<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd"> <ArticleSet> <Article> <Journal> <PublisherName>ijesm</PublisherName> <JournalTitle>International Journal of Engineering, Science and</JournalTitle> <PISSN>I</PISSN> <EISSN>S</EISSN> <Volume-Issue>Volume 7, Issue 1</Volume-Issue> <PartNumber/> <IssueTopic>Multidisciplinary</IssueTopic> <IssueLanguage>English</IssueLanguage> <Season>January 2018</Season> <SpecialIssue>N</SpecialIssue> <SupplementaryIssue>N</SupplementaryIssue> <IssueOA>Y</IssueOA> <PubDate> <Year>2018</Year> <Month>01</Month> <Day>10</Day> </PubDate> <ArticleType>Engineering, Science and Mathematics</ArticleType> <ArticleTitle>Contributions on Geometric Group Theory</ArticleTitle> <SubTitle/> <ArticleLanguage>English</ArticleLanguage> <ArticleOA>Y</ArticleOA> <FirstPage>161</FirstPage> <LastPage>168</LastPage> <AuthorList> <Author> <FirstName>P.Durga</FirstName> <LastName>Bhavani</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>N</CorrespondingAuthor> <ORCID/> </Author> </AuthorList> <DOI/> <Abstract>This Paper Mainly Focus on geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the Cayley graphs of groups, by proving on theorems related to group theory using Metric Spaces.</Abstract> <AbstractLanguage>English</AbstractLanguage> <Keywords/> <URLs> <Abstract>https://ijesm.co.in/ubijournal-v1copy/journals/abstract.php?article_id=4480&title=Contributions on Geometric Group Theory</Abstract> </URLs> <References> <ReferencesarticleTitle>References</ReferencesarticleTitle> <ReferencesfirstPage>16</ReferencesfirstPage> <ReferenceslastPage>19</ReferenceslastPage> <References/> </References> </Journal> </Article> </ArticleSet>