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Abstract

This paper extends the spectral theory of differential operators to encompass matrix
differential operators derived from formally self-adjoint matrix differential expressions.
Building on the seminal work of Choudhary and Everitt [1], the study establishes
conditions under which the spectrum of such operators can be rigorously characterized.
By constructing the Green’s matrix and employing variational principles, we derive
detailed eigenvalue bounds and investigate the influence of boundary conditions and
domain variations on the spectral properties. In particular, we show that the associated
differential operator is symmetric and self-adjoint in an appropriate Hilbert space and
that its spectrum is discrete under natural conditions. [1, 3, 7].
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1. Introduction

The spectral theory of differential operators has been central to both analysis and
mathematical physics. In the scalar setting, classical results guarantee that self-adjoint
operators under suitable boundary conditions have a real and discrete spectrum [5, 6].
For instance, Choudhary and Everitt [1] studied fourth-order self-adjoint differential
operators under conditions including the real-valuedness and absolute continuity of
coefficient functions.

NG = y@D () — [p2() - yP@]™ + g1 () - y(x),0 < x < o0 (1.1)
where
dT
Y (x) = di{ ) r=1234), (1.2)

with the following conditions:

(i) p1(x), g1 (x) are real-valued functions of x defined on [0, o),

(ii) p; (x) is absolutely continuous on any compact subinterval of [0, ) (so that pil) (x)
exists almost everywhere on[0, o) and g, (x) belongs to L[0, X) for all X > 0,

(iii) g, (x) is bounded below, say g, (x) = a for all x in [0, =),
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(iv) 0 < p;(x) < Kx?|q,(x)|z for all sufficiently large x and for someK > 0,
(v) g1 (x) steadily increases and tends to o as x tends toco.

2. We consider the matrix differential expression

Mp(x),0 <x < oo (218

where M stands for the matrix differential operator given by

_[aba) e ()

= d d (2.2)
() ——(w7) + a0

and ¢ (x) a vector represented by a column matrix [Z]

We assume the following conditions to be satisfied:
(1) po(x), go(x), p1(x), g1 (x), r(x) are real valued functions of x defined on[0, =),
(ii) po(x)and gy (x) are absolutely continuous on [0, b] for all b > 0,

(iii) p; (x),q1(x) belong to L[0, b] for all b > 0,

(iv) p1(x),q1(x),r(x) are bounded below say p,(x),q,(x),r(x) = a >0, for all x €
[0, o),

(V) 7(x) < p1(x), ¢4 (x) forall x € [0, ),

(vi) 0 < po(x), go(x) < Kx? for all sufficiently large x and for someK > 0,

(vii) p1(x) and g4 (x) increases steadily and tend to o as x — oo.

If po(x), o (%), p1(x), g1 (x), r(x) all satisfy the conditions (i) - (vi), then Shaw and Bhagat
[2] have proved that the matrix differential equation

Mp(x) = 1¢p(x),0 < x < 0 (2.3)
has exactly two linearly independent solutions for each x such that im (1) # 0, which
belong to the class L?[0, »), that is, M is in the limit — 2 case at infinity.

Let the differential operator T associated with M be defined as follows:
Tf =Mf,Vf € D(T) (2.4)
where D(T) denote the domain ofT, which is the set of all vector functions

> _[A®)
Fre=ie

satisfying the following:

() f(x) € L*[0, ),

(b) f'(x) is absolutely continuous on [0, b] for all b > 0,
(c) Mf € L?[0, ),

(d) £(0) =0orf'(0) = 0.
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Then T is a symmetric and self-adjoint operator in the Hilbert space L?[0, o) of vector.
The eigenvalues of the operator T, defined by (2.3), are those points y, where at least one
of the k,;(u) has a jump-discontinuity. This is the case if the corresponding m,.;(u) has a
pole.

3. The Green’s matrix G (x, y, A) for the boundary value problem, defined by
(M —-2)p(x) =0 (3.1)

f(0) =0o0r f'(0) =0,¢(x) € L?[0, =) is given by

_ G Gaa] _ [$1a(x D) aa(x, ) : u (v, n@A], =
6oy =[oh o35~ lpncen vaed) baoid monl? €0

_ [ul(x»ﬂ) uz(x,l)] ) [17[)11(3’:1) Y1y, )
106 v 01 W () Yy, )

Since ¢;(x,1),0;(x,A) (j = 1,2) are analytic functions of A, real for real 4, they are
integral functions of A. Therefore, the Green’s matrix G(x,y,A) is a meromorphic
functions of A if and only if m,;(1) (1 < r,s < 2) are meromorphic functions of A.

] ;¥ € [0,0) (3.2)

4. To develop a theory for the singular boundary value problem (3.1) we analyse the
boundary value problem defined on a finite interval [0, b] and then let b — o. Consider
the boundary value problem on [0, b],

(M —=Dp(x) =0 }

$0) =0, ¢(b)=0 (4.1)

0
Let¢p = [il] and 6 = [ 01] be two vectors having continuous derivatives of second order
2 2

and AT denote the transpose of the matrix A. Then the Green’s formula for our boundary
value problem is

b
f (O"™™M¢p — pTMO) dx = [¢6](0) (4.2)

Lm@m=£%

absolutely continuous and M¢,.(x), (r = 1, 2) are L?[0, b]. We suppose that

,(r =1,2) belong to L?[0,b] and such that ¢,(x),(r =1,2) are

International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in 216



December

2012 ﬂﬂl Volume 1, Issue 1 ISSN: 2320-0294

1 4 1 1
Do ps f2 2 2
a, g a, g »ﬁl—pl fi ”822291 fz,
qg 91 qg 93 qz 91 qz 9>z
il 1
% B b 1 = =)
rz fl r2 fZ * p(z) f1 * p(z) f2
V1 = 1 1)/2 > l N i B l P2 = l )
ST, rz 92 45 91 45 92
-1 . 1
* ‘["E * T'E
T e N 92]
(72 f; | rz  f,
and define
b
Dyp(p1, ¢2) = j- {afa, + BB, +vivs} dx (4.3)
0
b
Dyp(P1,¢1) = f {afa, + BBy +viyi} dx (4.4)
0

We arrange the eigenvalues in non-decreasing order and suppose that the eigenvalues
and the corresponding normalized eigenvectors of the boundary value problem (4.1) be
{An,b,n > 1} and {y,(b,x);n =1} respectively. If N,(1) denote the number of
eigenvalues 4, , not exceeding 4, then our aim is to prove that N,(4) remains bounded
for every given A and for all sufficiently large b.

5. In the present section, we prove some properties of D, (¢) = Dy, (¢, ¢).
Lemma 5.1 (i) If ¥,, = ¥,,(b; x), then D, (¥,,, ¥,) = 0 if m # n.

Proof: We can easily verify, on integration by parts that

b b
f {a)Ta, + B." B, + VTro"} dx = [a, 78,18 + f ©,"M @, dx (5.1.1)
0 0

The integrated term on the right-hand side of (5.1.1) vanishes due to the boundary
conditions of (4.1), [Thus we have, by replacing ¢, and ¢, by 1,,, and ,, respectively]

b b
Dy (Ym, n) = JO meM Y dx = Am,bJO l»[)nT'-:[)m dx =0

Hence the result.

(ii) Dy, (lpn) o 2-n,b-
To prove (ii), we note from above that when m = n.

b
Db(lpnr ¢n) >, )ln,bj wnT¢n dx = An,br
0

since the eigenvectors are normalized.
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Hence the result.

(iii) Dy (@, + BYn) = @Ay + B2 Anp ifm = n
= (a + B)*Ayp ifm=n.

Proof: Db(alpm i ﬁlpn) = asz (lpm) S ﬁZDb (lpn) iy zaﬁDb (Ipm' ¢n)
If m # n, then using (i) and (ii) we get
Dy, (alpm an Bl/)n) = (a+ ﬁ)z/’ln,b
Hence the result.
(iv) Dy, (1,,) is bounded below for all n if py(x), go(x), p1 (%), g1 (x), r(x) is bounded
below.

Proof: D, (i) = [po(wm')z + qo(t/)nz')2 + 1, (Wn)? + gy (Pns)? + 2r¢n1¢n2] dx
If po (%), qo(x), p1(x), g1 (), 7(x) = a

b
Do) = a [ [ )+ W) + Won)? + W) + 2]
0

=a fo b [ 0+ 0" + 2t | dx

As i, and 1, are L?0, 00). Hence it is bounded. Therefore, we conclude that eigenvalues
are bounded below.

Lemma 5.2.
Let D(b) be the set of all vector functions ¢ (x) such that
() ¢(x) € L?[0, b],
(ii) ¢'(x) is absolutely continuous on [0, b],
(iii) ¢ (0) = ¢(b) = 0.
Ifcpp = fob I/Jan.’)(x) dx be the Fourier coefficient of ¢p(x) corresponding to the boundary
value problem (4.1), then for all ¢)(x) belonging to D(b),
(@) Dy (b, ) = An,bcn,br
(b) If po (x), Go (%), P4 (), 41 (x),7(x) = @ > 0 then Dy ($) = AnpC7 -
Proof: We have

b
Dy, (¢: lpn) = An,b J ¢T Yp dx = An,bcn,b-
0

Hence the result (a) follows.
We now proceed to prove the result (b). Firstly
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Dy <¢ = i CnbW¥n
n=1 3
- fob Po (fll % Z Cn,blpn1’> + qo <91, = Z Cn.blanI>

n=1 n=1
m 2 m 2
an p (fl = Z Cn,b#’nl) +q <gl = Z Cn,b¢n2>
n=1 n=1
m m
N i (fl - z Cn,bl/)n1> (gl - Z Cn,blpn2> dx
n=1 n=1

Since po (%), 4o (x), p1(x), q1 (%), 7(x) = a > 0

Db <¢ o i Cn,b¢n>
n=1
aj;b (fll_icnblpnl) +<gl icnblpnz)

n=1

i <f1 - i Cn,bl/Jm) (91 i Cnb¢n2)
n=1

=1

+2 (fl - i cn,b¢n1> <g1 - Z cn,bwnz> dx

n=1 n=1

ie.Dy(¢p — XM cnpthn) = a fob [a positive quantity] dx

Hence
m
Db <¢ " Z Cn,blpn> =0
n=1
Now
m
Db (¢ zcnblpn) Db(¢)+z/1nbcnb 2z/’lnbcnb
n=1
= Dy(¢p) — z An,b Cn,b
n=1
Therefore,
o0
D,(¢p) = Z b Ces.
n=1
Lemma 5.3.

Let Dy, (b) be the set of all vector functions ¢(x) = satisfying

[fl

(i) ¢(x) belongs to L0, 00).
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(ii) ¢(x) is absolutely continuous in [0, b].
(iii) M¢ belongs to L20, 00).
(iv) $(0) = ¢(b) = 0.
Then for all ¢(x) belonging to Dy (b), Dy ($) = Y= AnpCrp-
Proof: By Green’s formula (4.2), we have

b
| M — 9" My dx = [ I 5) ~ ) @) = O,
0

by virtue of condition (iv).

Hence
b b
f PYIM¢ dx =f ¢ My, dx (5.3.1)
0 0
Let
b
i = | WiMe d,
0
then

b
Cnp = f ¢ M, dx, by (5.2.1)
Y 0
= /1n,b J ¢T¢TL dx = An’bcn'b.
0

b 1 b
f ¢*M¢p dx = zf [(¢ + M) ($ + M) — (¢p — MP)T (¢ — M¢)] dx
0 0
1< il
~ 2 [;(C;,b + Cn,b)2 - Z(Cn,b = C;;'b)zl (5.3.2)

=1
(by Perceval’s formula)

b
] $TMé dx = Dy(@) — [al B{1 = Dy (@) (5.33)
0

Since the second term vanishes due to the condition (iv). Therefore, from (5.3.2) and
(5.3.3), we have Dy (¢) = Yooy AnpCrp-

6. We now consider the change in the eigenvalues with the change in the boundary value
problem (4.1) by increasing p(x),q(x) and r(x) such that r(x) < p;(x)q:(x) . Let
Anp Wn(b; x), ¢, p be the nth eigenvalue, the nth normalized eigenvector and the nth
Fourier coefficient of ¢p(x) respectively corresponding to the boundary value problem
(4.1). Similarly, let u,, , X (b; x) be the nth eigenvalue and nth normalized eigenvector of
the boundary value problem (4.1) with p(x), q(x) and r(x) replaced by P(x), Q(x) and
R(x) respectively such that p;(x) <P(x),q.(x) <Q(x) , r(x) <R(x),R(x) <
P(x),Q(x). We shall prove below a lemma in which p;(x),q;(x) and r(x) will be
increased. Similar proof can be obtained by increasing p; (x), g; (x) and r(x) alone.
Lemma 6.1: The nth eigenvalue increases as p(x), g(x) and r(x) increases.
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Proof: Let d, ;, be the Fourier coefficient of ¢(x) corresponding to the boundary value
problem obtained from (4.1) by replacing p;(x), q1(x).and r(x) by P(x), Q(x) and R(x)

respectively. Writing D, (¢) in terms of the coefficients p;(x), g; (x) etc. We have
b

Dy(¢;p,q,7) =f (afa; + BB +yiyi) dx
0

b
= f (Pof % + 40g? + pif > + q19° + 2rfg) dx 6.1.1)
0
b
Dy(¢,P,Q,R) = f (pof? + qog? + Pf? + Qg + 2Rfg) dx (6.1.2)
0
But p; (x), q;(x) and r(x) tend to oo as x tends to oo, therefore, for large x,
Db(d);pl: CI1: r) S Db(¢l Pl Q: R) (6.1.3)
Let
X11(x)]
xX) = = X),
ORI EP A
then
b o0 (o]
Ap = A1p J X1 x1dx = Ay p Z Chp < Z AnpChp < Dyp(d,p1,qu,7)
e n=1 n=1

by Lemma 5.2(b). From (6.1.3), we have
Al,b < Db(¢l P, QIR) = lul,b'
Thus
Ay < U p
Next suppose that

$(x) = dypx1 +dapXa,
where d, ,, and d, j, are constants such that

dib + d%,b — 1 (6.1.4)
Then
b b
Cl,b = dl,bA + dzle Where V= fO X{lpl dx, B = fO X;¢1 dx,
We can choose d; , and d, , such that ¢; , = 0.1f A and B are not both zero, then solution
of (6.1.4) is given by

B A
dip=—=,dyp = ——— (6.1.5)
Y VAaZypz Y A+ B
If A and B are both zero, then ¢, , = 0 for all d, , satisfying (6.1.4), we now have
o0
b
T
z CTZL,b - f (d1,b)(1 i dz,b)(z) (d1,b)(1 ST dz,b)(z) dx
n=1 o
b
= [ (@oin + Boxtne) ax
0
=d,+di, =1, by (6.1.4)

Therefore,
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o0 o0 o0
2t 2 S,
Z AapCnp = z AnpCnp = A2p z Cop = Az p-
n=1 n=2 n

=2
Hence, using the result (b) of the Lemma 5.2, we have

o0
Ayp < Z ApChp < Dp($,01,q1,7) < Dp($, P,Q,R) = piy pdip + pzpds s,

n=2
(by Lemma 5.1(iii))
ie. Aap < Uzp (dib g d%,b) = Uz p-
Therefore, Aap < Uz p-

To prove, in general 4, , < u, ;,, we have to suppose that
d(x) =dypx1 +dopXz + -+ dupin
where dy p,d; p, "+, d, p are constraints such that
dip+dip+-+di,=1 (6.1.6)
And such that (n — 1) conditions of the form
Aidyp + -+ Mdy_1p+Nidpp =0

An—ldl,b et 3 Mn—ldn—l,b + Nn—ldn,b =0
are satisfied. Suppose that the determinant |A44,--:, M,_4|,|B1,**, Np—1], - do not all
vanish. If, for example, the first does not all vanish, and then the equations

dlb dn—lb
Al—+————+M — = —N,etc.
1dnb'+ + 1 dnﬁ 1etc
can be solved for 21—‘1’, ---and so (6.1.6) and (6.1.7) can be satisfied. On the other hand, if
n,b

|Aq, -, Mpy_1| = 0. Letd,,, = 0. Then the system (6.1.7) has a non-null solution, which
can be normalized to satisfy (6.1.6). Thus 4,,,, < u, , for all n.

Therefore, each eigenvalue increases as p; (x), g1 (x) and r(x) increases. In the same way
it can be proved that each eigenvalue increases as p; (x) or q;(x) or r(x) alone increases.

7: Variation of the eigenvalue with the interval: We now observe the change in the
eigenvalue as the fundamental interval [0, b] increases.

Lemma 7.1: The nth eigenvalue decreases as the fundamental interval increases.

Proof: Let 4, ,r, Y, (b';x), Ccnp' be respectively the nth eigenvalue, the nth normalized
eigenvector and the nth Fourier coefficient of ¢(x) for the boundary value problem
obtained from (3.1) by respectively b by b".

Now suppose that

d(x) = P,(b; x), 0<x<b’
=0, b<x<b

Therefore ¢ (x) belongs to D(b"). Therefore, by the (b) of Lemma 1.5.2, we have
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o0
Dy (¢) = 2 A Copy
n=1

Also, we have

o0 00 b/
Aip = Dpy(Y1) = Dy (@) = Dp(9p) = Z Anblcrzl,b' = )11,b’z Crzl,b’ = )11,b’f ¢ dx
n=1 n=1 0

b b’ b
=] /‘ll,b/ [f ¢T¢ dx + f ¢T¢ dx] = Al,b,f 1/){1/)1 dx = Al,b,
0 b 0

Thus, we see thatif b < b’, then 4, , > ’11,b"

Then general result can now be proved in the same way as in Lemma 6.1.

8: In this section, we obtain the lower bound of the eigenvalue A,, ,. To obtain it we divide
the fundamental interval [a, b] into subintervals [x,_,,x,] (r = 1,2,:--,m), where x; =

a, X,, = b and from the boundary value problem on each of these subintervals as follows:

Mp(x) = Ap(x) }
(nb,(xr) = ¢/(xr—1) =0

Let uy,, xn, d1, be respectively the nth eigenvalue, nth normalized eigenvectors and the nth

(8.1)

Fourier coefficients of ¢(x) corresponding to the boundary value problem (1.8.1). We

also arrange the numbers pu), (r = 1,2,:--,m;n = 1) in non-decreasing order.
Lemma 8.1: if u,," denote the nth member of the non-decreasing sequence formed by the
numbers {uy ,r = 1,2,---,m;n = 1}, then 4, , = ,un'.
Proof: Let us write

D@ =0 9) = | lalas +BIp +yTyildx (8.1.1)
Obviously, i
Dy(@®) = ) D(9) (8.12)
s=1

First of all, we prove that
AT (8.1.3)

To prove the result (8.1.3), let ¢(x) = P,(b; x) for 0 < x < b. Since ¢(x) belongs to

L?[0, b] and ¢(x) is absolutely continuous on [0, b] the result (b) of the Lemma (5.2) will
hold good for the interval [x,_4, x,-]. Therefore,

DT(®) = ) uh(d)?

And so
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Ap = Dp (¢)=i DS (¢), (by (8.1.2))
r=1
= i i T (drrz)z = Hlli > (d;)z :M1/i fxr 1/’11/’1 zﬂll.l;blp{lpl = .U1I
r=1n=1 r=1n=1 r=1 Xr—1

Now exactly following as in Lemma (6.1.1) it can be proved that 4, , > u, foralln > 1.
9: In §8 we obtained the lower bound of the nth eigenvalue of the boundary value
problem (4.1) by dividing the fundamental interval [a, b] into a number of subintervals.
In the present section we want to find the upper bound of the nth eigenvalue of the
boundary value problem (4.1). To get this bound we take the intervals I;, I,, 15, ..., I, all
contained in[0, b]. The intervals may not cover the whole of the interval [0, b].
Consider now the boundary value problem

M ¢(x) = 1 p(x) (9.1)
with ¢(x) vanishing at the ends of the intervals I. (r =1,2,3,...,m). Let v;; and y;,
denote respectively the nth eigenvalue and the nth normalized eigenvectors
corresponding to the boundary value problems (9.1).
Lemma 9.1: If A, ,, ¥, (b, x), C,, , be respectively the nth eigenvalue, nth normalized
eigenvector and the nth Fourier coefficients of ®(x) corresponding to the boundary
value problem (4.1) and if v, denote the nth member of the sequence of numbers ( vy,
r=1,2,3,...,m;n = 1) arranged in non-decreasing order, then

Anp < Vp (1.9.2)
Proof: We have
= v
for some fixed r.
Let
P(x) = y1(b;x) inl,,
= 0, elsewhere

Obviously, ®(x) = 0 at the end-points of [0, b]. Therefore, by Lemma 5.2, we have

> Ay €2y < Dy(@)
n=1

b
= j (@Tas + 7B +¥Ty") dx, by (44)
0
= (“I“l +ﬁ1Tﬁl +V1T)’*) dx;,

Iy
since, ¢(x) = 0, except in . Therefore,

2 Znp Cop < Di (@) = Dy, (Y1) = vi = vy
n=1

Thus,
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(00 [ee]
Ve AL G AR GS
1= n,b “nb = *1,b n,b
n=1 n=1

b
SRS f o7 b dx
0

=My | DY dx
I

- Al,b 5
Therefore,
Vi = /11‘17 .
Next, letv, = vjr for some fixedrin 1, 2,3, ..., m and j; clearly j < 2. First, suppose that
Jj = 2thenr = s and we take
d(x) = a3 (b; x) + a3 (b; x), in I.
= 0, otherwise.

where
az + as = 1.
Then
Cip = | Y1 (a5 + ax@p3) dx.
IS
= alA + azB.
where

A= Y] -Pidx, B=|y] 93 dx.
Is Is

We can choose a4, a, as in Lemma (6.1) such that C; , = 0. Therefore,
= = v: (a2 +a2).
>via? +vias.
= Di (a5 + a3)
[ By Lemma (5.1) (iii) ]

[ By Lemma (5.2]
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b
= Az,bf (a5 + ap3)" (agypi + a¥p3) dx.
0

= A2p
If j = 1, thatis v; = v, therefore, r # s. In this case, we have
¢ = a1, in I
= a1, inl,
= 0, otherwise.

Then,
b
Cuo = | #7s dx
0
=a; | Y] dx+ay | YIY] dx.
I I
= aq,A + a,B, say
where,

A= yTys dv, B = | Tyl de#(1.2)
I Ir

As before, we choose a4, and a, such that C; , = 0. Then proceeding as above it can be
shown that v; > 4, . Extending the argument as in Lemma (6.1), it can be proved that
Vi = Anp, foralln > 1.
10. Let
Np(4; p, @) = the number of eigenvalues {1, ,} not exceeding 4 of the
boundary value problem (4.1).

My, (4;s) = the number of eigenvalues {i;} not exceeding A of the
boundary value problem (8.1).
N,(1;s) = the number of eigenvalues {v; } not exceeding A of the

boundary value problem (9.1).
If N, (4; p, @) be the total number of the elements in {v,,} not exceeding 1 and M, (4; p, q)
be the similar number of elements in {u,} (see §8, §9), then we have,

D M) = Ny(ip, @) < Ny(ip, @) < My(ip.@) = ) My(s)  (10.)

s=1 s=1

10.1 Lemma: If p(x), q(x) and r(x) satisfy the condition of § 2, then N, (4; p, q), where 1
is a given real number, is bounded independent of b.

Proof: The proof follows exactly following Chaudhary and Everett [1]. It also follows that
N,(4;p,q) = Np(A),say as b — oo.

Np(A) is a monotonic increasing sequence as b — o and bounded above. Hence, its limit
exists which is finite. Let this limit be denoted by N(1).

11. In this section, we shall show that N(A) really represents the number of eigen of the
operators T denoted by (2.3). First of all, it will be proved that
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gim Anp = Ans (say)

exists finitely for each fixed n. In the next step, it will-be shown that each such 4, is a
simple pole of the Green's Matrix defined by ().
By the Lemma (7.1), we know that the nth eigenvalues decrease as the fundamental
interval increases. therefore, 4, , forms a decreasing sequence as b increases for each
fixed n. But this function is bounded below as seen in the result (iv) of the Lemma (5.1).
Hence, for each fixed n, A, , must have a finite limitas b — oo. Let

gi_r)?o Anp = Ans =128, %)

To prove that each such 4,, is a simple pole of the Green's matrix. We again consider the
boundary value problem (4.1). The Green's matrix for this boundary value problem is

given by

Y1u(b;x, 1) Paq(b;x, 1) u;(0]x, 1) v1(0]x, 1)

GEix D = (U0 aain D) a0 ol n) =¥ <
= (ul(le,/l) u2(0|x,l)> . (1/J11(biy,/1) 1/J21(b;y./1)) W= =)

v1(0]x,4)  v,(0]x, 1) Y12(b;, 1) Paa(b;y, )
where ,.(b; x, 1), (r = 1,2) are two solutions of the equation (4.1).
It has been proved in that there exists a sequence {b,;;n = 1} of b such that b,, = oo as
n — oo and

rlll_l;go Yy (by; x, 4) = P (x, 1)

forall 4,imA # 0,0 < x < o and ¥,.(x, 1) € L?[0, ), (r = 1,2). The problem which we
have considered is of limit — 2 case and so ¥,.(x, 1), (r = 1,2) are unique. Hence, letting
b — oo through the above-mentioned sequence. we have G(b; x,y,1) = G(x,y, 1) where
G(x,y,A) is defined in (3.2). We have stated in §3 that G(x,y,1) is a meromorphic
function of A. It is this property of the Green's matrix which will be employed to prove the
discreteness of the spectrum of the operator T defined by (2.3).
11.1 Lemma: If A = u + iv, then

1

b 2 WL
U |Gij(b;x,y,/1)|2dy} SM, (1<i,j<2) (11.1.1)
0

where K (x, i, v) is a constant depending on x, u and v.

Proof: Let ¢, (b;x) and 4, ) be respectively the nth normalized eigenvector and the
corresponding eigenvalue of the boundary value problem (2.1). Then it can be verified
that

Y (b; x) -t

b
B [ 6Gixn D) wntray (11.1.2)
n,b 0

Similarly,
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\ b
l/.)"(b‘x)zf G(b;x,y,1) Y, (b;y)dy (11.1.3)
l—ln,b 0

Subtracting (11.1.3) from (11.1.2) and using Perceval's theorem on [0, b], we have

b 2
N2
f Z |Gy j(b; %, y,0) — Gy ;(b; x,y, )| | dy
0 \ij=1

1 2

A=As i—Ang

= (s (b,0) + Wia(b,0))
n=0

N ((ZACERACEN VT
= {(# — Anlb)z + iz} {1+22,)

-1 i (W31 (b, ) + 13, (b, )
C V2 i 1+22,

24 w=—12 (b <
= u[ Z |Gij(b;x,y, i)lz dy (11.1.4)
0

VZ
ij=1

Now,

b 2
j Z |Gl](b; XY, l)|2> dy
0 \ij=1
<D W G2 DF + oG %, D) | (00D + e, D1 dy
r=1 0
- X
+2 (Zwﬂ(b;x, ORTCE i>|> [ 10000001+ 10,50,
r=1 0
2 b
# 3 (G DF + 15,0 D1 [ (e (b33, D + Wbyaiy, D1 dy

b 2
#21u,Co Dl D) | (Zwm(b; %Dl 2y (i, i)I>dy

b 2
+210,Cc, D102 (o)1 | (Zwm(b; %01 - 2y (B, i>|>dy (11.15)
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The right-hand side of (11.1.5) tends to a finite limit as b — oo through a suitable
sequence as mentioned before, x being fixed.

Hence

b 7)
f z |G (b; x, v, i)|2 dy < A(x) < o0 (11.1.6)
0

ij=1

where A(x) is a constant depending on x. Using (11.1.6), equation (11.1.4) becomes

b EZ 2 2
<12 u -+ (v-1)
[ Dleutiny = Gyimyol* | ay <04 a117)
0 \{j=1

From (11.1.6) and (11.1.7), we conclude that

2

b
f Z|Gij(b;x,y,i)|2 dy < A(x) < o (11.1.8)
0

ij=1

b 2
<2
J E|Gij(b;x,y,/1)—Gij(b;x,y,1)| dy
0

ij=1

2 _13\2
< w A, (1<ij<2) (11.1.9)
vV

By Minkowski’s inequality, we have

: N
{f |G (B; %, y, D) d)’}
0
1 1

b 2 b 2
~ |2 N2
< {j |Gij(b;x,y,/1)—Gij(b;x,y,l)| dy} +{J |Gij(b;x,y,1)| dy}.
0 0

Using (11.1.8) and (11.1.9), the result follows.
11.2.IfA=pu+iv,v #0,—R < u,v < +R, then for x # y,

k(x,y,1)

|Gij(b;x,y,ﬂ)| < T,

(1<i,j<2)

uniformly with respect to b.

Proof: If h(x) be a function having continuous derivative of order two, then we have
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3 3
f (€ —w)?(w—x)h"(w)dw = (§ — x)*h(x) +J (6w — 4& — 2x)h(w)dw (11.2.1)

X

Let
F@ =G myn) k=12

then

Mf(x) = —Af (x) (11.2.2)

Putting h(x) = Gy1(b; x,y, 1) in (11.2.1), we get

¢
(& — )26 (b3 %, 9, ) = f (€ — w)*(@ — )G}1 (b; ., ) da

-2 fg(Sw —2¢& —x)Gi(b; w,y, )dw (11.2.3)
x
Substituting the value of Gy; from (11.2.2) in (11.2.3), we get
(& = 0)*Gra(b;x,y,1)
= j:(f — 0)*(w — ){(¢(w) = DGi1(b; 0,y,2) = () Gy2(b; , ¥, 1)} dw
§
—2f Bw — 28 —x)Gy1(b; w,y, dw (11.2.4)
%

Now,

3 3
J (& —w)*(w—x) A Gy (b; w,y,2) dw‘ < (¢ —x)3|/1IJ |Gr1(b; w, %, v, )| dw.

1

'3 3 2
< (¢ —x)%{f dwf 1Grea (b w,y,z>|2dw} .

1

7 b 2
(@€ —x)2 Ml{f |G1 (b; w,y,/l)lzdw} ,
0

A
< 1(6,3(,}’,/1,1/)
vl

; by Lemma 11.1 (11.2.5)

where A, is a constant depending on the quantities noted in the bracket.

Similarly,
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3
[ €~ (0 -0 @) i, dw‘

3
< (¢ — ) maxp(w) f |Grea (b5 0,3, DI doo

< AZ (x; fl y; maxp(w) » Uy V)

v ; as before (11.2.6)

where 4, is a constant depending on the quantities noted in the bracket.

Also,

¢
f (€ —w)¥(w—x)1(W)Gyy(b; w,v, 1) da)‘

3
< (€ - maxr () f 1Gren (b5 @, y, D2 daw
w= x

A, (x, &, ,maxr(w), u, v)
wsé

< , 11.2.7
™ ( )
¢
| 6w =45 =2 G (s 0,3, dw‘
X
1l
s (P 2
< 4§ —x)? U |Gr1(b; w,y, D) dw} (11.2.8)
0
Using (11.2.3) to (11.2.8), we get from (11.2.4),
8
1Ga (b z)|<(5_x)2{|/1|+ () + ) +— 3 } (11.2.9}
;x,y,)] < max p(w) + maxr(w 2.
i vl e | oot G—2)
Taking ¢ = x + 1, from (11.2.9), we get
k(x,y,A)
|G (b; x,y, )| < SR

12. In this section, we prove the main theorem.

Theorem: If p(x), g(x) and r(x) satisfy all the conditions of §2, then the spectrum of the
operator T defined by (2.3) is discrete.

Proof: From Lemma 10.1 it follows that given R (a real number), N, (R), the number of
eigenvalues A, , lying in the interval [—R, +R], is bounded independent of b, therefore, if

gim Ny(R) =N, say
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for sufficiently large b, there exists exactly N eigenvalues 4,, , in [-R, +R].

Consider

fiip = (A =215) (A= 22p) .. (A= Ayp) - Gij (b5 x, 3, 1), (1<i,j<2)

Since, {4, ,} are simple poles of G (b; x,y, 1), it follows that f;; , (1) are regular for —R <
Re(1) < +R. Also, as b — o through suitable sequence, im A # 0,

fulb(l) T (A = Al,b)(l =T Az,b) (A o AN,b) e Gij(x, v, /1) = fll(l)' say
Again, by Lemma 11.2, we have,

Ax,y,R) .
fp@l s =5 @=p+ivv=0)

where A is constant depending on x, y and R.

Now, given x,y and R, f;j ,(1) (1 <i,j < 2) are analytic functions of A and regular for
—R+6<u,v<R-6,foranyéd > 0.

Therefore, by Lemma of [11.2], it follows that

3A(x,y,R)

fip@| < —F—5—, (=0-R+5<v=R-4§)

so, fijp(1), (1 =i,j < 2) are bounded. Thus, f;; ,(1) - f;;(4) as b - oo uniformly in any
region interior to this and so f;;(1), (1 < i,j < 2) are regular in this region.

In the other hand, the matrix G (x, y, 1) is regular in |1| < R except for possible poles as
1y, Ay, ..., AM)

Since, by §.7, in any finite interval of the real axes there exists a finite number of the
numbers {4, }, it follows that the Green's matrix G (x, y, 1) is a meromorphic function of A.
So, all the m,4(1) (1 < r,s < 2) are meromorphic functions of A. Thus, the spectrum of
the operator T defined by (2.1) is discreate.

13. Further Extensions and Open Problems
13.1 Nonlinear Extensions

While our analysis focuses on linear matrix differential operators, many practical
problems involve nonlinear operators. Extending the variational and spectral techniques
to nonlinear cases is an important open problem, with potential applications in nonlinear
dynamics and quantum field theory [3, 9].

13.2 Numerical Methods
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The construction of the Green’s matrix and the variational formulation form the basis for
numerical approximation methods, such as finite element and spectral methods.
Developing efficient algorithms for computing the eigenvalues and eigenfunctions of
matrix differential operators remains a vibrant area of research [10, 11].

13.3 Relaxation of Assumptions

The assumptions of absolute continuity, boundedness, and controlled growth of P(x) and
Q(x) are sometimes too restrictive in practice. Investigating to what extent these
conditions may be relaxed while preserving self-adjointness and discreteness of the
spectrum is an ongoing challenge [8].
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