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differential operators derived from formally self-adjoint matrix differential expressions. 

Building on the seminal work of Choudhary and Everitt [1], the study establishes 

conditions under which the spectrum of such operators can be rigorously characterized. 

By constructing the Green’s matrix and employing variational principles, we derive 

detailed eigenvalue bounds and investigate the influence of boundary conditions and 

domain variations on the spectral properties. In particular, we show that the associated 

differential operator is symmetric and self-adjoint in an appropriate Hilbert space and 

that its spectrum is discrete under natural conditions. [1, 3, 7]. 
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1. Introduction 

The spectral theory of differential operators has been central to both analysis and 

mathematical physics. In the scalar setting, classical results guarantee that self‐adjoint 

operators under suitable boundary conditions have a real and discrete spectrum [5, 6]. 

For instance, Choudhary and Everitt [1] studied fourth‐order self‐adjoint differential 

operators under conditions including the real‐valuedness and absolute continuity of 

coefficient functions. 

𝑁(𝑦) ≡ 𝑦(4)(𝑥) − [𝑝1(𝑥) ⋅ 𝑦(1)(𝑥)]
(1)

+ 𝑞1(𝑥) ⋅ 𝑦(𝑥), 0 ≤ 𝑥 < ∞ (1.1) 

where 

𝑦𝑟(𝑥) ≡
𝑑𝑟(𝑦)

𝑑𝑥𝑟
, (𝑟 = 1,2,3,4), (1.2) 

with the following conditions: 

(i) 𝑝1(𝑥), 𝑞1(𝑥) are real-valued functions of 𝑥 defined on [0, ∞), 

(ii) 𝑝1(𝑥) is absolutely continuous on any compact subinterval of [0, ∞) (so that 𝑝1
(1)(𝑥) 

exists almost everywhere on[0, ∞) and 𝑞1(𝑥) belongs to 𝐿[0, 𝑋) for all 𝑋 > 0, 

(iii) 𝑞1(𝑥) is bounded below, say 𝑞1(𝑥) ≥ 𝛼 for all 𝑥 in [0, ∞), 
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(iv) 0 ≤ 𝑝1(𝑥) ≤ 𝐾𝑥2|𝑞1(𝑥)|
1

2 for all sufficiently large 𝑥 and for some𝐾 > 0, 

(v) 𝑞1(𝑥) steadily increases and tends to ∞ as 𝑥 tends to∞. 

2. We consider the matrix differential expression 

𝑀𝜙(𝑥), 0 ≤ 𝑥 < ∞ (2.1) 

 

where 𝑀 stands for the matrix differential operator given by 

𝑀 = [
−

𝑑

𝑑𝑥
(𝑝0

𝑑

𝑑𝑥
) + 𝑝1(𝑥) 𝑟(𝑥)

𝑟(𝑥) −
𝑑

𝑑𝑥
(𝑞0

𝑑

𝑑𝑥
) + 𝑞1(𝑥)

] (2.2) 

and 𝜙(𝑥) a vector represented by a column matrix [
𝑢
𝑣

]. 

We assume the following conditions to be satisfied: 

(i) 𝑝0(𝑥), 𝑞0(𝑥), 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥) are real valued functions of 𝑥 defined on[0, ∞), 

(ii) 𝑝0(𝑥)and 𝑞0(𝑥) are absolutely continuous on [0, 𝑏] for all 𝑏 > 0, 

(iii) 𝑝1(𝑥),𝑞1(𝑥) belong to 𝐿[0, 𝑏] for all 𝑏 > 0, 

(iv) 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥)  are bounded below say 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥) ≥ 𝛼 > 0 , for all 𝑥 ∈

[0, ∞), 

(v) 𝑟(𝑥) ≤ 𝑝1(𝑥), 𝑞1(𝑥) for all 𝑥 ∈ [0, ∞), 

(vi) 0 < 𝑝0(𝑥), 𝑞0(𝑥) < 𝐾𝑥2 for all sufficiently large 𝑥 and for some𝐾 > 0, 

(vii) 𝑝1(𝑥) and 𝑞1(𝑥) increases steadily and tend to ∞ as 𝑥 → ∞. 

If 𝑝0(𝑥), 𝑞0(𝑥), 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥) all satisfy the conditions (i) – (vi), then Shaw and Bhagat 

[2] have proved that the matrix differential equation 

𝑀𝜙(𝑥) = 𝜆𝜙(𝑥), 0 ≤ 𝑥 < ∞ (2.3) 

has exactly two linearly independent solutions for each 𝑥  such that 𝑖𝑚 (𝜆) ≠ 0, which 

belong to the class  𝐿2[0, ∞), that is, 𝑀 is in the 𝑙𝑖𝑚𝑖𝑡 − 2 case at infinity. 

Let the differential operator 𝑇 associated with M be defined as follows: 

𝑇𝑓 = 𝑀𝑓, ∀𝑓 ∈ 𝐷(𝑇) (2.4) 

where 𝐷(𝑇) denote the domain of𝑇, which is the set of all vector functions 

𝑓 ≡ 𝑓(𝑥) = [
𝑓1(𝑥)

𝑓2(𝑥)
] 

satisfying the following: 

(a) 𝑓(𝑥) ∈ 𝐿2[0, ∞), 

(b) 𝑓′(𝑥) is absolutely continuous on [0, 𝑏] for all 𝑏 > 0, 

(c) 𝑀𝑓 ∈ 𝐿2[0, ∞), 

(d) 𝑓(0) = 0 or 𝑓′(0) = 0. 
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Then 𝑇 is a symmetric and self-adjoint operator in the Hilbert space 𝐿2[0, ∞) of vector. 

The eigenvalues of the operator 𝑇, defined by (2.3), are those points 𝜇, where at least one 

of the 𝑘𝑟𝑠(𝜇) has a jump-discontinuity. This is the case if the corresponding 𝑚𝑟𝑠(𝜇) has a 

pole. 

3. The Green’s matrix 𝐺(𝑥, 𝑦, 𝜆) for the boundary value problem, defined by 

(𝑀 − 𝜆)𝜙(𝑥) = 0 (3.1) 

𝑓(0) = 0 or 𝑓′(0) = 0, 𝜙(𝑥) ∈ 𝐿2[0, ∞) is given by 

𝐺(𝑥, 𝑦, 𝜆) = [
𝐺11 𝐺21

𝐺12 𝐺22
] = [

𝜓11(𝑥, 𝜆) 𝜓21(𝑥, 𝜆)

𝜓12(𝑥, 𝜆) 𝜓22(𝑥, 𝜆)
] ⋅ [

𝑢1(𝑦, 𝜆) 𝑣1(𝑦, 𝜆)
𝑢2(𝑦, 𝜆) 𝑣2(𝑦, 𝜆)

] ; 𝑦 ∈ [0, ∞) 

= [
𝑢1(𝑥, 𝜆) 𝑢2(𝑥, 𝜆)

𝑣1(𝑥, 𝜆) 𝑣2(𝑥, 𝜆)
] ⋅ [

𝜓11(𝑦, 𝜆) 𝜓12(𝑦, 𝜆)

𝜓21(𝑦, 𝜆) 𝜓22(𝑦, 𝜆)
] ; 𝑦 ∈ [0, ∞) (3.2) 

Since 𝜙𝑗(𝑥, 𝜆), 𝜃𝑗(𝑥, 𝜆) (𝑗 = 1, 2) are analytic functions of 𝜆 , real for real 𝜆 , they are 

integral functions of 𝜆 . Therefore, the Green’s matrix 𝐺(𝑥, 𝑦, 𝜆)  is a meromorphic 

functions of 𝜆 if and only if 𝑚𝑟𝑠(𝜆) (1 ≤ 𝑟, 𝑠 ≤ 2) are meromorphic functions of 𝜆. 

4. To develop a theory for the singular boundary value problem (3.1) we analyse the 

boundary value problem defined on a finite interval [0, 𝑏] and then let 𝑏 → ∞. Consider 

the boundary value problem on [0, 𝑏], 

(𝑀 − 𝜆)𝜙(𝑥) = 0

𝜙(0) = 0, 𝜙(𝑏) = 0
} (4.1) 

Let 𝜙 = [
𝜙1

𝜙2
] and 𝜃 = [

𝜃1

𝜃2
] be two vectors having continuous derivatives of second order 

and 𝐴𝑇 denote the transpose of the matrix 𝐴. Then the Green’s formula for our boundary 

value problem is  

∫ (𝜃𝑇𝑀𝜙 − 𝜙𝑇𝑀𝜃)
𝑏

𝑎

𝑑𝑥 = [𝜙𝜃](0) (4.2) 

Let 𝜙𝑟(𝑥) = [
𝑓𝑟(𝑥)

𝑔𝑟(𝑥)
] , (𝑟 = 1, 2)  belong to 𝐿2[0, 𝑏]  and such that 𝜙𝑟(𝑥), (𝑟 = 1, 2)  are 

absolutely continuous and 𝑀𝜙𝑟(𝑥), (𝑟 = 1, 2) are 𝐿2[0, 𝑏]. We suppose that  
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𝛼1 = [
𝑝0

1

2 𝑓1
′

𝑞0

1

2 𝑔1
′

] , 𝛼2 = [
𝑝0

1

2 𝑓2
′

𝑞0

1

2 𝑔2
′

] , 𝛽1 = [
𝑝

1

2 𝑓1

𝑞
1

2 𝑔1

] , 𝛽2 = [
𝑝

1

2 𝑓2

𝑞
1

2 𝑔2

] ,

𝛾1 = [
𝑟

1

2 𝑓1

𝑟
1

2 𝑔1

] , 𝛾2 = [
𝑟

1

2 𝑓2

𝑟
1

2 𝑔2

] , 𝛽1
∗ = [

𝑝0

1

2 𝑓1

𝑞0

1

2 𝑔1

] , 𝛽2
∗ = [

𝑝0

1

2 𝑓2

𝑞0

1

2 𝑔2

] ,

𝛾1
∗ = [

𝑟
1

2 𝑔1

𝑟
1

2 𝑓1

] , 𝛾2
∗ = [

𝑟
1

2 𝑔2

𝑟
1

2 𝑓2

] 

and define  

𝐷𝑏(𝜙1, 𝜙2) = ∫ {𝛼1
𝑇𝛼2 + 𝛽1

𝑇𝛽2 + 𝛾1
𝑇𝛾2

∗}
𝑏

0

 𝑑𝑥 (4.3) 

𝐷𝑏(𝜙1, 𝜙1) = ∫ {𝛼1
𝑇𝛼1 + 𝛽1

𝑇𝛽1 + 𝛾1
𝑇𝛾1

∗}
𝑏

0

 𝑑𝑥 (4.4) 

We arrange the eigenvalues in non-decreasing order and suppose that the eigenvalues 

and the corresponding normalized eigenvectors of the boundary value problem (4.1) be 

{𝜆𝑛,𝑏 , 𝑛 ≥ 1}  and {𝜓𝑛(𝑏, 𝑥); 𝑛 ≥ 1}  respectively. If 𝑁𝑏(𝜆)  denote the number of 

eigenvalues 𝜆𝑛,𝑏 not exceeding 𝜆, then our aim is to prove that 𝑁𝑏(𝜆) remains bounded 

for every given 𝜆 and for all sufficiently large 𝑏. 

5. In the present section, we prove some properties of  𝐷𝑏(𝜙) ≡ 𝐷𝑏(𝜙, 𝜙). 

Lemma 5.1 (i) If Ψ𝑛 = Ψ𝑛(𝑏; 𝑥), then 𝐷𝑏(Ψ𝑚, Ψ𝑛) = 0 if 𝑚 ≠ 𝑛. 

Proof: We can easily verify, on integration by parts that  

∫ {𝛼1
𝑇𝛼2 + 𝛽1

𝑇𝛽2 + 𝛾1
𝑇𝛾2

∗}
𝑏

0

 𝑑𝑥 = [𝛼1
𝑇𝛽2

∗]0
𝑏 + ∫ 𝜑2

𝑇𝑀
𝑏

0

𝜑1𝑑𝑥 (5.1.1) 

The integrated term on the right-hand side of (5.1.1) vanishes due to the boundary 

conditions of (4.1), [Thus we have, by replacing 𝜑1 and 𝜑2 by 𝜓𝑚 and 𝜓𝑛 respectively] 

𝐷𝑏(𝜓𝑚, 𝜓𝑛) = ∫ 𝜓𝑚
𝑇𝑀

𝑏

0

𝜓𝑚 𝑑𝑥 = 𝜆𝑚,𝑏 ∫ 𝜓𝑛
𝑇𝜓𝑚 𝑑𝑥

𝑏

0

= 0 

Hence the result. 

 

(ii) 𝐷𝑏(𝜓𝑛) = 𝜆𝑛,𝑏 . 

 To prove (ii), we note from above that when 𝑚 = 𝑛. 

𝐷𝑏(𝜓𝑛, 𝜓𝑛) = 𝜆𝑛,𝑏 ∫ 𝜓𝑛
𝑇𝜓𝑛

𝑏

0

 𝑑𝑥 = 𝜆𝑛,𝑏 , 

since the eigenvectors are normalized. 



IJESM     Volume 1, Issue 1                          ISSN: 2320-0294 

 
 

International Journal of Engineering, Science and Mathematics                                                                                     
http://www.ijesm.co.in 218 

December   
2012 

Hence the result. 

 

(iii) 𝐷𝑏(𝛼𝜓𝑚 + 𝛽𝜓𝑛) = 𝛼2𝜆𝑚,𝑏 + 𝛽2𝜆𝑛,𝑏 if 𝑚 ≠ 𝑛 

  = (𝛼 + 𝛽)2𝜆𝑛,𝑏   if 𝑚 = 𝑛. 

Proof: 𝐷𝑏(𝛼𝜓𝑚 + 𝛽𝜓𝑛) = 𝛼2𝐷𝑏(𝜓𝑚) + 𝛽2𝐷𝑏(𝜓𝑛) + 2𝛼𝛽𝐷𝑏(𝜓𝑚, 𝜓𝑛). 

If 𝑚 ≠ 𝑛, then using (i) and (ii) we get 

𝐷𝑏(𝛼𝜓𝑚 + 𝛽𝜓𝑛) = (𝛼 + 𝛽)2𝜆𝑛,𝑏 

Hence the result. 

(iv) 𝐷𝑏(𝜓𝑛) is bounded below for all n if 𝑝0(𝑥), 𝑞0(𝑥), 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥) is bounded 

 below. 

Proof: 𝐷𝑏(𝜓𝑛) = ∫ [𝑝0(𝜓𝑛1
′)

2
+ 𝑞0(𝜓𝑛2

′)
2

+ 𝑝1(𝜓𝑛1)2 + 𝑞1(𝜓𝑛2)2 + 2𝑟𝜓𝑛1𝜓𝑛2]
𝑏

0
 𝑑𝑥 

If 𝑝0(𝑥), 𝑞0(𝑥), 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥) ≥ 𝑎 

𝐷𝑏(𝜓𝑛) ≥ 𝑎 ∫ [(𝜓𝑛1
′)

2
+ (𝜓𝑛2

′)
2

+ (𝜓𝑛1)2 + (𝜓𝑛2)2 + 2𝜓𝑛1𝜓𝑛2]
𝑏

0

 𝑑𝑥 

= 𝑎 ∫ [𝜓𝑛
′ 𝑇

𝜓𝑛
′ + 𝜓𝑛

𝑇𝜓𝑛 + 2𝜓𝑛1𝜓𝑛2]
𝑏

0

 𝑑𝑥 

As 𝜓𝑛 and 𝜓𝑛
′ are 𝐿20,∞). Hence it is bounded. Therefore, we conclude that eigenvalues 

are bounded below. 

 

Lemma 5.2. 

 Let 𝐷(𝑏) be the set of all vector functions 𝜙(𝑥) such that 

 (i) 𝜙(𝑥) ∈ 𝐿2[0, 𝑏], 

 (ii) 𝜙′(𝑥) is absolutely continuous on [0, 𝑏], 

 (iii) 𝜙(0) = 𝜙(𝑏) = 0. 

If 𝑐𝑛,𝑏 = ∫ 𝜓𝑛
𝑇𝜙(𝑥) 𝑑𝑥

𝑏

0
 be the Fourier coefficient of 𝜙(𝑥) corresponding to the boundary 

value problem (4.1), then for all 𝜙(𝑥) belonging to 𝐷(𝑏), 

 (a) 𝐷𝑏(𝜙, 𝜓𝑛) = 𝜆𝑛,𝑏𝑐𝑛,𝑏, 

 (b) If 𝑝0(𝑥), 𝑞0(𝑥), 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥) ≥ 𝑎 > 0 then 𝐷𝑏(𝜙) ≥ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2 . 

Proof: We have 

𝐷𝑏(𝜙, 𝜓𝑛) = 𝜆𝑛,𝑏 ∫ 𝜙𝑇
𝑏

0

𝜓𝑛 𝑑𝑥 = 𝜆𝑛,𝑏𝑐𝑛,𝑏 . 

 Hence the result (a) follows. 

We now proceed to prove the result (b). Firstly  

 



IJESM     Volume 1, Issue 1                          ISSN: 2320-0294 

 
 

International Journal of Engineering, Science and Mathematics                                                                                     
http://www.ijesm.co.in 219 

December   
2012 

𝐷𝑏 (𝜙 − ∑ 𝑐𝑛,𝑏𝜓𝑛

𝑚

𝑛=1

)

= ∫ [𝑝0 (𝑓1
′ − ∑ 𝑐𝑛,𝑏𝜓𝑛1

′

𝑚

𝑛=1

)

2

+ 𝑞0 (𝑔1
′ − ∑ 𝑐𝑛,𝑏𝜓𝑛2

′

𝑚

𝑛=1

)

2
𝑏

0

+ 𝑝 (𝑓1 − ∑ 𝑐𝑛,𝑏𝜓𝑛1

𝑚

𝑛=1

)

2

+𝑞 (𝑔1 − ∑ 𝑐𝑛,𝑏𝜓𝑛2

𝑚

𝑛=1

)

2

+ 2𝑟 (𝑓1 − ∑ 𝑐𝑛,𝑏𝜓𝑛1

𝑚

𝑛=1

) (𝑔1 − ∑ 𝑐𝑛,𝑏𝜓𝑛2

𝑚

𝑛=1

)]  𝑑𝑥 

Since 𝑝0(𝑥), 𝑞0(𝑥), 𝑝1(𝑥), 𝑞1(𝑥), 𝑟(𝑥) ≥ 𝑎 > 0 

𝐷𝑏 (𝜙 − ∑ 𝑐𝑛,𝑏𝜓𝑛

𝑚

𝑛=1

)

≥ 𝑎 ∫ [(𝑓1
′ − ∑ 𝑐𝑛,𝑏𝜓𝑛1

′

𝑚

𝑛=1

)

2

+ (𝑔1
′ − ∑ 𝑐𝑛,𝑏𝜓𝑛2

′

𝑚

𝑛=1

)

2
𝑏

0

+ (𝑓1 − ∑ 𝑐𝑛,𝑏𝜓𝑛1

𝑚

𝑛=1

)

2

+ (𝑔1 − ∑ 𝑐𝑛,𝑏𝜓𝑛2

𝑚

𝑛=1

)

2

+ 2 (𝑓1 − ∑ 𝑐𝑛,𝑏𝜓𝑛1

𝑚

𝑛=1

) (𝑔1 − ∑ 𝑐𝑛,𝑏𝜓𝑛2

𝑚

𝑛=1

)]  𝑑𝑥 

i.e. 𝐷𝑏(𝜙 − ∑ 𝑐𝑛,𝑏𝜓𝑛
𝑚
𝑛=1 ) ≥ 𝑎 ∫ [a positive quantity]

𝑏

0
 𝑑𝑥 

Hence  

𝐷𝑏 (𝜙 − ∑ 𝑐𝑛,𝑏𝜓𝑛

𝑚

𝑛=1

) ≥ 0 

Now  

𝐷𝑏 (𝜙 − ∑ 𝑐𝑛,𝑏𝜓𝑛

𝑚

𝑛=1

) = 𝐷𝑏(𝜙) + ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2 − 2

𝑚

𝑛=1

∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2

𝑚

𝑛=1

 

= 𝐷𝑏(𝜙) − ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2

𝑚

𝑛=1

 

  Therefore,  

𝐷𝑏(𝜙) ≥ ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2

∞

𝑛=1

. 

Lemma 5.3. 

 Let 𝐷𝑀(𝑏) be the set of all vector functions 𝜙(𝑥) = [
𝑓1(𝑥)
𝑔1(𝑥)

] satisfying 

(i) 𝜙(𝑥) belongs to 𝐿20,∞). 
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(ii) 𝜙(𝑥) is absolutely continuous in [0, 𝑏]. 

(iii) 𝑀𝜙 belongs to 𝐿20,∞). 

(iv) 𝜙(0) = 𝜙(𝑏) = 0. 

 Then for all 𝜙(𝑥) belonging to 𝐷𝑀(𝑏), 𝐷𝑏(𝜙) = ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2∞

𝑛=1 . 

Proof: By Green’s formula (4.2), we have 

∫ [𝜓𝑛
𝑇𝑀𝜙 − 𝜙𝑇𝑀𝜓𝑛] 𝑑𝑥 = [𝜓𝑛𝜙](𝑏) −

𝑏

0

[𝜓𝑛𝜙](𝑎) = 0, 

 by virtue of condition (iv). 

Hence      

∫ 𝜓𝑛
𝑇𝑀𝜙 𝑑𝑥 =

𝑏

0

∫ 𝜙𝑇𝑀𝜓𝑛 𝑑𝑥
𝑏

0

(5.3.1) 

Let  

𝑐𝑛,𝑏
∗ = ∫ 𝜓𝑛

𝑇𝑀𝜙 𝑑𝑥
𝑏

0

, 

then  

𝑐𝑛,𝑏
∗ = ∫ 𝜙𝑇𝑀𝜓𝑛 𝑑𝑥

𝑏

0

, by (5.2.1) 

= 𝜆𝑛,𝑏 ∫ 𝜙𝑇𝜓𝑛 𝑑𝑥
𝑏

0

= 𝜆𝑛,𝑏𝑐𝑛,𝑏 . 

∫ 𝜙𝑇𝑀𝜙 𝑑𝑥
𝑏

0

=
1

4
∫ [(𝜙 + 𝑀𝜙)𝑇(𝜙 + 𝑀𝜙) − (𝜙 − 𝑀𝜙)𝑇(𝜙 − 𝑀𝜙)] 𝑑𝑥

𝑏

0

 

=
1

4
[∑(𝑐𝑛,𝑏

∗ + 𝑐𝑛,𝑏)
2

− ∑(𝑐𝑛,𝑏 − 𝑐𝑛,𝑏
∗ )

2
∞

𝑛=1

∞

𝑛=1

] (5.3.2) 

(by Perceval’s formula) 

∫ 𝜙𝑇𝑀𝜙 𝑑𝑥
𝑏

0

= 𝐷𝑏(𝜙) − [𝛼1
𝑇𝛽1

∗]0
𝑏 = 𝐷𝑏(𝜙) (5.3.3) 

Since the second term vanishes due to the condition (iv). Therefore, from (5.3.2) and 

(5.3.3), we have 𝐷𝑏(𝜙) = ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2∞

𝑛=1 . 

6. We now consider the change in the eigenvalues with the change in the boundary value 

problem (4.1) by increasing 𝑝(𝑥), 𝑞(𝑥)  and 𝑟(𝑥)  such that 𝑟(𝑥) ≤ 𝑝1(𝑥)𝑞1(𝑥) . Let 

𝜆𝑛,𝑏 , 𝜓𝑛(𝑏; 𝑥), 𝑐𝑛,𝑏  be the nth eigenvalue, the nth normalized eigenvector and the nth 

Fourier coefficient of 𝜙(𝑥) respectively corresponding to the boundary value problem 

(4.1). Similarly, let 𝜇𝑛,𝑏 , 𝜒𝑛(𝑏; 𝑥) be the nth eigenvalue and nth normalized eigenvector of 

the boundary value problem (4.1) with 𝑝(𝑥), 𝑞(𝑥) and 𝑟(𝑥) replaced by 𝑃(𝑥), 𝑄(𝑥) and 

𝑅(𝑥)  respectively such that 𝑝1(𝑥) ≤ 𝑃(𝑥), 𝑞1(𝑥) ≤ 𝑄(𝑥) , 𝑟(𝑥) ≤ 𝑅(𝑥), 𝑅(𝑥) ≤

𝑃(𝑥), 𝑄(𝑥).  We shall prove below a lemma in which 𝑝1(𝑥), 𝑞1(𝑥)  and 𝑟(𝑥)  will be 

increased. Similar proof can be obtained by increasing 𝑝1(𝑥), 𝑞1(𝑥) and 𝑟(𝑥) alone. 

Lemma 6.1:  The nth eigenvalue increases as 𝑝(𝑥), 𝑞(𝑥) and 𝑟(𝑥) increases. 
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Proof: Let 𝑑𝑛,𝑏 be the Fourier coefficient of 𝜙(𝑥) corresponding to the boundary value 

problem obtained from (4.1) by replacing 𝑝1(𝑥), 𝑞1(𝑥) and 𝑟(𝑥) by 𝑃(𝑥), 𝑄(𝑥) and 𝑅(𝑥) 

respectively. Writing 𝐷𝑏(𝜙) in terms of the coefficients 𝑝1(𝑥), 𝑞1(𝑥) etc. We have  

𝐷𝑏(𝜙; 𝑝, 𝑞, 𝑟) = ∫ (𝛼1
𝑇𝛼1 + 𝛽1

𝑇𝛽1 + 𝛾1
𝑇𝛾1

∗)
𝑏

0

 𝑑𝑥 

= ∫ (𝑝0𝑓 ′2 + 𝑞0𝑔′2 + 𝑝1𝑓2 + 𝑞1𝑔2 + 2𝑟𝑓𝑔) 𝑑𝑥
𝑏

0

(6.1.1) 

𝐷𝑏(𝜙, 𝑃, 𝑄, 𝑅) = ∫ (𝑝0𝑓 ′2 + 𝑞0𝑔′2 + 𝑃𝑓2 + 𝑄𝑔2 + 2𝑅𝑓𝑔) 𝑑𝑥
𝑏

0

(6.1.2) 

But 𝑝1(𝑥), 𝑞1(𝑥) and 𝑟(𝑥) tend to ∞ as 𝑥 tends to ∞, therefore, for large 𝑥, 

𝐷𝑏(𝜙, 𝑝1, 𝑞1, 𝑟) ≤ 𝐷𝑏(𝜙, 𝑃, 𝑄, 𝑅) (6.1.3) 

Let 

𝜙(𝑥) = [
𝜒11(𝑥)
𝜒12(𝑥)

] = 𝜒1(𝑥), 

then 

𝜆1,𝑏 = 𝜆1,𝑏 ∫ 𝜒1
𝑇𝜒1𝑑𝑥

𝑏

0

= 𝜆1,𝑏 ∑ 𝑐𝑛,𝑏
2

∞

𝑛=1

≤ ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2

∞

𝑛=1

≤ 𝐷𝑏(𝜙, 𝑝1, 𝑞1, 𝑟) 

by Lemma 5.2(b). From (6.1.3), we have  

𝜆1,𝑏 ≤ 𝐷𝑏(𝜙, 𝑃, 𝑄, 𝑅) = 𝜇1,𝑏 . 

Thus 

𝜆1,𝑏 ≤ 𝜇1,𝑏. 

Next suppose that 

𝜙(𝑥) = 𝑑1,𝑏𝜒1 + 𝑑2,𝑏𝜒2, 

where 𝑑1,𝑏 and 𝑑2,𝑏 are constants such that  

𝑑1,𝑏
2 + 𝑑2,𝑏

2 = 1 (6.1.4) 

Then 

𝑐1,𝑏 = 𝑑1,𝑏𝐴 + 𝑑2,𝑏𝐵 where 𝐴 = ∫ 𝜒1
𝑇𝜓1 𝑑𝑥

𝑏

0
, 𝐵 = ∫ 𝜒2

𝑇𝜓1 𝑑𝑥
𝑏

0
, 

We can choose 𝑑1,𝑏 and 𝑑2,𝑏 such that 𝑐1,𝑏 = 0. If 𝐴 and 𝐵 are not both zero, then solution 

of (6.1.4) is given by 

𝑑1,𝑏 =
𝐵

√𝐴2 + 𝐵2
, 𝑑2,𝑏 = −

𝐴

√𝐴2 + 𝐵2
(6.1.5) 

If 𝐴 and 𝐵 are both zero, then 𝑐1,𝑏 = 0 for all 𝑑2,𝑏 satisfying (6.1.4), we now have 

∑ 𝑐𝑛,𝑏
2 = ∫ (𝑑1,𝑏𝜒1 + 𝑑2,𝑏𝜒2)

𝑇
(𝑑1,𝑏𝜒1 + 𝑑2,𝑏𝜒2) 𝑑𝑥

𝑏

0

∞

𝑛=1

 

= ∫ (𝑑1,𝑏
2 𝜒1

𝑇𝜒1 + 𝑑2,𝑏
2 𝜒2

𝑇𝜒2)
𝑏

0

 𝑑𝑥 

= 𝑑1,𝑏
2 + 𝑑2,𝑏

2 = 1, by (6.1.4) 

Therefore,   
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∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2

∞

𝑛=1

= ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2

∞

𝑛=2

≥ 𝜆2,𝑏 ∑ 𝑐𝑛,𝑏
2

∞

𝑛=2

= 𝜆2,𝑏 . 

Hence, using the result (b) of the Lemma 5.2, we have 

𝜆2,𝑏 ≤ ∑ 𝜆𝑛,𝑏𝑐𝑛,𝑏
2 ≤ 𝐷𝑏(𝜙, 𝑝1, 𝑞1, 𝑟) ≤ 𝐷𝑏(𝜙, 𝑃, 𝑄, 𝑅) = 𝜇1,𝑏𝑑1,𝑏

2 +

∞

𝑛=2

𝜇2,𝑏𝑑2,𝑏
2 , 

(by Lemma 5.1(iii)) 

i.e.     𝜆2,𝑏 ≤ 𝜇2,𝑏(𝑑1,𝑏
2 + 𝑑2,𝑏

2 ) = 𝜇2,𝑏. 

Therefore,    𝜆2,𝑏 ≤ 𝜇2,𝑏. 

 To prove, in general 𝜆2,𝑏 ≤ 𝜇2,𝑏, we have to suppose that 

𝜙(𝑥) = 𝑑1,𝑏𝜒1 + 𝑑2,𝑏𝜒2 + ⋯ + 𝑑𝑛,𝑏𝜒𝑛 

where 𝑑1,𝑏, 𝑑2,𝑏 , ⋯ , 𝑑𝑛,𝑏  are constraints such that  

𝑑1,𝑏
2 + 𝑑2,𝑏

2 + ⋯ + 𝑑𝑛,𝑏
2 = 1 (6.1.6) 

And such that (𝑛 − 1) conditions of the form 
𝐴1𝑑1,𝑏 + ⋯ + 𝑀1𝑑𝑛−1,𝑏 + 𝑁1𝑑𝑛,𝑏 = 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝐴𝑛−1𝑑1,𝑏 + ⋯ + 𝑀𝑛−1𝑑𝑛−1,𝑏 + 𝑁𝑛−1𝑑𝑛,𝑏 = 0

} (6.1.7) 

are satisfied. Suppose that the determinant |𝐴1, ⋯ , 𝑀𝑛−1|, |𝐵1, ⋯ , 𝑁𝑛−1|, ⋯  do not all 

vanish. If, for example, the first does not all vanish, and then the equations 

𝐴1

𝑑1,𝑏

𝑑𝑛,𝑏
+ − − − − +𝑀1

𝑑𝑛−1,𝑏

𝑑𝑛,𝑏
= −𝑁1𝑒𝑡𝑐. 

can be solved for 
𝑑1,𝑏

𝑑𝑛,𝑏
, ⋯ and so (6.1.6) and (6.1.7) can be satisfied. On the other hand, if 

|𝐴1, ⋯ , 𝑀𝑛−1| = 0. Let 𝑑𝑛,𝑏 = 0. Then the system (6.1.7) has a non-null solution, which 

can be normalized to satisfy (6.1.6). Thus 𝜆𝑛,𝑏 ≤ 𝜇𝑛,𝑏 for all n. 

Therefore, each eigenvalue increases as 𝑝1(𝑥), 𝑞1(𝑥) and 𝑟(𝑥) increases. In the same way 

it can be proved that each eigenvalue increases as 𝑝1(𝑥) or 𝑞1(𝑥) or 𝑟(𝑥) alone increases. 

7: Variation of the eigenvalue with the interval: We now observe the change in the 

eigenvalue as the fundamental interval [0, 𝑏] increases. 

Lemma 7.1: The nth eigenvalue decreases as the fundamental interval increases. 

Proof: Let 𝜆𝑛,𝑏′ , 𝜓𝑛(𝑏′; 𝑥) , 𝑐𝑛,𝑏′ be respectively the nth eigenvalue, the nth normalized 

eigenvector and the nth Fourier coefficient of 𝜙(𝑥)  for the boundary value problem 

obtained from (3.1) by respectively 𝑏 by 𝑏′. 

Now suppose that 

𝜙(𝑥) = 𝜓1(𝑏; 𝑥), 0 ≤ 𝑥 ≤ 𝑏′ 

= 0, 𝑏 ≤ 𝑥 ≤ 𝑏′.    
 

Therefore 𝜙(𝑥) belongs to 𝐷(𝑏′). Therefore, by the (b) of Lemma 1.5.2, we have  
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𝐷𝑏′(𝜙) ≥ ∑ 𝜆𝑛,𝑏′ 𝑐𝑛,𝑏′
2

∞

𝑛=1

 

Also, we have 

𝜆1,𝑏 = 𝐷𝑏(𝜓1) = 𝐷𝑏(𝜙) = 𝐷𝑏′(𝜙) ≥ ∑ 𝜆𝑛𝑏′ 𝑐𝑛,𝑏′
2

∞

𝑛=1

≥ 𝜆1,𝑏′ ∑  𝑐𝑛,𝑏′
2

∞

𝑛=1

= 𝜆1,𝑏′ ∫ 𝜙𝑇𝜙 𝑑𝑥
𝑏′

0

= 𝜆1,𝑏′ [∫ 𝜙𝑇𝜙 𝑑𝑥 + ∫ 𝜙𝑇𝜙 𝑑𝑥
𝑏′

𝑏

𝑏

0

] = 𝜆1,𝑏′ ∫ 𝜓1
𝑇𝜓1 𝑑𝑥 = 𝜆1,𝑏′

𝑏

0

 

Thus, we see that if 𝑏 ≤ 𝑏′, then 𝜆1,𝑏 ≥ 𝜆1,𝑏′ .  

Then general result can now be proved in the same way as in Lemma 6.1. 

8: In this section, we obtain the lower bound of the eigenvalue 𝜆𝑛,𝑏. To obtain it we divide 

the fundamental interval [𝑎, 𝑏] into subintervals [𝑥𝑟−1, 𝑥𝑟]  (𝑟 = 1,2, ⋯ , 𝑚), where 𝑥1 =

𝑎, 𝑥𝑚 = 𝑏 and from the boundary value problem on each of these subintervals as follows: 

𝑀𝜙(𝑥) = 𝜆𝜙(𝑥)

𝜙′(𝑥𝑟) = 𝜙′(𝑥𝑟−1) = 0
} (8.1) 

Let 𝜇𝑛
𝑟 , 𝜒𝑛

𝑟 , 𝑑𝑛
𝑟  be respectively the nth eigenvalue, nth normalized eigenvectors and the nth 

Fourier coefficients of 𝜙(𝑥) corresponding to the boundary value problem (1.8.1). We 

also arrange the numbers  𝜇𝑛
𝑟  (𝑟 = 1,2, ⋯ , 𝑚; 𝑛 ≥ 1) in non-decreasing order. 

Lemma 8.1: if 𝜇𝑛
′ denote the nth member of the non-decreasing sequence formed by the 

numbers {𝜇𝑛
𝑟  , 𝑟 = 1,2, ⋯ , 𝑚; 𝑛 ≥ 1}, then 𝜆𝑛,𝑏 ≥ 𝜇𝑛

′. 

Proof: Let us write  

𝐷𝑟(𝜙) ≡ 𝐷𝑟(𝜙, 𝜙) = ∫ [𝛼1
𝑇𝛼1 + 𝛽1

𝑇𝛽1 + 𝛾1
𝑇𝛾1

∗] 𝑑𝑥
𝑥𝑟

𝑥𝑟−1

(8.1.1) 

Obviously, 

𝐷𝑏(𝜙) = ∑ 𝐷𝑟(𝜙)

𝑚

𝑠=1

(8.1.2) 

First of all, we prove that  

𝜆1,𝑏 ≥ 𝜇1
′ (8.1.3) 

To prove the result (8.1.3), let 𝜙(𝑥) = 𝜓1(𝑏; 𝑥)  for 0 ≤ 𝑥 ≤ 𝑏 . Since 𝜙(𝑥)  belongs to 

𝐿2[0, 𝑏] and 𝜙(𝑥) is absolutely continuous on [0, 𝑏] the result (𝑏) of the Lemma (5.2) will 

hold good for the interval [𝑥𝑟−1, 𝑥𝑟]. Therefore, 

𝐷𝑟(𝜙) ≥ ∑ 𝜇𝑛
𝑟 (𝑑𝑛

𝑟 )2

∞

𝑛=1

 

And so 
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𝜆1,𝑏 = 𝐷𝑏(𝜙)= ∑ 𝐷𝑠(𝜙)

𝑚

𝑟=1

, (by (8.1.2)) 

≥ ∑ ∑ 𝜇𝑛
𝑟

∞

𝑛=1

𝑚

𝑟=1

(𝑑𝑛
𝑟 )2 ≥ 𝜇1

′ ∑ ∑(𝑑𝑛
𝑟 )2

∞

𝑛=1

𝑚

𝑟=1

=𝜇1
′ ∑ ∫ 𝜓1

𝑇𝜓1

𝑥𝑟

𝑥𝑟−1

𝑚

𝑟=1

=𝜇1
′ ∫ 𝜓1

𝑇𝜓1

𝑏

0

= 𝜇1
′ 

 

Now exactly following as in Lemma (6.1.1) it can be proved that 𝜆𝑛,𝑏 ≥ 𝜇𝑛
′ for all 𝑛 ≥ 1. 

9: In §8 we obtained the lower bound of the nth eigenvalue of the boundary value 

problem (4.1) by dividing the fundamental interval [𝑎, 𝑏] into a number of subintervals. 

In the present section we want to find the upper bound of the nth eigenvalue of the 

boundary value problem (4.1). To get this bound we take the intervals 𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑚 all 

contained in[0, 𝑏]. The intervals may not cover the whole of the interval [0, 𝑏]. 

Consider now the boundary value problem 

𝑀 𝜙(𝑥) = 𝜆 𝜙(𝑥) (9.1) 

with 𝜙(𝑥)  vanishing at the ends of the intervals 𝐼𝑟 (𝑟 = 1, 2, 3, … , 𝑚) . Let 𝜈𝑛
𝑟  and 𝜓𝑛

𝑟 

denote respectively the 𝑛𝑡ℎ eigenvalue and the 𝑛𝑡ℎ normalized eigenvectors 

corresponding to the boundary value problems (9.1). 

Lemma 9.1: If 𝜆𝑛,𝑏 , 𝜓𝑛(𝑏, 𝑥), 𝐶𝑛,𝑏  be respectively the 𝑛𝑡ℎ  eigenvalue, 𝑛𝑡ℎ normalized 

eigenvector and the 𝑛𝑡ℎ Fourier coefficients of Φ(𝑥)  corresponding to the boundary 

value problem (4.1) and if 𝜈𝑛′ denote the 𝑛𝑡ℎ member of the sequence of numbers ( 𝜈𝑛
𝑟,

𝑟 = 1, 2, 3, … , 𝑚; 𝑛 ≥ 1) arranged in non-decreasing order, then 

𝜆𝑛,𝑏 ≤ 𝜈𝑛
′ (1.9.2) 

Proof: We have 

𝜈1
′ = 𝜈1

𝑟  

for some fixed 𝑟. 

Let  

Φ(𝑥) = 𝜓1
𝑟(𝑏; 𝑥) in 𝐼𝑟 , 

         = 0 , elsewhere 

Obviously, Φ(𝑥) = 0 at the end-points of [0, 𝑏]. Therefore, by Lemma 5.2, we have 

∑ 𝜆𝑛,𝑏

∞

𝑛=1

𝐶𝑛,𝑏
2 ≤ 𝐷𝑏(𝜙) 

= ∫ (𝛼1
𝑇𝛼1 + 𝛽1

𝑇𝛽1 + 𝛾1
𝑇𝛾⋆)

𝑏

0

 𝑑𝑥, by (4.4) 

= ∫ (𝛼1
𝑇𝛼1 + 𝛽1

𝑇𝛽1 + 𝛾1
𝑇𝛾⋆)

𝐼𝑟

 𝑑𝑥 , 

since, 𝜙(𝑥) = 0, except in 𝐼𝑟 . Therefore, 

∑ 𝜆𝑛 ,𝑏 𝐶𝑛,𝑏
2 ≤ 𝐷𝐼𝑟

(𝜙) = 𝐷𝐼𝑟
(𝜓1

𝑟) = 𝜈1
𝑟 = 𝜈1′

∞

𝑛=1

 . 

Thus, 
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𝜈1
′ ≥ ∑ 𝜆𝑛,𝑏 𝐶𝑛,𝑏

2 ≥ 𝜆1,𝑏

∞

𝑛=1

 ∑ 𝐶𝑛,𝑏
2

∞

𝑛=1

 

= 𝜆1,𝑏  ∫ 𝜙𝑇  𝜙
𝑏

0

 𝑑𝑥 

= 𝜆1,𝑏 ∫ (𝜓1
𝑟)𝑇𝜓1

𝑟

𝐼𝑟

 𝑑𝑥 

= 𝜆1,𝑏 . 

Therefore, 

𝜈1
′ ≥ 𝜆1,𝑏 . 

Next, let 𝜈2
′ = 𝜈𝑗

𝑟 for some fixed 𝑟 in 1, 2, 3, … , 𝑚 and 𝑗; clearly 𝑗 ≤ 2. First, suppose that 

𝑗 = 2 then 𝑟 = 𝑠 and we take 

𝜙(𝑥) = 𝑎1𝜓1
𝑠(𝑏; 𝑥) + 𝑎2𝜓2

𝑠(𝑏; 𝑥), in 𝐼𝑠. 

      = 0, otherwise. 

where 

𝑎1
2 + 𝑎2

2 = 1. 

Then 

𝐶1,𝑏 = ∫ 𝜓1
𝑇(𝑎1𝜓1

𝑠 + 𝑎2𝜓2
𝑠)

𝐼𝑠

 𝑑𝑥. 

= 𝑎1𝐴 + 𝑎2𝐵. 

where 

𝐴 = ∫ 𝜓1
𝑇 ⋅ 𝜓1

𝑠

𝐼𝑠

 𝑑𝑥, 𝐵 = ∫ 𝜓1
𝑇 ⋅ 𝜓2

𝑠

𝐼𝑠

 𝑑𝑥 . 

We can choose 𝑎1, 𝑎2 as in Lemma (6.1) such that 𝐶1,𝑏 = 0. Therefore, 

𝜈2
′ = 𝜈2

𝑠 = 𝜈2
𝑠(𝑎1

2 + 𝑎2
2). 

≥ 𝜈1
𝑠𝑎1

2 + 𝜈2
𝑠𝑎2

2 . 

= 𝐷𝐼𝑠
(𝑎1𝜓1

𝑠 + 𝑎2𝜓2
𝑠) 

[ By Lemma (5.1) (iii)] 

= 𝐷𝑏(𝜙). 

≥ ∑ 𝜆𝑛,𝑏𝐶𝑛,𝑏
2

∞

𝑛=1

 . 

[ By Lemma (5.2] 

= ∑ 𝜆𝑛,𝑏𝐶𝑛,𝑏
2

∞

𝑛=2

 . 

≥ 𝜆2,𝑏 ∑ 𝐶𝑛,𝑏
2

∞

𝑛=2

 . 

= 𝜆2,𝑏 ∫ 𝜙𝑇𝜙
𝑏

0

 𝑑𝑥. 
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= 𝜆2,𝑏 ∫ (𝑎1𝜓1
𝑠 + 𝑎2𝜓2

𝑠)𝑇(𝑎1𝜓1
𝑠 + 𝑎2𝜓2

𝑠)
𝑏

0

 𝑑𝑥. 

= 𝜆2,𝑏 

If 𝑗 = 1, that is 𝜈2
′ = 𝜈1

′ , therefore, 𝑟 ≠ 𝑠. In this case, we have 

𝜙 = 𝑎1𝜓1
𝑠  , in 𝐼𝑠 

  = 𝑎2𝜓1
𝑟 , in 𝐼𝑟 

  = 0, otherwise. 

Then, 

𝐶1,𝑏 = ∫ 𝜙𝑇𝜓1

𝑏

0

 𝑑𝑥. 

= 𝑎1 ∫ 𝜓1
𝑇𝜓1

𝑠

𝐼𝑠

 𝑑𝑥 + 𝑎1 ∫ 𝜓1
𝑇𝜓1

𝑟

𝐼𝑟

 𝑑𝑥. 

= 𝑎1𝐴 + 𝑎2𝐵, say 

where, 

𝐴 = ∫ 𝜓1
𝑇𝜓1

𝑠

𝐼𝑠

 𝑑𝑥, 𝐵 = ∫ 𝜓1
𝑇𝜓1

𝑟

𝐼𝑟

 𝑑𝑥#(1.2) 

As before, we choose 𝑎1, and 𝑎2 such that 𝐶1,𝑏 = 0. Then proceeding as above it can be 

shown that 𝜈2
′ ≥ 𝜆2,𝑏. Extending the argument as in Lemma (6.1), it can be proved that 

𝜈𝑛
′ ≥ 𝜆𝑛,𝑏 , for all 𝑛 ≥ 1. 

10. Let 

 𝑁𝑏(𝜆; 𝑝, 𝑞) = the number of eigenvalues {𝜆𝑛,𝑏} not exceeding 𝜆 of the 

  boundary value problem (4.1). 

 𝑀𝑏(𝜆; 𝑠)     = the number of eigenvalues {𝜇𝑛
𝑠 }  not exceeding 𝜆 of the 

  boundary value problem (8.1). 

 𝑁𝑏(𝜆; 𝑠)      = the number of eigenvalues {𝜈𝑛
𝑠} not exceeding 𝜆 of the 

  boundary value problem (9.1). 

If 𝑁𝑏
′ (𝜆; 𝑝, 𝑞) be the total number of the elements in {𝜈𝑛

′ } not exceeding 𝜆 and 𝑀𝑏
′ (𝜆; 𝑝, 𝑞) 

be the similar number of elements in {𝜇𝑛
′ } (see §8, §9), then we have, 

∑ 𝑁𝑏(𝜆; 𝑠)

𝑚

𝑠=1

= 𝑁𝑏
′ (𝜆; 𝑝, 𝑞) ≤ 𝑁𝑏(𝜆; 𝑝, 𝑞) ≤ 𝑀𝑏

′ (𝜆; 𝑝, 𝑞) = ∑ 𝑀𝑏(𝜆; 𝑠)

𝑚

𝑠=1

(10.1) 

10.1 Lemma: If 𝑝(𝑥), 𝑞(𝑥) and 𝑟(𝑥) satisfy the condition of § 2, then 𝑁𝑏(𝜆; 𝑝, 𝑞), where 𝜆 

is a given real number, is bounded independent of 𝑏. 

Proof: The proof follows exactly following Chaudhary and Everett [1]. It also follows that  

𝑁𝑏(𝜆; 𝑝, 𝑞) = 𝑁𝑏(𝜆), say as 𝑏 → ∞. 

𝑁𝑏(𝜆) is a monotonic increasing sequence as 𝑏 → ∞ and bounded above. Hence, its limit 

exists which is finite. Let this limit be denoted by 𝑁(𝜆). 

 

11. In this section, we shall show that 𝑁(𝜆) really represents the number of eigen of the 

operators 𝑇 denoted by (2.3). First of all, it will be proved that  
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lim
𝑏→∞

𝜆𝑛,𝑏 = 𝜆𝑛, (say) 

exists finitely for each fixed 𝑛. In the next step, it will be shown that each such 𝜆𝑛 is a 

simple pole of the Green's Matrix defined by (      ). 

By the Lemma (7.1), we know that the 𝑛𝑡ℎ  eigenvalues decrease as the fundamental 

interval increases. therefore, 𝜆𝑛,𝑏  forms a decreasing sequence as 𝑏 increases for each 

fixed 𝑛. But this function is bounded below as seen in the result (iv) of the Lemma (5.1). 

Hence, for each fixed 𝑛, 𝜆𝑛,𝑏 must have a finite limit as 𝑏 → ∞. Let 

lim
𝑏→∞

𝜆𝑛,𝑏 = 𝜆𝑛, (𝑛 = 1,2,3, … )   

To prove that each such 𝜆𝑛 is a simple pole of the Green's matrix. We again consider the 

boundary value problem (4.1). The Green's matrix for this boundary value problem is 

given by  

𝐺(𝑏; 𝑥, 𝑦, 𝜆) = (
𝜓11(𝑏; 𝑥, 𝜆) 𝜓21(𝑏; 𝑥, 𝜆)

𝜓12(𝑏; 𝑥, 𝜆) 𝜓22(𝑏; 𝑥, 𝜆)
) ⋅ (

𝑢1(0|𝑥, 𝜆) 𝑣1(0|𝑥, 𝜆)

𝑢2(0|𝑥, 𝜆) 𝑣2(0|𝑥, 𝜆)
) , (0 ≤ 𝑦 < 𝑥) 

                       = (
𝑢1(0|𝑥, 𝜆) 𝑢2(0|𝑥, 𝜆)

𝑣1(0|𝑥, 𝜆) 𝑣2(0|𝑥, 𝜆)
) ⋅ (

𝜓11(𝑏; 𝑦, 𝜆) 𝜓21(𝑏; 𝑦, 𝜆)

𝜓12(𝑏; 𝑦, 𝜆) 𝜓22(𝑏; 𝑦, 𝜆)
) , (𝑥 < 𝑦 ≤ 𝑏) 

where 𝜓𝑟(𝑏; 𝑥, 𝜆), (𝑟 = 1,2) are two solutions of the equation (4.1). 

It has been proved in that there exists a sequence {𝑏𝑛; 𝑛 ≥ 1} of 𝑏 such that 𝑏𝑛 → ∞ as 

𝑛 → ∞ and 

lim
n→∞

𝜓𝑟(𝑏𝑛; 𝑥, 𝜆) = 𝜓𝑟(𝑥, 𝜆) 

for all 𝜆, im 𝜆 ≠ 0, 0 ≤ 𝑥 < ∞ and 𝜓𝑟(𝑥, 𝜆) ∈ 𝐿2[0, ∞), (𝑟 = 1,2). The problem which we 

have considered is of 𝑙𝑖𝑚𝑖𝑡 − 2 case and so 𝜓𝑟(𝑥, 𝜆), (𝑟 = 1,2) are unique. Hence, letting 

𝑏 → ∞ through the above-mentioned sequence. we have 𝐺(𝑏; 𝑥, 𝑦, 𝜆) → 𝐺(𝑥, 𝑦, 𝜆) where 

𝐺(𝑥, 𝑦, 𝜆)  is defined in (3.2). We have stated in §3 that 𝐺(𝑥, 𝑦, 𝜆)  is a meromorphic 

function of 𝜆. It is this property of the Green's matrix which will be employed to prove the 

discreteness of the spectrum of the operator 𝑇 defined by (2.3).  

11.1 Lemma:  If 𝜆 = 𝜇 + 𝑖𝜈, then 

{∫ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆)|
2

𝑏

0

𝑑𝑦}

1

2

≤
𝐾(𝑥, 𝜇, 𝜈)

|𝜈|
, (1 ≤ 𝑖, 𝑗 ≤ 2) (11.1.1) 

where 𝐾(𝑥, 𝜇, 𝜈) is a constant depending on 𝑥, 𝜇 and 𝜈. 

Proof: Let 𝜓𝑛(𝑏; 𝑥)  and 𝜆𝑛,𝑏  be respectively the 𝑛𝑡ℎ  normalized eigenvector and the 

corresponding eigenvalue of the boundary value problem (2.1). Then it can be verified 

that  

𝜓𝑛(𝑏; 𝑥)

𝜆 − 𝜆𝑛,𝑏
= ∫ 𝐺(𝑏; 𝑥, 𝑦, 𝜆)

𝑏

0

 𝜓𝑛(𝑏; 𝑦)𝑑𝑦 (11.1.2) 

Similarly, 
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𝜓𝑛(𝑏; 𝑥)

𝑖 − 𝜆𝑛,𝑏
= ∫ 𝐺(𝑏; 𝑥, 𝑦, 𝑖)

𝑏

0

 𝜓𝑛(𝑏; 𝑦)𝑑𝑦 (11.1.3) 

Subtracting (11.1.3) from (11.1.2) and using Perceval's theorem on [0, 𝑏], we have 

∫ ( ∑ |𝐺𝑖,𝑗(𝑏; 𝑥, 𝑦, 𝜆) − 𝐺𝑖,𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

2

𝑖,𝑗=1

) 
𝑏

0

𝑑𝑦

= ∑{

∞

𝑛=0

𝜓𝑛1
2 (𝑏, 𝑥) + 𝜓𝑛2

2 (𝑏, 𝑥)} |
1

𝜆 − 𝜆𝑛,𝑏
−

1

𝑖 − 𝜆𝑛,𝑏
|

2

= ∑
((𝜓𝑛1

2 (𝑏, 𝑥) + 𝜓𝑛2
2 (𝑏, 𝑥))|𝜆 − 𝑖|2)

{(𝜇 − 𝜆𝑛,𝑏)
2

+ 𝑖2} ⋅ {1 + 𝜆𝑛,𝑏
2 }

∞

𝑛=0

≤
𝜇2 + (𝜈 − 1)2

𝜈2
∑

(𝜓𝑛1
2 (𝑏, 𝑥) + 𝜓𝑛2

2 (𝑏, 𝑥))

1 + 𝜆𝑛,𝑏
2

∞

𝑛=0

 

=
𝜇2 + (𝜈 − 1)2

𝜈2
∫ ( ∑ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|

2
2

𝑖,𝑗=1

)
𝑏

0

 𝑑𝑦 (11.1.4) 

Now, 

∫ ( ∑ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

2

𝑖,𝑗=1

)
𝑏

0

 𝑑𝑦 

≤ ∑(|𝜓𝑟1(𝑏; 𝑥, 𝑖)|2 + |𝜓𝑟2(𝑏; 𝑥, 𝑖)|2)

2

𝑟=1

 ∫ (|𝑢𝑟(𝑦, 𝑖)|2 + |𝑢𝑟(𝑦, 𝑖)|2
𝑥

0

𝑑𝑦 

+2 (∑|𝜓𝑟1(𝑏; 𝑥, 𝑖)| ⋅ |𝜓𝑟2(𝑏; 𝑥, 𝑖)|

2

𝑟=1

) ∫ {|𝑢1(𝑦, 𝑖)𝑢2(𝑦, 𝑖)| + |𝑣1(𝑦, 𝑖)𝑣2(𝑦, 𝑖)}
𝑥

0

 𝑑𝑦 

+ ∑(|𝑢𝑟(𝑥, 𝑖)|2 + |𝑣𝑟(𝑥, 𝑖)|2) ∫ (|𝜓𝑟1(𝑏; 𝑦, 𝑖)|2 + |𝜓𝑟2(𝑏; 𝑦, 𝑖)|2
𝑏

𝑥

2

𝑟=1

𝑑𝑦 

+2|𝑢1(𝑥, 𝑖)||𝑢2(𝑥, 𝑖)| ∫ (∑|𝜓1𝑟(𝑏; 𝑥, 𝑖)| ⋅ |𝜓2𝑟(𝑏; 𝑥, 𝑖)|

2

𝑟=1

)
𝑏

𝑥

𝑑𝑦  

+2|𝑣1(𝑥, 𝑖)||𝑣2(𝑥, 𝑖)| ∫ (∑|𝜓1𝑟(𝑏; 𝑥, 𝑖)| ⋅ |𝜓2𝑟(𝑏; 𝑥, 𝑖)|

2

𝑟=1

)
𝑏

𝑥

𝑑𝑦 (11.1.5)  
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The right-hand side of (11.1.5) tends to a finite limit as 𝑏 → ∞  through a suitable 

sequence as mentioned before, 𝑥 being fixed. 

Hence 

∫ ( ∑ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

2

𝑖,𝑗=1

)
𝑏

0

 𝑑𝑦 ≤ 𝐴(𝑥) < ∞ (11.1.6) 

where 𝐴(𝑥) is a constant depending on 𝑥. Using (11.1.6), equation (11.1.4) becomes 

∫ ( ∑ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆) − 𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

2

𝑖,𝑗=1

)
𝑏

0

 𝑑𝑦 ≤
𝜇2 + (𝜈 − 1)2

𝜈2
⋅ 𝐴(𝑥) (11.1.7) 

From (11.1.6) and (11.1.7), we conclude that 

∫ ( ∑ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

2

𝑖,𝑗=1

)
𝑏

0

 𝑑𝑦 < 𝐴(𝑥) < ∞ (11.1.8) 

∫ ( ∑ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆) − 𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

2

𝑖,𝑗=1

)
𝑏

0

 𝑑𝑦

<
𝜇2 + (𝜈 − 1)2

𝜈2
⋅ 𝐴(𝑥), (1 ≤ 𝑖, 𝑗 ≤ 2) (11.1.9)

 

By Minkowski’s inequality, we have 

{∫ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆)|
2

𝑏

0

 𝑑𝑦}

1

2

≤ {∫ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆) − 𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

𝑏

0

 𝑑𝑦}

1

2

+ {∫ |𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝑖)|
2

𝑏

0

 𝑑𝑦}

1

2

. 

Using (11.1.8) and (11.1.9), the result follows. 

11.2. If 𝜆 = 𝜇 + 𝑖𝜈, 𝜈 ≠ 0, −𝑅 ≤ 𝜇, 𝜈 ≤ +𝑅, then for 𝑥 ≠ 𝑦, 

|𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆)| ≤
𝑘(𝑥, 𝑦, 𝜆)

|𝜈|
, (1 ≤ 𝑖, 𝑗 ≤ 2) 

uniformly with respect to 𝑏. 

Proof: If ℎ(𝑥) be a function having continuous derivative of order two, then we have 
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∫ (𝜉 − 𝜔)2(𝜔 − 𝑥)ℎ″(𝜔)
𝜉

𝑥

𝑑𝜔 = (𝜉 − 𝑥)2ℎ(𝑥) + ∫ (6𝜔 − 4𝜉 − 2𝑥)ℎ(𝜔)𝑑𝜔
𝜉

𝑥

(11.2.1) 

Let 

𝑓(𝑥) = (
𝐺𝑘1(𝑏; 𝑥, 𝑦, 𝜆)

𝐺𝑘2(𝑏; 𝑥, 𝑦, 𝜆)
) , (𝑘 = 1,2), (𝑥 ≠ 𝑦).  

then 

𝑀𝑓(𝑥) = −𝜆𝑓(𝑥) (11.2.2) 

Putting ℎ(𝑥) = 𝐺𝑘1(𝑏; 𝑥, 𝑦, 𝜆) in (11.2.1), we get 

(𝜉 − 𝑥)2𝐺𝑘1(𝑏; 𝑥, 𝑦, 𝜆) = ∫ (𝜉 − 𝜔)2(𝜔 − 𝑥)𝐺𝑘1
″ (𝑏; 𝜔, 𝑦, 𝜆)

𝜉

𝑥

𝑑𝜔 

−2 ∫ (3𝜔 − 2𝜉 − 𝑥)𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)𝑑𝜔
𝜉

𝑥

(11.2.3) 

Substituting the value of 𝐺𝑘1
″  from (11.2.2) in (11.2.3), we get 

(𝜉 − 𝑥)2𝐺𝑘1(𝑏; 𝑥, 𝑦, 𝜆)

= ∫ (𝜉 − 𝜔)2(𝜔 − 𝑥){(𝜙(𝜔) − 𝜆)𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆) − 𝑟(𝜔)𝐺𝑘2(𝑏; 𝜔, 𝑦, 𝜆)}
𝜉

𝑥

𝑑𝜔 

−2 ∫ (3𝜔 − 2𝜉 − 𝑥)𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)𝑑𝜔
𝜉

𝑥

(11.2.4) 

Now, 

|∫ (𝜉 − 𝜔)2(𝜔 − 𝑥) 𝜆 𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)
𝜉

𝑥

𝑑𝜔| ≤ (𝜉 − 𝑥)3|𝜆| ∫ |𝐺𝑘1(𝑏; 𝜔, 𝑥, 𝑦, 𝜆)|
𝜉

𝑥

𝑑𝜔.

≤ (𝜉 − 𝑥)3|𝜆| {∫ 𝑑𝜔
𝜉

𝑥

∫ |𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)|2
𝜉

𝑥

𝑑𝜔}

1

2

.

≤ (𝜉 − 𝑥)
7

2 |𝜆| {∫ |𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)|2
𝑏

0

𝑑𝜔}

1

2

. 

≤
𝐴1(𝜉, 𝑥, 𝑦, 𝜇, 𝜈)

|𝜈|
, by Lemma 11.1 (11.2.5) 

where 𝐴1 is a constant depending on the quantities noted in the bracket. 

Similarly, 
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|∫ (𝜉 − 𝜔)2(𝜔 − 𝑥) 𝑝(𝜔)𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)
𝜉

𝑥

𝑑𝜔|

≤ (𝜉 − 𝑥)3 max 𝑝(𝜔) ∫ |𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)|2
𝜉

𝑥

𝑑𝜔 

                                             ≤
𝐴2 (𝑥, 𝜉, 𝑦, max 𝑝(𝜔) , 𝜇, 𝜈)

|𝜈|
, as before (11.2.6) 

where 𝐴2 is a constant depending on the quantities noted in the bracket. 

Also, 

|∫ (𝜉 − 𝜔)2(𝜔 − 𝑥) 𝑟(𝜔)𝐺𝑘2(𝑏; 𝜔, 𝑦, 𝜆)
𝜉

𝑥

𝑑𝜔|  

≤ (𝜉 − 𝑥)3 max
𝜔≤𝜉

𝑟(𝜔) ∫ |𝐺𝑘2(𝑏; 𝜔, 𝑦, 𝜆)|2
𝜉

𝑥

𝑑𝜔 

≤
𝐴3  (𝑥, 𝜉, , max

𝜔≤𝜉
𝑟(𝜔) , 𝜇, 𝜈)

|𝜈|
, (11.2.7) 

|∫ (6𝜔 − 4𝜉 − 2𝑥) 𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)
𝜉

𝑥

𝑑𝜔| 

≤ 4(𝜉 − 𝑥)
3

2  {∫ |𝐺𝑘1(𝑏; 𝜔, 𝑦, 𝜆)|2
𝑏

0

𝑑𝜔}

1

2

(11.2.8) 

Using (11.2.3) to (11.2.8), we get from (11.2.4), 

|𝐺𝑘1(𝑏; 𝑥, 𝑦, 𝜆)| ≤
(𝜉 − 𝑥)

3

2

|𝜈|
{|𝜆| + max

𝜔≤𝜉
𝑝(𝜔) + max

𝜔≤𝜉
𝑟(𝜔) +

4

(𝜉 − 𝑥)
} (11.2.9} 

Taking 𝜉 = 𝑥 + 1, from (11.2.9), we get 

|𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆)| ≤
𝑘(𝑥, 𝑦, 𝜆)

|𝜈|
 

12. In this section, we prove the main theorem. 

Theorem: If 𝑝(𝑥), 𝑞(𝑥) and 𝑟(𝑥) satisfy all the conditions of §2, then the spectrum of the 

operator 𝑇 defined by (2.3) is discrete. 

Proof: From Lemma 10.1 it follows that given 𝑅 (a real number), 𝑁𝑏(𝑅), the number of 

eigenvalues 𝜆𝑛,𝑏 lying in the interval [−𝑅, +𝑅], is bounded independent of 𝑏, therefore, if  

lim
𝑏→∞

𝑁𝑏(𝑅) = 𝑁, say 
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for sufficiently large 𝑏, there exists exactly 𝑁 eigenvalues 𝜆𝑛,𝑏 in [−𝑅, +𝑅]. 

Consider 

𝑓𝑖𝑗,𝑏 = (𝜆 − 𝜆1,𝑏)(𝜆 − 𝜆2,𝑏) … (𝜆 − 𝜆𝑁,𝑏) ⋅ 𝐺𝑖𝑗(𝑏; 𝑥, 𝑦, 𝜆), (1 ≤ 𝑖, 𝑗 ≤ 2) 

Since, {𝜆𝑛,𝑏} are simple poles of 𝐺(𝑏; 𝑥, 𝑦, 𝜆), it follows that 𝑓𝑖𝑗,𝑏(𝜆) are regular for −𝑅 <

Re(𝜆) < +𝑅. Also, as 𝑏 → ∞ through suitable sequence, 𝑖𝑚 𝜆 ≠ 0, 

𝑓𝑖𝑗,𝑏(𝜆) → (𝜆 − 𝜆1,𝑏)(𝜆 − 𝜆2,𝑏) … (𝜆 − 𝜆𝑁,𝑏) ⋅ 𝐺𝑖𝑗(𝑥, 𝑦; 𝜆) = 𝑓𝑖𝑗(𝜆), say 

Again, by Lemma 11.2, we have, 

|𝑓𝑖𝑗,𝑏(𝜆)| ≤
𝐴(𝑥, 𝑦, 𝑅)

|𝜈|
, (𝜆 = 𝜇 + 𝑖𝜈, 𝜈 ≠ 0) 

where 𝐴 is constant depending on 𝑥, 𝑦 and 𝑅. 

Now, given 𝑥, 𝑦 and 𝑅 , 𝑓𝑖𝑗,𝑏(𝜆) (1 ≤ 𝑖, 𝑗 ≤ 2) are analytic functions of 𝜆 and regular for 

−𝑅 + 𝛿 ≤ 𝜇, 𝜈 ≤ 𝑅 − 𝛿, for any 𝛿 > 0. 

Therefore, by Lemma of [11.2], it follows that  

|𝑓𝑖𝑗,𝑏(𝜆)| ≤
3 𝐴(𝑥, 𝑦, 𝑅)

𝑅 − 𝛿
, (𝜇 = 0, −𝑅 + 𝛿 ≤ 𝜈 ≤ 𝑅 − 𝛿) 

so, 𝑓𝑖𝑗,𝑏(𝜆), (1 ≤ 𝑖, 𝑗 ≤ 2) are bounded. Thus, 𝑓𝑖𝑗,𝑏(𝜆) → 𝑓𝑖𝑗(𝜆) as 𝑏 → ∞ uniformly in any 

region interior to this and so 𝑓𝑖𝑗(𝜆), (1 ≤ 𝑖, 𝑗 ≤ 2) are regular in this region. 

In the other hand, the matrix 𝐺(𝑥, 𝑦, 𝜆) is regular in |𝜆| < 𝑅 except for possible poles as 

𝜆1, 𝜆2, … , 𝜆𝑁. 

Since, by §.7, in any finite interval of the real axes there exists a finite number of the 

numbers {𝜆𝑛}, it follows that the Green's matrix 𝐺(𝑥, 𝑦, 𝜆) is a meromorphic function of 𝜆. 

So, all the 𝑚𝑟𝑠(𝜆) (1 ≤ 𝑟, 𝑠 ≤ 2) are meromorphic functions of 𝜆. Thus, the spectrum of 

the operator 𝑇 defined by (2.1) is discreate. 

13. Further Extensions and Open Problems 

13.1 Nonlinear Extensions 

While our analysis focuses on linear matrix differential operators, many practical 

problems involve nonlinear operators. Extending the variational and spectral techniques 

to nonlinear cases is an important open problem, with potential applications in nonlinear 

dynamics and quantum field theory [3, 9]. 

13.2 Numerical Methods 
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The construction of the Green’s matrix and the variational formulation form the basis for 

numerical approximation methods, such as finite element and spectral methods. 

Developing efficient algorithms for computing the eigenvalues and eigenfunctions of 

matrix differential operators remains a vibrant area of research [10, 11]. 

13.3 Relaxation of Assumptions 

The assumptions of absolute continuity, boundedness, and controlled growth of 𝑃(𝑥) and 

𝑄(𝑥)  are sometimes too restrictive in practice. Investigating to what extent these 

conditions may be relaxed while preserving self-adjointness and discreteness of the 

spectrum is an ongoing challenge [8]. 
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