International Journal of Engineering, Science and Mathematics
Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

# The Killing Vectors for Spherically <br> Symmetric Space-time in Wide Sense 

Kalpana Pande<br>Department of Mathematics,<br>VMV Commerce, JMT Arts and JJP Science College, Nagpur-440008 (INDIA)


#### Abstract

In this paper the Killing vectors admitted by a spherically symmetric Spacetime using a Spherically Symmetric co-ordinate system in wide sense is studied.


Keywords: Killing vectors; Spherically symmetric.

## 1 Introduction

The concept of spherical symmetry is connected with the group of motion which satisfies the Killing equation

$$
\begin{equation*}
K_{i, j}+K_{j ; i}=0 \tag{1}
\end{equation*}
$$

(; represent the covariant derivative.)
The vector $K^{i}$ is called the Killing vector. As it plays a major role in spherical symmetry, it is desirable to identify it.

In this paper we have taken up the most general spherically symmetric line ele ment

$$
\begin{equation*}
d s^{2}=-A d r^{2}-B\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)+C d t^{2}+4 D d r d t, \tag{2}
\end{equation*}
$$

where $A, B, C$ and $D$ are the functions of $r$ and $t$, for the determination of the Killing vectors.

International Journal of Engineering, Science and Mathematics
Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories
Indexed \& Listed at: Ulrich's Periodicals Directory © $\mathbb{C}$, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

## 2 Killing equation

The Killing equation (1) can be written as

$$
K^{h} g_{i j, h}+g_{i h} K_{, j}^{h}+g_{h j} K_{, i}^{h}=0
$$

(, denotes the partial derivative) which for the line element (2) gives

$$
\begin{align*}
& A^{J} K^{1}+2 A K_{, r}^{1}+K^{4}-4 D K^{4}=\underset{, r}{0},  \tag{3}\\
& A K^{1}+B K^{2}-2 D K^{4}=0,  \tag{4}\\
& A K^{1} \quad \begin{array}{r}
+B \\
\\
\\
\theta K^{3}-2 D K^{4}
\end{array} \quad \sin ^{2}=0,  \tag{5}\\
& 2 D^{\prime} K^{1}-A K^{1}+2 D K^{1}+2 D=0, \\
& \text { M } \\
& K^{4}+2 D K^{4}+C K^{4} \\
& B^{\prime} K^{1}+2 B K^{2}+B{ }^{\cdot}{ }_{K^{4}=0},  \tag{7}\\
& { }^{2}+\sin ^{2} \theta K^{3}=0,  \tag{8}\\
& 2 D K^{1}-B K^{2}+=0,  \tag{9}\\
& C K^{4} \\
& B^{\prime} \sin \theta K^{1}+2 B \cos \theta K^{2}+2 B \sin \theta K^{3}+B \quad \sin \theta K^{4}=0,  \tag{10}\\
& 2 D K^{1}=0, \\
& -B \sin \theta K+C K \\
& C^{\prime} K^{1}+4 D K^{1}+C \quad{ }_{, t}{ }_{K^{4}+2 C K_{, t}^{4}=0}, \\
& \text { 1) }
\end{align*}
$$

where $A=A_{, t}$ and $A^{J}=A_{, r}$ etc.
These are ten equations in four $K^{i}, i=1,2,3,4$ which are the functions of $(r, \theta$, $\varphi, t)$.

International Journal of Engineering, Science and Mathematics
Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Differentiating equation (4) and (5) with respect to $\varphi$ and $\theta$ respectively, we obtain

$$
-A K_{, \theta \varphi}^{1}-B K_{, r \varphi}^{2}+2 D K_{, \theta \varphi}^{4}=0
$$

and

$$
-A K_{, \theta \varphi}^{1}-2 B \sin \theta \cos \theta K_{, r}^{3}-B \sin ^{2} \theta K_{, r \theta}^{3}+4 D K_{\theta \varphi}^{4}=0
$$

Their $K^{1}$ and $K^{4}$ eliminant yield

$$
-\stackrel{2}{K}_{, r \varphi}+2 \sin \theta \cos \theta K_{, r}+\sin ^{2} \theta K_{, r \theta}^{3}=0
$$

Then using equation (8) we get

$$
+\cot _{r}^{3} \theta K^{3} \quad=0
$$

which on integration gives

$$
\begin{equation*}
K^{3}+\cot \theta K^{3}=-a_{1}(\varphi, t) \tag{13}
\end{equation*}
$$

This $a_{1}$ should be a function of $(\theta, \varphi, t)$ but to avoid the tedious nature of the results, we assume $a_{1}=a_{1}(\varphi, t)$. [Takeno(1966) has also adopted this view].
Equation (13) is the linear partial differential equation in $K^{3}$ with integrating factor $\sin \theta$. Therefore its solution is

$$
\begin{equation*}
K^{3}=a_{1}(\varphi, t) \cot \theta+a_{2}(r, \varphi, t) / \sin \theta \tag{14}
\end{equation*}
$$

Taking the help of equation (7), equation (10) simplifies to

$$
\begin{array}{ll}
-\sin & \theta K_{, \theta}++\sin \theta K^{3}=0 \\
\cos \theta K &
\end{array}
$$

Differentiating this partially with respect to $\varphi$ and using equation (8), we get

$$
\begin{array}{ll}
\sin ^{2} \theta K^{3}+\sin \theta \cos & =0 \\
\theta K^{3}+K_{, \theta \theta}^{3}
\end{array}
$$

,$\varphi \varphi$
Substituting the value of $K^{3}$ from (14) we obtain

$$
a_{1}=b_{1} \cos \varphi+b_{2} \sin \varphi, b=b(t)
$$

International Journal of Engineering, Science and Mathematics
Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories
Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
a_{2}=d_{1} \cos \varphi+d_{2} \sin \varphi, d=d(r, t)
$$

Finally we get

$$
\begin{equation*}
K^{3}=\left(b_{1} \cos \varphi+b_{2} \sin \varphi\right) \cot \theta+\left(d_{1} \cos \varphi+d_{2} \sin \varphi\right) / \sin \theta \tag{15}
\end{equation*}
$$

Now equation (8), when combined with equation (15), gives $K^{2}$ as

$$
\begin{equation*}
K^{2}=\left(b_{1} \sin \varphi-b_{2} \cos \varphi\right)+\left(d_{1} \sin \varphi-d_{2} \cos \varphi\right) \cos \theta+g, \tag{16}
\end{equation*}
$$

where $g=g(r, \theta, t)$.
Now equations (7), (8), (10) and (16) give

$$
g_{, \theta \theta}-\cot \theta g_{\theta}+\operatorname{cosec}^{2} \theta g=0
$$

and one of its solution is

$$
g=-\sin \theta d_{3}(r, t)
$$

Then (16) simplifies to

$$
\begin{equation*}
K^{2}=\left(b_{1} \sin \varphi-b_{2} \cos \varphi\right)+\left(d_{1} \sin \varphi-d_{2} \cos \varphi\right) \cos \theta-d_{3} \sin \theta . \tag{17}
\end{equation*}
$$

Differentiating equation (7) with respect to $\theta$ and then using equation (4), we obtain

$$
\begin{aligned}
& \left(2 D B^{\prime}+A B\right) K^{1}+B B K^{2}+ \\
& 4 B D K^{2}=0
\end{aligned}
$$

## International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories
Indexed \& Listed at: Ulrich's Periodicals Directory © $\mathbb{C}$, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

With the help of (17) above equation becomes

$$
\begin{align*}
& \qquad K_{\theta}^{1}=\frac{1}{\left(2 D B^{\prime}+A \dot{B}\right)} \times \\
& \left\{\left[\left(4 B D d_{1}-B \dot{B} d_{1, r}\right) \sin \phi-\left(4 B D d_{2}-B \dot{B} d_{2, r}\right) \cos \phi\right] \cos \theta-\left(4 B D d_{3}-B \dot{B} d_{3, r}\right) \sin \theta\right\} \\
& \text { i.e. } \\
& \qquad K^{1}=\frac{1}{\left(2 D B^{\prime}+A \dot{B}\right)} \times \\
& \left\{\left[\left(4 B D d_{1}-B \dot{B} d_{1, r}\right) \sin \phi-\left(4 B D d_{2}-B \dot{B} d_{2, r}\right) \cos \phi\right] \sin \theta+\left(4 B D d_{3}-B \dot{B} d_{3, r}\right) \cos \theta\right\}+f \tag{18}
\end{align*}
$$

Where $\mathrm{f}=\mathrm{f}(\mathrm{r}, \phi, \mathrm{t})$
We obtain as follows
Equations (5) and (7) give

$$
-B \dot{B} \sin ^{2} \theta K_{, r}^{3}-4 B D K_{, \theta \phi}^{2}-\left(A \dot{B}+2 D B^{\prime}\right) K_{, \phi}^{1}=0
$$

and then putting the values of $K^{1}, K^{2}$ and $K^{3}$ this equation yields

$$
f_{, \phi}=0 \quad \text { i.e. } \quad f=f(r, t)
$$

Equation (7) with the help of equation (17) and (18) becomes

$$
K^{4}=\frac{B}{2 D B^{\prime}+A \dot{B}} \times
$$

$\left\{\left[\left(B^{\prime} d_{1, r}+2 A d_{1}\right) \sin \phi-\left(B^{\prime} d_{2, r}+2 A d_{2}\right) \cos \phi\right] \sin \theta+\left(B^{\prime} d_{3, r}+2 A d_{3}\right) \cos \theta\right\}-\frac{B^{\prime}}{\dot{B}} f$.
Substituing the expression for $K^{1}, K^{2}, K^{3}$ and $K^{4}$ in equations (3) and (12) we write

$$
\begin{equation*}
-A^{\prime} f+\frac{B^{\prime} \dot{A} f}{\dot{B}}-2 A f_{. r}+4 D\left(\frac{-B^{\prime} f}{\dot{B}}\right)_{r}=0, \tag{19}
\end{equation*}
$$

## International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories
Indexed \& Listed at: Ulrich's Periodicals Directory © $\mathbb{C}$, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{equation*}
C^{\prime} f-\frac{B^{\prime} \dot{C} f}{B}+4 D f_{t}+2 C\left(\frac{-B^{\prime} f}{\dot{B}}\right)_{, t}=0 \tag{20}
\end{equation*}
$$

Equation (6) with equation (19) and (20) gives $X f=0$, where

$$
\begin{gathered}
X=2 D^{\prime}-\frac{2 B^{\prime} \dot{D}}{\dot{B}}+\frac{C A^{\prime}}{4 D}-\frac{C B^{\prime} \dot{A}}{4 D \dot{B}}-\frac{D C^{\prime}}{C}+\frac{D B^{\prime} \dot{C}^{\prime}}{C \dot{B}}+ \\
\frac{\left(2 D+\frac{2 A C}{4 D}\right)}{\left(2 A+\frac{4 D D}{B}\right)}\left[-A^{\prime}+\frac{B^{\prime} \dot{A}}{\dot{B}}+\frac{4 D\left(-\dot{B} B^{\prime \prime}+B^{\prime} \dot{B}^{\prime}\right)}{\dot{B}^{2}}\right]+ \\
\\
\frac{\left(-A-\frac{4 D^{2}}{C}\right)}{\left(-4 D+\frac{2 C M^{\prime}}{B}\right)}\left[C^{\prime}-\frac{B^{\prime} \dot{C}}{\dot{B}}+\frac{2 C\left(-\dot{B} \dot{B}^{\prime}+B^{\prime} \ddot{B}\right)}{\dot{B}^{2}}\right]
\end{gathered}
$$

Then either $X=0$ or $f=0$.
For $f=0$

$$
\begin{gather*}
K^{1}=\frac{1}{\left(2 D B^{\prime}+A \dot{B}\right)}\left[\left(4 B D d_{1}-B \dot{B} d_{1, r}\right) \sin \phi-\left(4 B D d_{2}-B \dot{B} d_{2, r}\right) \cos \phi\right] \sin \theta+ \\
 \tag{21}\\
\frac{1}{\left(2 D B^{\prime}+A \dot{B}\right)}\left(4 B D d_{3}-B \dot{B} d_{3, r}\right) \cos \theta
\end{gather*}
$$

and

$$
\begin{gather*}
K^{4}=\frac{B}{\left(2 D B^{\prime}+A \dot{B}\right)}\left[\left(B^{\prime} d_{1, r}+2 A d_{1}\right) \sin \phi-\left(B^{\prime} d_{2, r}+2 A d_{2}\right) \cos \phi\right] \sin \theta+ \\
\frac{B}{\left(2 D B^{\prime}+A \dot{B}\right)}\left(B^{\prime} d_{3, r}+2 A d_{3}\right) \cos \theta \tag{22}
\end{gather*}
$$

Then expressions (15), (17), (21) and (22) completely determine the Killing vector $K^{i}$.
Now we can obtain more information about the functions $d=d(r, t)$. Noting the values of $K^{1}, K^{2}$ and $K^{4}$ equation (9) implies an identity

## International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories
Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{gathered}
\frac{2 D\left(4 B D d_{a}-B \dot{B} d_{a, r}\right)}{\left(2 D B^{\prime}+A \dot{B}\right)}[(\sin \phi-\cos \phi) \cos \theta-\sin \theta]+ \\
\frac{C B\left(B^{\prime} d_{a, r}+2 A d_{a}\right)}{\left(2 D B^{\prime}+A \dot{B}\right)}[(\sin \phi-\cos \phi) \cos \theta-\sin \theta]- \\
{\left[b_{1, t} \sin \phi-b_{2, t} \cos \phi+\left(d_{1, t} \sin \phi-d_{2, t} \cos \phi\right) \cos \theta-d_{3, t} \sin \theta\right]=0 .}
\end{gathered}
$$

Equating the terms of $\sin \phi \cos \theta, \cos \phi \cos \theta, \sin \theta, \sin \phi$ and $\cos \phi$ we get

$$
\begin{equation*}
\left(B D^{2}+2 A C\right) d_{a}+\left(-2 \dot{B} D+B^{\prime} C\right) d_{a, r}+\left(-2 B^{\prime} D-A \dot{B}\right) d_{a, t}=0 \tag{23}
\end{equation*}
$$

for $a=1,2,3$ and

$$
\begin{equation*}
b_{1, t}=b_{2, t}=0 \tag{24}
\end{equation*}
$$

or $B=0$, but $B \neq 0$. Therefore (23) and (24) are the only possibilities. Hence $d_{a}$ satisfies (23).

## 3 Isotropic co-ordinate system

In isotropic coordinate system the line element is written as

$$
d s^{2}=-A\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]+C d t^{2}
$$

# International Journal of Engineering, Science and Mathematics 

Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

This is obtained from (2) for $D=0$ and $B=A r^{2}$, where $A$ and $C$ are the functions of $r$ and $t$.

In this case

$$
K^{1}=-r^{2}\left[\left(d_{1, r} \sin \phi-d_{2, r} \cos \phi\right) \sin \theta+d_{3, r} \cos \theta\right]
$$

Now equation (23) becomes

$$
2 A C d_{a}+\left(2 A r+A^{\prime} r^{2}\right) C d_{a, r}=0
$$

provided $\dot{A}=0$. Then

$$
\begin{equation*}
d_{a, r}=\frac{-2 A d_{a}}{\left(2 A r+A^{\prime} r^{2}\right)} \tag{25}
\end{equation*}
$$

and

$$
K^{1}=\frac{2 A r^{2}}{\left(2 A r+A^{\prime} r^{2}\right)}\left[\left(d_{1} \sin \phi-d_{2} \cos \phi\right) \sin \theta+d_{3} \cos \theta\right]
$$

with these, equation (3) becomes

$$
2 A A^{\prime}+3\left(A^{\prime}\right)^{2} r-2 A A^{\prime \prime} r=0, \text { i.e. } \frac{r^{2} A^{3}}{\left(A^{\prime}\right)^{2}}=c^{2}(\text { constant })
$$

or

$$
A=\frac{1}{\left(e_{1} r^{2}+e_{2}\right)^{2}},
$$

where $e_{1}$ and $e_{2}$ are arbitrary constants. Now equation (25) becomes

$$
d_{a}=\left[\frac{\left(e_{1} r^{2}-e_{2}\right)}{\left(e_{1} r\right)}\right] p_{a}, \quad p_{a}=p_{a}(t) .
$$

The quantity $C$ is obtained from equation (6) and (9) as

$$
C=\frac{\left(e_{1} r^{2}-e_{2}\right)^{2} q}{\left(e_{1} r^{2}+e_{2}\right)^{2}}
$$

where $q=q(t)$.
By a suitable transformation of $t$, we may have $q(t)=1$. It is interesting to note that $K^{4}$ can not be determined from (22) because its denominator becomes zero as $\dot{A}=0$.

However $K^{4}$ can be determined as follows. Equation (9) gives

$$
K_{\theta}^{4}=\frac{r^{2}\left(e_{1} r^{2}+e_{2}\right)^{2}}{\left(e_{1} r^{2}+e_{2}\right)^{2}\left(e_{1} r^{2}-e_{2}\right)^{2}}\left[\left(d_{1, t} \sin \phi-d_{2, t} \cos \phi\right) \cos \theta+d_{3, t} \sin \theta\right],
$$

## International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory © $\mathbb{C}$, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
or

$$
K^{4}=\left[\frac{r}{e_{1}\left(e_{1} r^{2}-e_{2}\right)}\right]\left[\left(\dot{p_{1}} \sin \phi-\dot{p_{2}} \cos \phi\right) \sin \theta+\dot{p_{3}} \cos \theta\right] .
$$

To determine function $p^{\prime} s$ we consider equation (12)

$$
\begin{gathered}
C^{\prime} K^{1}+2 C K_{, t}^{4}=0, \\
\text { i.e. } \quad \ddot{p}_{a}-4 e_{1} e_{2} p_{a}=0 .
\end{gathered}
$$

or

$$
p_{a}=k_{1 a} e^{2 \sqrt{e_{1} e_{2}} t}+k_{2 a} e^{-2 \sqrt{e_{1} e_{2}} t},
$$

where $k_{1 a}$ and $k_{2 a}$ are arbitrary constants.
Thus the componants of Killing vector in this case are given by

$$
\begin{gathered}
K^{1}=-\frac{\left(e_{1} r^{2}+e_{2}\right)}{e_{1}} \times \\
\left\{\left[\left(k_{11} e^{m t}+k_{21} e^{-m t}\right) \sin \phi-\left(k_{12} e^{m t}+k_{22} e^{-m t}\right) \cos \phi\right] \sin \theta+\left(k_{13} e^{m t}+k_{23} e^{-m t}\right) \cos \theta\right\}, \\
K^{2}=\left(b_{1} \sin \phi-b_{2} \cos \phi\right)+\frac{\left(e_{1} r^{2}-e_{2}\right)}{e_{1} r} \times \\
\left\{\left[\left(k_{11} e^{m t}+k_{21} e^{-m t}\right) \sin \phi-\left(k_{12} e^{m t}+k_{22} e^{-m t}\right) \cos \phi\right] \cos \theta-\left(k_{13} e^{m t}+k_{23} e^{-m t}\right) \sin \theta\right\}, \\
K^{3}=\left(b_{1} \cos \phi+b_{2} \sin \phi\right) \cot \theta+\frac{\left(e_{1} r^{2}-e_{2}\right)}{e_{1} r} \times \\
\left\{\left[\left(k_{11} e^{m t}+k_{21} e^{-m t}\right) \cos \phi+\left(k_{12} e^{m t}+k_{22} e^{-m t}\right) \sin \phi\right]\right\} / \sin \theta, \\
K^{4}=\frac{r m}{e_{1}\left(e_{1} r^{2}-e_{2}\right)} \times \\
\left\{\left[\left(k_{11} e^{m t}-k_{21} e^{-m t}\right) \sin \phi-\left(k_{12} e^{m t}-k_{22} e^{-m t}\right) \cos \phi\right] \sin \theta+\left(k_{13} e^{m t}-k_{23} e^{-m t}\right) \cos \theta\right\}, \\
\text { where } m=2 \sqrt{e_{1} e_{2}}
\end{gathered}
$$

International Journal of Engineering, Science and Mathematics
Vol. 6 Issue 5, September 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories
Indexed \& Listed at: Ulrich's Periodicals Directory © , U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

## References

[1] Takeno H.: "The theory of spherically symmetric space times " Sci Rep Res Inst Phy Hiroshima Univ (1966).
[2] Gertesenshtein M E : 'Some properties of group of motions of general relativity" Sov Phys J, 27, 1039 (1984).
[3] Gurses M.: "Conformal uniqueness of Schwartzschild interior metric" Left Nuovo Cimento 18, 327 (1977).
[4] Henneaux M.: "Gravitational fields, spiner fields and group of motions" Gen relativity and gravitations $\mathbf{1 2 , 1 3 7 ( 1 9 8 0 ) . ~}$
[5] Millian P.: 'Fourier transformation on the conformal group" Nuovo Cimento 20 B , 247 (1974).

