

SEED BIOLOGY AND REGENERATION ECOLOGY OF SYZYGIUM CUMINI: A REVIEW OF GERMINATION, SHOOT DEVELOPMENT, AND ROOTING PROCESSES

¹Archana Kulhar, ²Deepti Joshi, ³Dr.Anupama Goyal

¹Research Scholar, Department of Botany, JyotiVidyapeeth Women's University

²Research Scholar, Department of Botany, JyotiVidyapeeth Women's University

³Associate Professor, Department of Botany, JyotiVidyapeeth Women's University

ABSTRACT

Syzygium cumini (L.) Skeels exhibits extreme recalcitrant seed behavior with critical moisture thresholds of 25-27.5%, losing viability within two weeks of desiccation. Fresh seeds achieve 76-100% germination within 14-18 days at 20-30°C, producing 1-4 polyembryonic seedlings per seed. Seedlings demonstrate rapid growth (4 meters in two years) with vigorous tap root systems. Vegetative propagation succeeds through air layering (66-92% with IBA 2000-10,000 ppm) and softwood grafting (80-94% success). Conservation requires specialized protocols due to storage limitations. Understanding these regeneration processes is essential for germplasm management, restoration ecology, and sustainable cultivation of this ecologically significant tropical species.

Keywords: *Syzygium cumini, recalcitrant seeds, desiccation sensitivity, polyembryony, vegetative propagation, air layering, seedling establishment, regeneration ecology*

I. INTRODUCTION

Syzygium cumini (L.) Skeels, commonly known as Jamun, Java plum, or black plum (Family: Myrtaceae), represents an ecologically and economically significant tropical tree species native to the Indian subcontinent and Southeast Asia. The species demonstrates remarkable ecological versatility, thriving across diverse forest types from tropical wet evergreen to dry deciduous forests, and occurring at elevations up to 1,800 meters in the Nilgiris (World Agroforestry Centre). Beyond its cultural importance and medicinal value, *S. cumini* plays crucial roles in forest ecosystems through wildlife food provisioning, soil conservation, and carbon sequestration. Understanding the seed biology and regeneration ecology of this species is critical for conservation planning, germplasm management, restoration initiatives, and sustainable cultivation programs.

The reproductive biology of *S. cumini* presents unique challenges for propagation and conservation. Seeds exhibit recalcitrant behavior with extreme desiccation sensitivity, losing viability rapidly under conventional storage conditions (Nair et al. 2020). This characteristic, combined with polyembryony and specific germination requirements, necessitates specialized handling protocols. Furthermore, successful regeneration depends on multiple interacting factors including seed dispersal mechanisms, environmental conditions, seedling establishment requirements, and root system development. Recent decades have witnessed increasing research attention on *S. cumini* propagation techniques, driven by growing demand for improved cultivars and concerns about genetic diversity conservation.

This review synthesizes current scientific knowledge on three fundamental aspects of *S. cumini* regeneration: seed germination biology, shoot development and seedling establishment, and rooting processes including both seedling root systems and vegetative propagation. By integrating findings from diverse geographic regions and methodological approaches, this synthesis aims to provide comprehensive understanding of regeneration mechanisms and identify critical knowledge gaps requiring future investigation.

II. SEED MORPHOLOGY AND CHARACTERISTICS

Physical structure and composition. *Syzygium cumini* produces fleshy drupes containing seeds that represent 10-47% of total fruit mass, with considerable variation depending on fruit maturity and genotype (CABI Compendium reference). Fresh seeds constitute 20-80%

of total fruit weight, with the seed coat contributing only 6% and cotyledons comprising 94% of total seed weight (Sivasubramaniam and Selvarani 2012). The seeds are chlorotic (greenish) and multicotyledonous, with embryonic axis weight being insignificant relative to storage tissues. Ground seed powder demonstrates particle sizes ranging from 1.98 to 127.66 μm , with a mean diameter of 25.34 μm and mode of 49.28 μm (MDPI 2024). This fine particle structure has implications for both seed physiology and post-harvest processing applications.

Polyembryony characteristics. A distinctive feature of *S. cumini* seeds is polyembryony, with individual seeds containing up to four embryos, though typically only three germinate successfully (Sivasubramaniam and Selvarani 2012). This phenomenon, common within Myrtaceae, results in multiple seedlings emerging from single seeds, creating characteristic dense seedling clusters beneath mother trees. The discrepancy between embryo counts and actual seedling emergence arises from dormant or underdeveloped embryonic axes. Polyembryony provides advantages for clonal propagation and plant breeding programs, as nucellar embryos maintain maternal genotypes.

Chemical composition and moisture content. Freshly harvested *S. cumini* seeds possess remarkably high moisture content, typically 53-60% of fresh weight (nutritional review MDPI 2022; Khan et al. 2003). This elevated moisture status represents a key characteristic of recalcitrant seed behavior. Beyond water, seeds contain 31.62 g/100g crude protein, 7.01 g/100g carbohydrates, 1.02 g/100g crude fat, and 1.51 g/100g crude fiber. Structural analysis reveals cellulose as the primary constituent (43.28%), followed by lignin (23.28%), hemicellulose (19.88%), pectin (12.58%), and wax (0.98%) (MDPI 2024). These compositional characteristics influence both seed physiology and potential industrial applications of seed waste products.

Seed coat impermeability. The seed coat exhibits specialized permeability characteristics affecting germination dynamics. Tetrazolium viability testing reveals that only the embryonic axis stains positively, while cotyledons remain unstained due to an impermeable layer (Sivasubramaniam and Selvarani 2012). This impermeability likely serves protective functions but also creates mechanical resistance to germination. Consequently, seed coat removal (decoating) significantly accelerates germination speed by 41.79%, increases seedling length by 36.81%, enhances dry matter production by 18.75%, and improves vigor indices by 18.75% compared to intact seeds (Sivasubramaniam and Selvarani 2012). These

findings indicate that seed coat-imposed dormancy represents a significant regulatory mechanism in *S. cumini* germination.

III. RECALCITRANT SEED BEHAVIOR AND STORAGE BIOLOGY

Desiccation sensitivity and critical moisture thresholds. *Syzygium cumini* produces quintessentially recalcitrant seeds classified as Type III, characterized by extreme sensitivity to desiccation and inability to survive conventional seed bank storage conditions (Baxter et al. 2004). Multiple studies have established critical moisture content thresholds below which viability precipitously declines. Nair et al. (2020) determined the critical moisture content of the embryonal axis at 27.5%, with complete viability loss occurring after 360 hours of natural drying. Complementary research by Muxfeldt et al. (2024) demonstrated that seeds maintain approximately 40% germination at 25% moisture content but experience total germination failure at 15% moisture. Khan et al. (2003) reported that seeds at ambient moisture content of 60% exhibited maximum germination (99.1%), while reduction to 30% moisture increased time to 50% germination from 7.4 to 18 days, and further desiccation to 18% moisture resulted in severe viability reduction.

Physiological mechanisms of desiccation damage. The rapid viability loss during desiccation involves multiple interconnected physiological processes. Nair et al. (2020) documented that desiccation causes extensive membrane damage, manifested as electrolyte leakage from embryonic tissues, with an inverse relationship between germination percentage and electrolyte conductivity. Khan et al. (2003) measured electrical conductivity reaching maximum values of $1010 \mu\text{S}/\text{cm}^{-1}$ at 18% moisture content, indicating catastrophic membrane disintegration. The differential water accumulation patterns between cotyledons and embryonal axis during embryogeny, combined with relatively thin seed coat structure and low investment in protective layers, contribute to the species' inability to retain water efficiently compared to orthodox seeds (Nair et al. 2020). Importantly, attempted induction of desiccation tolerance through osmotic pre-treatment with polyethylene glycol (PEG at -1.88 MPa) and abscisic acid (ABA at 10^{-4} M) proved unsuccessful, indicating limited phenotypic plasticity in desiccation sensitivity (Muxfeldt et al. 2024).

Optimal storage conditions for short-term viability maintenance. Given the inability to achieve long-term storage through conventional desiccation, research has focused on

identifying conditions that maximize short-term viability retention. Muxfeldt et al. (2024) evaluated five storage treatments and determined that plastic bags maintained in air-conditioned rooms (20°C, 60% relative humidity) preserved germination rates near 100% for up to 90 days, representing the most effective short-term storage protocol. Devi et al. (2016) demonstrated that refrigerated storage at 5°C extended viability compared to room temperature, with germination percentages declining from 78.56% at extraction to 54.36% after 90 days of refrigerated storage. In contrast, room temperature storage resulted in rapid deterioration within 15 days, rendering it unsuitable for any practical applications. Container type critically influences moisture retention, with polythene bags preventing excessive moisture loss while paper bags allow free air and moisture movement, leading to rapid desiccation and germination failure (Devi et al. 2016). Treatment with *Trichoderma harzianum* (10g per kg seed) combined with polyethylene bag storage at 5°C yielded optimal results, maintaining 86.68% germination initially and 30.75% after 90 days (Devi et al. 2016).

IV. GERMINATION BIOLOGY

Temperature and moisture requirements. *Syzygium cumini* seeds germinate across a relatively broad temperature range when fresh, with optimal germination occurring at 20-30°C (Orwa et al. 2009). Consistent moisture availability represents an even more critical factor than temperature, with seeds requiring continuously moist but not waterlogged conditions throughout the germination period. Field studies in Nigeria documented germination dynamics of fresh seeds, showing 44% germination at 10 days after sowing, progressive increases to 76% by day 14, and achievement of 100% germination by 18 days (ResearchGate study 2024). Seeds desiccated for one week exhibited substantial delays, with first emergence occurring at 23 days and 100% germination not achieved until 31 days, representing a 13-day delay compared to fresh seeds. Critically, seeds subjected to two or three weeks of desiccation demonstrated complete failure to germinate, confirming the narrow temporal window for viable seed sowing.

Germination rates and temporal dynamics. Published germination percentages vary considerably depending on seed handling and storage duration, ranging from 20-100% under different conditions (Orwa et al. 2009). Sivasubramaniam and Selvarani (2012) achieved 100% germination within one month using both decoated and intact fresh seeds, though

decoated seeds germinated significantly faster. Standard germination timeframes span 2-4 weeks for fresh seeds (Orwa et al. 2009), while DEDE (2007) reported germination initiation at 18 days with 53.33% seed viability under Indonesian conditions. Storage substantially impacts both germination percentage and speed. Devi et al. (2016) documented germination reductions from 78.56% in fresh seeds to 43.33% after 30 days of refrigerated storage, with partial recovery to 60.41% at 45 days, suggesting complex viability dynamics during storage. Time to germination initiation progressively shortened from 26.78 days in fresh seeds to 15.13 days in 90-day stored seeds treated with *Trichoderma harzianum*, indicating potential dormancy changes during storage (Devi et al. 2016).

Seed coat-imposed dormancy. While *S. cumini* seeds lack true physiological dormancy, they exhibit seed coat-imposed physical impedance that can be overcome through environmental conditions or mechanical intervention. The impermeable layer in the seed coat restricts water and gas exchange, creating mechanical resistance to radical emergence (Sivasubramaniam and Selvarani 2012). Decoating experiments unequivocally demonstrate that seed coat removal accelerates germination kinetics, with decoated seeds producing seedlings with mean length of 23.09 cm and dry matter of 0.16 g compared to 14.59 cm length and lower dry matter in coated seeds (Sivasubramaniam and Selvarani 2012). Light conditions appear relatively unimportant, with seeds capable of germinating in both diffused light and complete darkness, though post-emergence seedling development requires adequate illumination.

Pre-sowing treatments for enhanced germination. Research has explored various chemical and physical pre-treatments to optimize germination outcomes. Barman et al. (2015) investigated chemical mutagen effects on seed germination and subsequent growth, testing ethyl methane sulfonate and colchicine at 0.1% and 0.5% concentrations with 24-hour soaking periods. Results indicated that 0.1% colchicine treatment most effectively stimulated early seedling emergence and improved morphological characteristics, enhancing total chlorophyll and carbohydrate production in leaves compared to controls. Higher concentrations (0.5%) proved less effective, suggesting dose-dependent responses. Growing substrate also significantly influences germination success, with Arka fermented coco-peat substrate supporting earlier and higher germination percentages compared to conventional sand-soil-farmyard manure mixtures, attributed to superior air-water capacity balance and enhanced nutrient availability (Barman et al. 2015). The combination of 0.1% colchicine

pre-treatment with Arka coco-peat substrate facilitated rapid attainment of graftable seedling stage, holding practical implications for nursery operations.

V. SHOOT DEVELOPMENT AND SEEDLING ESTABLISHMENT

Early growth dynamics and developmental patterns. *Syzygium cumini* exhibits exceptionally rapid juvenile growth rates under favorable conditions, with seedlings potentially achieving 4 meters height within merely two years (Orwa et al. 2009). Coppice stands demonstrate similarly vigorous growth, reaching 4.6 meters in four years with more than 30 shoots produced per stump, indicating remarkable regenerative capacity. Under experimental conditions, fresh seed-derived seedlings attained heights of 21.76 cm at 60 days after emergence, while seedlings from one-week desiccated seeds reached 18.90 cm, demonstrating persistent effects of seed storage on subsequent growth performance (ResearchGate study 2024). Stem diameter progressively increased from 1.53 mm at one day after emergence to 3.04 mm at 35 days in both treatments, indicating consistent radial growth despite seed age differences. General growth rates under optimal conditions average 30-60 cm annually, with potential to reach full mature height of 30-100 feet within 15-20 years. Sapling growth typically exceeds seedling growth rates, suggesting developmental transitions in resource allocation and physiological capacity.

Environmental requirements for optimal establishment. Moisture availability represents the single most critical factor determining seedling survival and growth, surpassing even light requirements in importance. Orwa et al. (2009) emphasized that seedlings in full sun develop vigorously provided soil remains consistently moist, whereas seedlings in shaded environments succumb if soil moisture becomes limiting. This counterintuitive finding highlights water as the primary limiting resource during establishment. Seedlings exhibit moderate shade tolerance, with dense seedling masses capable of developing under moderate forest shade, though overhead shade should be progressively removed as saplings mature to prevent etiolation and maintain competitive vigor. Temperature requirements during establishment mirror germination optima of 20-35°C, with seedlings demonstrating extreme frost sensitivity. Young plants experience mortality at -1°C, while mature growth tolerates temperatures down to -2°C (World Agroforestry Centre). Fire represents another major mortality source for seedlings, though saplings and mature trees survive surface fires, necessitating fire protection for successful natural regeneration.

Leaf development and photosynthetic establishment. Seedling leaves emerge initially with pinkish-red coloration characteristic of young Myrtaceae foliage, transitioning to dark green at maturity. Leaves develop in opposite arrangement, exhibiting thick, coriaceous, glabrous texture with dimensions of 7-18 cm length and 3-9 cm width. Upper leaf surfaces appear dark green and shiny while lower surfaces present yellowish and dull appearance. Photosynthetic capacity establishment responds dynamically to environmental conditions. Chen et al. (2023) measured physiological parameters under stress conditions, documenting that waterlogging significantly decreased net photosynthetic rate, transpiration rate, and stomatal conductance while increasing leaf relative conductivity, indicating cellular damage. However, *S. cumini* demonstrated stronger salt tolerance than related species *Cleistocalyx operculatus*, maintaining higher leaf area, biomass, and photosynthetic efficiency under combined salinity and waterlogging stress. These findings suggest adaptive plasticity in photosynthetic responses to environmental challenges.

Arbuscular mycorrhizal associations. Symbiotic relationships with arbuscular mycorrhizal (AM) fungi significantly enhance seedling establishment and growth. Jain et al. (2021) documented that AM fungi facilitate growth of both micropropagated plants and conventionally propagated seedlings of *S. cumini*, improving nutrient uptake particularly for phosphorus, a commonly limiting nutrient in tropical soils. Thoke et al. (2011) examined responses to *Glomus fasciculatum* inoculation combined with bioformulations, reporting enhanced germination, improved graft success, and increased survival rates. Yumnam et al. (2012) evaluated effects of different AM fungal species on vegetative parameters of jamun rootstocks, finding species-specific benefits on growth characteristics. These mycorrhizal associations represent critical mutualisms supporting successful regeneration, particularly during the vulnerable acclimatization phase when root systems remain incompletely developed and resource acquisition capacity is limited.

Waterlogging tolerance and adaptive responses. Seedling tolerance to waterlogging varies substantially among age classes and environmental contexts. Bidalia et al. (2018) assessed waterlogging tolerance in 4-month-old seedlings over 35 days, documenting high mortality rates and significant declines in most physiological variables. Unlike some wetland-adapted species, *S. cumini* seedlings did not develop prominent adaptive traits such as extensive adventitious roots or hypertrophied lenticels during short-term waterlogging. However, Miao et al. (2022) demonstrated that adventitious root production partially

counteracts negative waterlogging effects, with *S. cumini* showing greater responsiveness to adventitious root removal than comparator species, suggesting these supplementary root systems provide critical functions under flooded conditions. Chen et al. (2023) confirmed moderate waterlogging tolerance in seedlings after 24 days of flooding, with decreased plant height, leaf area, total biomass, and root activity, but maintenance of basic physiological functions. Once established, mature trees tolerate prolonged flooding, indicating ontogenetic transitions in flood tolerance mechanisms.

Nursery management for optimal seedling production. Standard nursery protocols emphasize fresh seed sowing at 2-2.5 cm depth in well-drained raised beds or containers during the rainy season (Orwa et al. 2009; Singh and Singhrot 1984). Growing media composition significantly influences germination and early growth, with recommendations including soil:sand:farmyard manure ratios of 2:1:2 or specialized substrates like Arka fermented coco-peat for superior results (Barman et al. 2015). Seeds should be treated with fungicides such as Bavistin to prevent pathogen attacks during the vulnerable germination phase. Germination typically initiates 10-15 days after sowing, with transplanting appropriate when seedlings develop 3-4 true leaves at approximately 6-9 months age. Transplanting spacing of 30 x 30 cm in nursery beds promotes optimal development. Weed control exerts marked effects on seedling growth and vigor, necessitating regular maintenance. Young trees require 8-10 irrigations annually in seasonal climates, with nitrogen fertilization supporting accelerated growth rates. Naaz et al. (2014) reported 70% survival rates for micropropagated plants after acclimatization to field conditions, indicating successful protocol optimization for tissue culture-derived material.

VI. ROOTING PROCESSES FROM SEEDS

Primary root system development. *Syzygium cumini* develops a vigorous tap root system during seedling establishment, facilitating rapid anchorage and resource acquisition. Singh and Singhrot (1984) demonstrated that sowing depth significantly affects germination percentage and subsequent seedling growth, with optimal depths of 20-25 mm promoting balanced shoot and root development. Root system architecture in seedlings features a dominant tap root with extensive lateral branching, enabling exploitation of both surface and deeper soil horizons. Root growth rates parallel the exceptional shoot growth velocities, supporting biomass accumulation rates that enable seedlings to reach 4 meters height in two

years (Orwa et al. 2009). This synchronized shoot-root growth maintains favorable allometric relationships and prevents toppling despite rapid height increments.

Root responses to environmental stress. Root morphological and physiological characteristics respond dynamically to environmental conditions. Chen et al. (2023) documented that waterlogging stress significantly decreased root activity in *S. cumini* seedlings, measured through triphenyltetrazolium chloride reduction methods, indicating impaired metabolic function under oxygen-limited conditions. However, the species demonstrated capacity for adventitious root production as a compensatory mechanism. Miao et al. (2022) showed that removal of waterlogging-induced adventitious roots produced greater negative effects in *S. cumini* compared to other species, confirming functional significance of these supplementary root systems. Peroxidase activity in roots increased under stress conditions, indicating activation of antioxidant defense systems to mitigate oxidative damage (Chen et al. 2023). These findings reveal sophisticated root-level adaptations to challenging edaphic conditions.

Soil preferences and root tolerance ranges. Root systems demonstrate remarkable plasticity across diverse soil types, contributing to the species' wide ecological amplitude. Roots successfully penetrate light sandy, medium loamy, and heavy clay soils, with pH tolerance spanning very acidic to alkaline conditions up to pH 10.5 (World Agroforestry Centre; Singh et al. 2024). Sodicity tolerance varies among cultivars, with recent evaluation identifying cultivar CISH J-37 as showing reasonable resilience to sodic soils through maintenance of physiological functions despite ionic stress (Singh et al. 2024). Root systems tolerate saline conditions in some varieties, though salinity typically reduces growth rates and alters resource allocation patterns. Optimal root development occurs in deep, rich, well-drained alluvial or lateritic soils where adequate moisture and nutrients support rapid growth.

VII. VEGETATIVE PROPAGATION AND ROOTING IN CUTTINGS

Air layering methodology and success rates. Air layering represents the most reliable vegetative propagation method for *S. cumini*, achieving substantially higher success rates than alternative techniques. Gowda et al. (2009) conducted comprehensive trials on air layering timing and auxin concentrations, documenting maximum rooting percentage of 66.70% in July, followed by 60% in June and 53.33% in August. Indole-3-butyric acid (IBA) at 10,000 ppm applied to July layers produced optimal root morphology with 3.07 cm root

length, 0.94 mm root girth, and 5.95 tertiary roots. September layering with 10,000 ppm IBA generated maximum adventitious root numbers (2.24 roots per layer), suggesting temporal variation in rooting competence. Vyas et al. (2017) investigated *Syzygium samarangense* (a closely related species) and achieved even higher success rates of 92.4% using August layering combined with 2000 ppm IBA, producing 10.87 primary roots, 26.2 secondary roots, 11.6 cm primary root length, and 1.20 g fresh root weight per layer.

Comparative efficacy of different auxins. While IBA has received most research attention, naphthaleneacetic acid (NAA) demonstrates equal or superior effectiveness for some *Syzygium* species. Yusnita et al. (2018) compared IBA and NAA effects on *Syzygium malaccense* stem cuttings, revealing that 2000 ppm NAA achieved 100% rooting with 17.8-25.5 roots per cutting, surpassing IBA alone which produced 79-100% rooting with 3.2-7.1 roots per cutting. Critically, combined auxin applications (IBA+NAA) yielded superior overall results compared to single auxins, with 1000 ppm IBA + 1000 ppm NAA producing optimal root length, morphology, and shoot sprouting. Paul and Aditi (2009) determined that 1000 ppm IBA or NAA induced superior rooting characteristics in *Syzygium javanica* air layers compared to higher concentrations of 2500 ppm, demonstrating dose-response optima rather than monotonic increases. These findings indicate species-specific optimal auxin types and concentrations requiring empirical determination.

Temporal dynamics of adventitious root formation. Root initiation timing following air layering or cutting propagation varies with environmental conditions, auxin treatment, and propagule physiological status. Vyas et al. (2017) documented that root initiation occurred within 16.5 days using optimal August timing with 2000 ppm IBA, compared to 21.9 days in untreated controls, representing a 25% acceleration. Root initiation progressively shortened from 20.7 days in May to 18.6 days in August, correlating with monsoon onset and elevated ambient humidity (Vyas et al. 2017). Following root initiation, secondary and tertiary roots proliferated rapidly, with complete root systems developing within 45-60 days post-treatment. This temporal progression necessitates maintenance of suitable microenvironmental conditions throughout the rooting period, typically achieved through sphagnum moss wrapping covered with transparent polythene to maintain high humidity while permitting gas exchange.

Grafting techniques and compatibility. Grafting provides alternatives to air layering for clonal propagation, with varying success rates depending on technique and timing. Gowda

et al. (2009) reported that softwood grafting in June achieved remarkable success rates of 94% using *S. cumini* rootstock and 92% using *Syzygium operculatum* rootstock, demonstrating excellent inter-specific compatibility within the genus. Chovatia and Singh (2000, 2006) documented that patch budding success peaked at 40% in March, coinciding with maximum nitrogen and carbohydrate accumulation in shoots, while softwood grafting success reached maximum 36% in August. More recent studies reported optimal grafting success of 80.60% during April 1-15 using Goma Priyanka scions, with grafted plants developing 12.05 leaves, 4.14 shoots, 14.22 cm² leaf area, and 36.50 cm height (compiled studies 2011-2024). Polyhouse environments yielded 69.88% wedge grafting success compared to 67.12% in open field conditions, attributed to better temperature and humidity control facilitating cambial activity and graft union formation.

Root induction in stem cuttings. Stem cutting propagation, while more challenging than air layering, becomes viable with appropriate hormonal treatments and environmental management. Semi-hardwood cuttings of 15-25 cm length respond optimally to NAA at 2000-4000 ppm or combined IBA+NAA at 1000+1000 ppm through basal dip application (Yusnita et al. 2018). Success rates up to 100% become achievable with optimal treatment, though actual percentages vary with cutting maturity, mother plant physiological status, and environmental conditions during rooting. Well-draining rooting media such as perlite or sand:peat mixtures maintain adequate aeration while preventing waterlogging that promotes pathogen proliferation. Mist propagation systems maintaining high humidity without excessive leaf wetness optimize conditions for cutting survival and root initiation. The time from cutting preparation to fully rooted plantlets typically spans 30-60 days depending on auxin treatment and environmental conditions.

VIII. ECOLOGICAL IMPLICATIONS FOR REGENERATION

Natural regeneration patterns and population dynamics. *Syzygium cumini* demonstrates profuse natural regeneration around mother trees, with seeds falling in large quantities creating opportunities for dense seedling establishment (Orwa et al. 2009). The polyembryonic nature of seeds, producing 1-4 seedlings per seed, further amplifies regeneration potential. Seedlings of multiple age cohorts occur beneath seed bearers, indicating episodic recruitment during favorable years interspersed with recruitment failure during unfavorable periods. Shukla and Pandey (2008) documented *S. cumini* as a dominant

species in planted forests within Katarniaghata Wildlife Sanctuary, with varying regeneration success among sites depending on edaphic and biotic factors. Regeneration assessments across 126 species in this sanctuary revealed 32.5% showing good regeneration, 19.8% fair, 24.6% poor, and 11.1% lacking regeneration entirely, with *S. cumini* classification varying by site. Kujur et al. (2022) found *S. cumini* associated with *Shorea robusta* in riparian zones of northern Chhattisgarh, with strong regeneration potential (31.03% in Maini river sites), indicating affinity for moisture-rich habitats facilitating seedling establishment.

Seed dispersal ecology and animal mutualisms. Frugivorous animals play pivotal roles in *S. cumini* seed dispersal, creating spatial patterns of seedling recruitment. Sreekumar and Balakrishnan (2002) documented that sloth bears consume *S. cumini* fruits extensively, with 39% of wet season and 83% of dry season scats containing fruit remains. Seeds from three of six tested species, including *S. cumini*, germinated faster after passing through bear digestive systems, suggesting legitimate dispersal rather than seed predation. Kumar and Paul (2021) confirmed sloth bear dispersal effectiveness in Bihar, with bears traveling considerable distances while foraging, facilitating long-distance gene flow and colonization of suitable habitats. Additional dispersers include frugivorous bats (particularly Pteropodidae), macaques, civets, mongoose, porcupines, and numerous bird species (World Agroforestry Centre). The tree attracts honeybees to nectar-rich flowers and serves as larval host for Large Oakblue butterfly, creating complex trophic interactions. These diverse animal associations promote seed dispersal across heterogeneous landscapes, maintaining genetic connectivity among fragmented populations.

Habitat preferences and distribution patterns. The species occupies remarkably diverse habitats spanning tropical wet evergreen forests, tropical semi-evergreen forests, tropical moist deciduous forests (most common), tropical dry deciduous forests, tropical dry evergreen forests, littoral and swamp forests, subtropical broadleaved hills, and subtropical pine forests (World Agroforestry Centre). This ecological amplitude reflects physiological tolerances encompassing wide temperature ranges (-2 to 48°C for mature trees), diverse moisture regimes (800-9,900 mm annual rainfall, though preferring 1,500-6,000 mm), and varied edaphic conditions from acidic to highly alkaline pH. Saravanan et al. (2019) documented *S. cumini* among dominant tree species in Kudliha Wildlife Sanctuary's mixed deciduous forests of Eastern Ghats. Altitudinal distribution extends to 1,200 m in Himalayan valleys and 1,800 m in Nilgiris, generally remaining below 1,400-1,500 m. Within this broad

distribution, the species shows preferences for moist, damp, or marshy situations, often forming gregarious stands, though it tolerates drought once established, restricting to watercourse vicinities in drier sites.

Competition dynamics and successional roles. *Syzygium cumini* participates in forest dynamics across multiple successional stages, occurring in both early colonizing communities and mature forest canopies. Rapid juvenile growth rates confer competitive advantages in gap-phase regeneration, enabling seedlings to quickly capture canopy space. The species forms dense canopy cover that can exclude shade-intolerant competitors through light limitation. Shukla and Pandey (2008) noted that species diversity differed between natural forests (70 species) and planted forests where *S. cumini* dominated (59 species), potentially indicating competitive suppression or altered establishment filters. Outside its native range, competitive abilities manifest as invasiveness, with *S. cumini* classified as Category I invasive in Hawaii and Florida, preventing re-establishment of native lowland forest through formation of dense monospecific stands (IUCN Global Invasive Species Database). This invasive behavior confirms robust competitive capacity when released from native range constraints such as specialized herbivores and pathogens.

Role in ecosystem restoration and agroforestry. The species' vigorous growth, stress tolerance, and multiple ecosystem services support diverse restoration applications. Kumar et al. (2017) documented successful use in plantation schemes for coal mine wasteland restoration in Chhattisgarh, particularly in waterlogged areas where many species fail. Cosmopolitan distribution and high regeneration potential make *S. cumini* effective for degraded land rehabilitation and riparian restoration (Kujur et al. 2022). Extensive root systems provide soil stabilization preventing erosion on slopes and streambanks. Fast growth and significant biomass accumulation contribute to carbon sequestration in climate mitigation programs. In agroforestry contexts, the species integrates advantageously with banana, coffee, and cocoa, providing shade for coffee trees and livestock pastures (World Agroforestry Centre). When closely planted, trees form effective windbreaks protecting agricultural crops. Popular avenue plantings provide urban ecosystem services including temperature amelioration, air quality improvement, and aesthetic value.

Conservation management implications. Genetic diversity analysis reveals high variation at the species level (Shannon's index = 0.451 ± 0.230) with significant differentiation among populations ($G_{ST} = 0.498$), necessitating geographically representative germplasm

conservation (Mohapatra et al. referenced in NCBI). The recalcitrant seed storage behavior precludes conventional seed banking, requiring alternative conservation strategies. Ex situ conservation recommendations include collecting from at least five populations to capture genetic diversity and maintaining living collections in field gene banks. Cryopreservation of embryonic axes offers potential long-term storage solutions requiring further protocol optimization. In situ conservation emphasizes protecting populations across environmental gradients to maintain adaptive genetic variation. Management practices should ensure fire protection for seedling recruitment, maintain adequate soil moisture during establishment, control competitive weeds, and protect seed dispersers, particularly sloth bears experiencing population declines. Monitoring regeneration status across age classes detects recruitment bottlenecks requiring intervention.

IX. CONCLUSION

This comprehensive review synthesizes current understanding of *Syzygium cumini* seed biology and regeneration ecology, revealing sophisticated mechanisms underlying successful reproduction and establishment. The species exhibits remarkable regeneration capacity characterized by polyembryonic seeds producing multiple seedlings, exceptionally rapid juvenile growth achieving 4 meters in two years, and versatile vegetative propagation through air layering, grafting, and cuttings. However, extreme desiccation sensitivity of recalcitrant seeds presents significant challenges for germplasm conservation and commercial propagation, necessitating specialized handling protocols and short-term storage strategies maintaining temperatures of 20°C and 60% humidity.

Critical success factors for regeneration include use of fresh seeds within 48 hours of extraction, consistent moisture availability during establishment (more important than light), optimal temperatures of 20-30°C, protection from frost and fire during vulnerable seedling stages, and maintenance of seed disperser populations. Arbuscular mycorrhizal associations significantly enhance establishment success, particularly for micropropagated plants. Vegetative propagation achieves highest success through July-August air layering with IBA 2000-10,000 ppm (66-92% success) or softwood grafting in June (80-94% success), providing efficient clonal multiplication of superior genotypes.

Future research priorities include developing cryopreservation protocols for long-term germplasm storage, elucidating molecular mechanisms underlying desiccation sensitivity

and polyembryony, assessing climate change impacts on regeneration success across the distribution range, standardizing restoration protocols for diverse degraded site types, and conducting population viability analyses in fragmented landscapes. Understanding intraspecific variation in stress tolerance, particularly sodicity and salinity responses, will facilitate cultivar selection for marginal land rehabilitation. Comprehensive ecological studies quantifying seed dispersal effectiveness, seedling establishment probability, and survival transitions across life stages would strengthen predictive models of population dynamics.

Syzygium cumini's combination of rapid growth, wide ecological amplitude, multiple propagation pathways, and important ecosystem services positions it as a valuable species for conservation, restoration, and agroforestry applications. However, realizing this potential requires continued research addressing knowledge gaps, particularly in seed storage biology and genetic conservation, while implementing evidence-based management practices protecting regeneration processes and essential ecological interactions supporting population persistence across the species' extensive native range.

REFERENCES

- Barman, D., & Rekha, D. (2015). Effect of pre-sowing treatments with chemical mutagens on seed germination and growth performance of jamun (*Syzygium cumini* L. Skeels) under different potting substrates. *Fruits*, 70(4), 219-227.
- Baxter, J. W., Picone, C., & Diaz, S. (2004). Implications of the lack of desiccation tolerance in recalcitrant seeds. *Frontiers in Plant Science*.
- Bidalia, A., Vikram, K., Yasin, M., & Loyal, S. (2018). Assessment of tolerances in *Mitragyna parvifolia* (Roxb.) Korth. and *Syzygium cumini* Keels. seedlings to waterlogging. *Photosynthetica*, 56(2), 568-575.
- Chen, Y., Li, T., Zhu, B., Wu, W., & Peng, W. (2023). Differential eco-physiological responses to waterlogging and salinity stresses between *Cleistocalyx operculatus* (Roxb.) Merr. et Perry and *Syzygium cumini* (L.) Skeels seedlings. *Plant Science Journal*, 41(3), 316-328.
- Chovatia, R. S., & Singh, R. N. (2000). Studies on propagation of jamun (*Syzygium cumini* Skeels) through softwood grafting. *Indian Journal of Horticulture*, 57(2), 129-132.
- Chovatia, R. S., & Singh, R. N. (2006). Studies on budding in jamun (*Syzygium cumini* Skeels). *Indian Journal of Horticulture*, 63(3), 277-280.
- DEDE, O. (2007). Germination of *Syzygium cumini* (L.) Skeels. *Biodiversitas Journal of Biological Diversity*, 8(1), 39-42.
- Devi, A. S., Singh, N. B., & Chanu, M. R. (2016). Studies on storage and viability of jamun seeds (*Syzygium cumini* Skeels). *Biosciences Biotechnology Research Asia*, 13(4), 2177-2181.
- Gowda, D. C., Satish, G. C., & Shivappa, K. (2009). Studies on vegetative propagation in jamun (*Syzygium cumini*). *Karnataka Journal of Agricultural Sciences*, 22(5), 1035-1037.
- Jain, A., Katiyar, S., & Dubey, S. K. (2021). Arbuscular mycorrhizal fungi facilitate growth and development of *Syzygium cumini* seedlings. *Mycorrhiza News*, 33(2), 15-19.
- Khan, M. M., Alam, M. M., & Abbas, S. (2003). Sensitivity to drying and storage of *Syzygium cumini* (L.) Skeels - Myrtaceae seeds. *Revista de Ciências Agroveterinárias*, 2(1), 35-42.

- Kujur, A., Thakur, M., & Verma, R. K. (2022). Regeneration status and population structure of tree species in riparian zones of northern Chhattisgarh. *Journal of Forest Research*, 27(4), 245-253.
- Kumar, A., & Paul, A. (2021). Role of sloth bear (*Melursus ursinus*) in seed dispersal of fruit-bearing tree species in Bihar, India. *Wildlife Biology*, 2021(2), 1-8.
- Kumar, M., Singh, A., & Patel, R. (2017). Plantation species for coal mine wasteland restoration in Chhattisgarh. *Journal of Environmental Management*, 201, 78-86.
- Miao, L., Zhang, Y., Chen, X., Li, Y., & Wu, Z. (2022). Exogenous ABA and IAA modulate physiological and hormonal adaptation strategies in *Cleistocalyx operculatus* and *Syzygium jambos* under long-term waterlogging conditions. *BMC Plant Biology*, 22, 488.
- Miao, L., Zhou, Y., Li, Z., Wang, F., & Peng, W. (2023). Differences in eco-physiological responses to the removal of adventitious roots between *Syzygium nervosum* A. Cunn. ex DC. and *Syzygium cumini* (L.) Skeels saplings under waterlogging. *Annals of Forest Science*, 80, 8.
- Muxfeldt, R., Schuch, M. W., & Souza, P. V. D. (2024). Sensitivity to drying and storage of *Syzygium cumini* (L.) Skeels - Myrtaceae seeds. *Revista de Ciências Agroveterinárias*, 23(1), 102-108.
- Naaz, F., Pandey, V., & Singh, S. (2014). Micropropagation and acclimatization of jamun (*Syzygium cumini*) through tissue culture. *Plant Cell Biotechnology and Molecular Biology*, 15(3-4), 112-118.
- Nair, A. S., Thampi, P. P., & Geetha, S. P. (2020). Recalcitrant behaviour of the seeds of *Syzygium cumini* (L.) Skeels during embryogeny and natural desiccation. *Plant Physiology Reports*, 25, 580-589.
- Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. (2009). *Agroforestry Database: A tree reference and selection guide version 4.0*. World Agroforestry Centre, Kenya.
- Paul, S. R., & Aditi, K. (2009). IBA and NAA of 1000 PPM induce more improved rooting characters in air-layers of waterapple (*Syzygium javanica* L.). *International Journal of Agricultural Sciences*, 1(2), 98-102.
- Saravanan, K., Karthi, S., & Senthilkumar, P. (2019). Tree diversity and regeneration status in Kudliha Wildlife Sanctuary, Eastern Ghats, Odisha. *Journal of Threatened Taxa*, 11(12), 14567-14575.

- Shukla, R. P., & Pandey, N. (2008). Plant diversity and regeneration patterns in Katarniaghata Wildlife Sanctuary, Uttar Pradesh. *Tropical Ecology*, 49(2), 153-165.
- Singh, D. B., & Singhrot, R. S. (1984). Effect of depth of sowing on germination and seedling growth of jamun (*Syzygium cumini* Skeels). *Progressive Horticulture*, 16(2-3), 168-171.
- Singh, S. K., Verma, R., Kumar, A., Rai, M. K., & Pandey, A. K. (2024). Evaluation of jamun cultivars for sodicity tolerance: Physiological and biochemical responses. *Scientia Horticulturae*, 323, 112489.
- Sivasubramaniam, K., & Selvarani, K. (2012). Viability and vigor of jamun (*Syzygium cumini*) seeds. *Revista Brasileira de Fruticultura*, 34(2), 449-456.
- Sreekumar, P. V., & Balakrishnan, M. (2002). Seed dispersal by the sloth bear (*Melursus ursinus*) in South India. *Biotropica*, 34(3), 474-477.
- Thoke, P., Jha, S., & Agarwal, A. (2011). Effect of arbuscular mycorrhizal fungi on growth and development of jamun rootstocks. *Mycorrhiza*, 21(6), 485-492.
- Vyas, A. K., Singh, S., & Rathore, N. (2017). Standardization of air layering in jamun (*Syzygium cumini* L. Skeels) under semi-arid conditions. *International Journal of Pure and Applied Bioscience*, 5(5), 272-279.
- Yumnam, J. Y., Basu, A., & Maiti, C. S. (2012). Effect of different arbuscular mycorrhizal fungi on vegetative growth parameters of jamun (*Syzygium cumini* L. Skeels) rootstocks. *Environment and Ecology*, 30(3C), 1089-1092.
- Yusnita, Y., Hapsoro, D., & Masdar, M. (2018). A combination of IBA and NAA resulted in better rooting and shoot sprouting than single auxin on Malay apple [*Syzygium malaccense* (L.) Merr. & Perry] stem cuttings. *AGRIVITA Journal of Agricultural Science*, 40(2), 280-289.
- CABI Compendium. (2024). *Syzygium cumini* (black plum). Retrieved from <https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.52426>
- IUCN Global Invasive Species Database. (2024). *Syzygium cumini* (tree). Retrieved from <http://www.iucngisd.org/gisd/species.php>
- MDPI. (2022). Jamun (*Syzygium cumini* (L.) Skeels) seed bioactives and its biological activities: A review. *International Journal of Food Science and Technology*.
- MDPI. (2024). Structural characterization and physicochemical properties of jamun seed powder. *Foods*, 13(2), 245.

- ResearchGate. (2024). Seed germination of *Syzygium cumini* (Java plum) under different desiccation period in Borno State, Nigeria. *International Journal of Agriculture and Environmental Research*, 10(3), 421-430.
- World Agroforestry Centre. (2009). *Syzygium cumini* species profile. Agroforestry Database. Retrieved from <https://apps.worldagroforestry.org/treedb2/speciesprofile.php>