<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd"> <ArticleSet> <Article> <Journal> <PublisherName>ijesm</PublisherName> <JournalTitle>International Journal of Engineering, Science and</JournalTitle> <PISSN>I</PISSN> <EISSN>S</EISSN> <Volume-Issue>Volume 7, Issue 5</Volume-Issue> <PartNumber/> <IssueTopic>Multidisciplinary</IssueTopic> <IssueLanguage>English</IssueLanguage> <Season>May 18</Season> <SpecialIssue>N</SpecialIssue> <SupplementaryIssue>N</SupplementaryIssue> <IssueOA>Y</IssueOA> <PubDate> <Year>-0001</Year> <Month>11</Month> <Day>30</Day> </PubDate> <ArticleType>Engineering, Science and Mathematics</ArticleType> <ArticleTitle>A Collocation Method for Second Order Boundary Value Problems</ArticleTitle> <SubTitle/> <ArticleLanguage>English</ArticleLanguage> <ArticleOA>Y</ArticleOA> <FirstPage>1</FirstPage> <LastPage>7</LastPage> <AuthorList> <Author> <FirstName>Ojobor</FirstName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>N</CorrespondingAuthor> <ORCID/> <FirstName>S.A</FirstName> <LastName/> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> </Author> </AuthorList> <DOI/> <Abstract>This paper is an extension of Mamadu and Ojobor (2017) were the efficiency of the collocation method was considered based on the type of basis function in developing the scheme. Here, we investigate the convergence of the method as applied to second order boundary value problems (BVPs) at the various collocation points: Gauss-Lobatto (G-L), Gauss-Chebychev (G-C) and Gauss-Radau (G - R) collocation points. Also, the class of Chebychev polynomials of the first kind have been adopted as basis function. We have employed Maple 18 software in our analysis and computations</Abstract> <AbstractLanguage>English</AbstractLanguage> <Keywords>Collocation method, basis functions, boundary value problems, collocation points, Chebychev polynomials</Keywords> <URLs> <Abstract>https://ijesm.co.in/ubijournal-v1copy/journals/abstract.php?article_id=5469&title=A Collocation Method for Second Order Boundary Value Problems</Abstract> </URLs> <References> <ReferencesarticleTitle>References</ReferencesarticleTitle> <ReferencesfirstPage>16</ReferencesfirstPage> <ReferenceslastPage>19</ReferenceslastPage> <References/> </References> </Journal> </Article> </ArticleSet>