)𝑥, 𝑇'((#)𝑥2 + 𝑑0𝑇'((#)𝑥, 𝑥2W + 	𝑠𝑘𝑧(𝑥) + 𝑠𝑧(𝑥) 
≤ 𝑠'𝑘'𝑑0𝑡*/'((#)𝑥, 𝑥2 + 𝑠'𝑘'𝑑0𝑥, 𝑇((#)𝑥2 + 𝑠'𝑘𝑑0𝑇'((#)𝑥, 𝑥2 + 𝑠𝑘𝑧(𝑥) + 𝑠𝑧(𝑥) 

≤ 𝑠'𝑘'𝑑0𝑡*/'((#)𝑥, 𝑥2 + 𝑠'𝑘'𝑧(𝑥) + 𝑠'𝑘𝑧(𝑥) + 	𝑠𝑘𝑧(𝑥) + 𝑠𝑧(𝑥) 
≤ ⋯							…		 

≤ 𝑠1𝑘1𝑑0𝑡*/1((#)𝑥, 𝑥2 + (𝑠𝑧(𝑥) + 𝑠'𝑘𝑧(𝑥) + ⋯)
+ (	𝑠𝑘𝑧(𝑥) + 𝑠'𝑘'𝑧(𝑥) + 𝑠2𝑘2𝑧(𝑥) + ⋯) 

≤ 𝑠1𝑘1𝑧(𝑥) +
𝑠𝑧(𝑥)
1 − 𝑠𝑘 +

𝑠𝑘𝑧(𝑥)
1 − 𝑠𝑘  

≤ 𝑧(𝑥) +
𝑠𝑧(𝑥)
1 − 𝑠𝑘 +

𝑠𝑘𝑧(𝑥)
1 − 𝑠𝑘  

Hence 𝑞(𝑥) = 𝑠𝑢𝑝	𝑛	𝑑(𝑇*𝑥, 𝑥) is finite.  

Step 4:  𝑑(𝑥*, 𝑥*+%) = 0	  

http://www.ijesm.co.in/
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𝑑(𝑥*, 𝑥*+%) = 𝑑0𝑇((##%")𝑥*/%, 𝑇((##)𝑇((##%")𝑥*/%2 
= 𝑑(𝑇((##%")𝑥*/%, 𝑇((##%")𝑇((##)𝑥*/%)	 

≤ 𝑘𝑑0𝑥*/%, 𝑇((##)𝑥*/%2 
…										…						 

≤ 𝑘*𝑑0𝑥), 𝑇((##)𝑥)2 
≤ 𝑘*	𝑞𝑥) 

Then 𝑑(𝑥*, 𝑥*+%) = 0	 

Step 5: {𝑥*} is a Cauchy sequence in X.  

For the sequence {𝑥*}, we consider 𝑑(𝑥*, 𝑥*+!) in two cases. For the sake of convenience, we 

denote 𝑞(𝑥)) by 𝑞). 

If 𝑙 is odd say 2𝑚 + 1 then by step 2 and (rb3) 

𝑑(𝑥*, 𝑥*+'.+%) ≤ 𝑠[𝑑(𝑥*, 𝑥*+%) + 𝑑(𝑥*+%, 𝑥*+') + 𝑑(𝑥*+', 𝑥*+'.+%)] 
≤ 𝑠𝑘*𝑞) + 𝑠𝑘*+%𝑞) + 𝑠'[𝑑(𝑥*+', 𝑥*+2) + 𝑑(𝑥*+2, 𝑥*+3) + 𝑑(𝑥*+3, 𝑥*+'.+%)] 

≤	…						…				 
≤ 𝑠𝑘*𝑞) + 𝑠𝑘*+%𝑞) + 𝑠'𝑘*+'𝑞) + 𝑠'𝑘*+2𝑞) + 𝑠2𝑘*+3𝑞) + 𝑠2𝑘*+4𝑞) +⋯+ 𝑠.𝑘*+.𝑞) 

≤ 𝑠𝑘*𝑞)[1 + 𝑠𝑘' + 𝑠'𝑘3 +⋯ ] + 𝑠𝑘*+%𝑞)[1 + 𝑠𝑘' + 𝑠'𝑘' +⋯] 

≤ 𝑠𝑘*𝑞) Z
1

1 − 𝑠𝑘'[ + 𝑠𝑘
*+%𝑞) × Z

1
1 − 𝑠𝑘'[ 

≤ 𝑠𝑘*𝑞) \
1

1 − 𝑠𝑘' +
𝑘

1 − 𝑠𝑘'] 

≤
1 + 𝑘
1 − 𝑠𝑘' 	𝑠𝑘

*𝑞) 
If 𝑙	 is even, say 2𝑚, then by step 2 and (rb3) 

𝑑(𝑥*, 𝑥*+'.) ≤ 𝑠[𝑑(𝑥*, 𝑥*+%) + 𝑑(𝑥*+%, 𝑥*+') + 𝑑(𝑥*+', 𝑥*+'.)] 
≤ 	𝑠𝑘*𝑞) + 𝑠𝑘*+%𝑞) + 𝑠'[𝑑(𝑥*+', 𝑥*+2) + 𝑑(𝑥*+2, 𝑥*+3) + 𝑑(𝑥*+3, 𝑥*+'.)] 

≤		…					…				 
≤ 	𝑠𝑘*𝑞) + 𝑠𝑘*+%𝑞) + 𝑠'𝑘*+'𝑞) + 𝑠'𝑘*+2𝑞) +⋯+ 𝑠./%𝑘*+'./3𝑞)

+ 𝑠./%𝑘*+'./2𝑞) + 𝑠./%𝑘*+'./'𝑞)𝑑(𝑥), 𝑇*+'./%𝑇*+'./'𝑥)) 
≤ 	𝑠𝑘*𝑞)[1 + 𝑠𝑘' + 𝑠'𝑘' +⋯	] + 𝑠𝑘*+%𝑞)[1 + 𝑠𝑘' + 𝑠'𝑘' +⋯] + 𝑠./%𝑘*+'./'𝑞) 

≤
1 + 𝑘
1 − 𝑠𝑘' 	𝑠𝑘

*𝑞) + (𝑠𝑘)'.𝑘*/'𝑞) 

≤
1 + 𝑘
1 − 𝑠𝑘' 	𝑠𝑘

*𝑞)+𝑘*/'𝑞) 
Then it follows from above argument  

𝑑(𝑥*, 𝑥*+!) = 0	 for all 𝑙 > 0.  

Thus sequence {𝑥*} is a Cauchy sequence in X.  

Since X is complete, there exist a point 𝑢 ∈ 𝑋 such that 𝑥* = 𝑢		 

Step 6: 

𝑢	is a fixed point of T. 

http://www.ijesm.co.in/
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By(3.1), 𝑑0𝑇((5)𝑢, 𝑇((5)𝑥*2 ≤ 𝑑(𝑢, 𝑥*), then 𝑑0𝑇((5)𝑢, 𝑇((5)𝑥*2 = 0	  

𝑑0𝑇((5)𝑥*, 𝑥*2 = 𝑑0𝑇((5)𝑇((##%")𝑥*/%, 𝑇((##%")𝑥*/%2 
= 𝑑(𝑇((##%")𝑥*/%, 𝑇((##%")𝑇((5)𝑥*/%)	 

≤ 𝑘𝑑0𝑥*/%, 𝑇((5)𝑥*/%2 
≤ ⋯		…			 

≤ 𝑘*𝑑0𝑥), 𝑇((5)𝑥)2 
That is 𝑙𝑖𝑚

*→7
𝑑0𝑇((5)𝑥*, 𝑥*2 = 0 

By (rb3), 

𝑑0𝑇((5)𝑢, 𝑥*+%2 ≤ 𝑠 3𝑑0𝑇((5)𝑢, 𝑇((5)𝑥*2 + 𝑑0𝑇((5)𝑥*, 𝑥*2 + 𝑑(𝑥*, 𝑥*+%)4 
Then 𝑙𝑖𝑚

*→7
	𝑑0𝑇((5)𝑢, 𝑥*+%2 = 0 

Therefore by (rb3), we have  

𝑑0𝑢, 𝑇((5)𝑢2 ≤ 𝑠 3𝑑(𝑢, 𝑥*) + 𝑑(𝑥*, 𝑥*+%) + 𝑑0𝑥*+%, 𝑇((5)𝑢24 
Putting limit 𝑛 → ∞ in the above inequality, we have  

𝑑0𝑢, 𝑇((5)𝑢2 = 0 
This means that 𝑇((5)𝑢 = 𝑢; that is 𝑢 is a fixed point of 𝑇((5).  

Now, 𝑑(𝑢, 𝑇𝑢) = 𝑑0𝑇((5)𝑢, 𝑇𝑇((5)𝑢2 

= 𝑑0𝑇((5)𝑢, 𝑇((5)𝑇𝑢2 
≤ 𝑘𝑑(𝑢, 𝑇𝑢) 

Then 𝑑(𝑢, 𝑇𝑢) = 0, that is u is a fixed point of T. 

Step 7: u is the unique fixed point of T.  

To prove that u is the unique fixed point of 𝑇((5). 

Let 𝑇((5)𝑣 = 𝑣 for some 𝑣 ≠ 𝑢, then  

𝑑(𝑢, 𝑣) = 𝑑0𝑇((5), 𝑇((5)𝑣2 
≤ 𝑘𝑑(𝑢, 𝑣) 

Which is a contradiction. Since 0 ≤ 𝑘 < %
'
   

If w is another fixed point of T, then 𝑤 = 𝑇𝑤 = 𝑇'𝑤 = ⋯	= 𝑇((5)𝑤 

𝑤 is a fixed point of 𝑇((5) too. 

By the uniqueness of fixed point of 𝑇((5), we have 𝑢 = 𝑤. 

Therefore T has a unique fixed point. 

http://www.ijesm.co.in/
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4. Conclusion  

This paper establishes a Sehgal -Guseman -type fixed point theorem in b-rectangular metric 

spaces , resolving an open question posed by Mitrovic. The findings presented here broaden 

and consolidate existing result in fixed point theory.  
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