ON SOME THEOREMS ASSOCIATED WITH A SYSTEM OF SIMULTANEOUS DIFFERENTIAL EQUATIONS CONSTRUCTION OF BOUNDARY CONDITION VECTORS DR. KUMAR GAURAV
(Research Fellow)
Deptt. of Mathematics
V. K. S. University, Ara

Abstract

In this paper some theorems associated with a system of simultaneous differential equations construction of Boundary Condition Vectors have been proved.

Keywords: Sim. Diff. Equ ${ }^{n}$, Boundary Conditions

1. Introduction: We consider the following system of differential equations:

$$
\left.\begin{array}{rl}
u^{\prime \prime}+p u+q v+r w & =\lambda u \\
q u-v^{\prime \prime}+r v+s w & =\lambda v \\
r u+s v+i w+p w & =\lambda w \\
n u+q v+r w-i x & =\eta x
\end{array}\right\}
$$

Where u, v, w, x are functions p, q, r, s are real valued conditions functions of t, l, o, μ, v, η are parameters which may be real or complex, $t \varepsilon[a, b], i=\sqrt{-1}$, and dashes denote derivatives w.r.t. t.
2. Theorem: The system (1.1) of differential equations yields (admits) a unique solution

$$
\theta(t)=(u v w x)^{t}(t)
$$

satisfying the initial conditions

$$
\begin{gather*}
u^{(s)}(\alpha)=A_{s} \\
A^{(s)}(\alpha)=B_{s} \tag{1.2}\\
w(\alpha)=C_{0} \\
x(\alpha)=D_{0}
\end{gather*}
$$

where $A_{s}, B_{s}(s=0,1), C_{0}, D_{0}$ are arbitrary constants (real or complex) not all vanishing simultaneously. T denotes transpose (s) denotes sih derivatives w.r.t. t and $\alpha \varepsilon[a, b]$.

Proof: The system of differential equations (1.1) and set of initial conditions (1.2) may be alternatively written as:

$$
\left.\begin{align*}
& u^{\prime \prime}=-l v-m w-n x+\lambda u \\
& v^{\prime \prime}=l u+p w+q x-\mu v \\
& w^{\prime}=i m u+i p y+i r x-i v w \tag{1.3}\\
& x^{\prime}=-i n u-i q v-i r w+i \eta x
\end{align*} \right\rvert\,
$$

Further for a vector V let V^{T} denote the transpose of V and

$$
V^{T}=\left(u u^{\prime} v v^{\prime} w x\right)
$$

where dashes denote derivatives w.r.t. t; then (1.3) and (1.4) have their respective equivalent forms as:

$$
V^{\prime}(t)=F(t) V(T)
$$

and
$V(\alpha)=\left(A_{0} A_{1} B_{0} B_{1} C_{0} D_{0}\right)^{T}$
where

$$
F(t)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
\lambda & 0 & -\lambda & 0 & -m & -n \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -\mu & 0 & p & q \\
i m & 0 & i p & 0 & -i v & i r \\
-i n & 0 & i q & 0 & -i r & i \eta
\end{array}\right]
$$

Since V and F both are complex hence we can write them as:

$$
\begin{align*}
& V=V_{1}+i V_{2} \tag{1.6}\\
& \text { and } \\
& F=F_{1}+i F_{2}
\end{align*}
$$

Where V_{1}, V_{2} and F_{1}, F_{2} are real matrices.
With the help fo (1.6) we get from (1.5)

$$
w^{\prime}(t)=\left[\begin{array}{ll}
F_{1} & F_{2} \\
F_{2} & F_{1}
\end{array}\right] w(t)
$$

where
$w=\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right] \quad W_{0}=\left[\begin{array}{l}V_{1}(\alpha) \\ V_{2}(\alpha)\end{array}\right]$
By Picard's theorem (Chapter 1 and 2 of ref 1 . The expressions (1.7) yields a unique solution $\phi(t)=(u(t) v(t) w(t) t \text {. } x(t))^{T}$ depending analytically on λ.

This proves the theorem.
3. Construction of Boundary Condition Vectors:

We use the symbol

$$
\phi(\alpha / x)=\left(u\left(\frac{\alpha}{x}\right) v\left(\frac{\alpha}{x}\right)^{T}(\alpha, x \in[a, b])\right)
$$

To denote a solution of (1.1) satisfying a set of conditions of the form

$$
\left(u^{(r)}\left(\frac{\alpha}{x}\right)\right)_{x=a}=u^{(r)}(\alpha / x)=A_{r}(r=0,1,2)
$$

and
$\left(v^{(s)}\left(\frac{\alpha}{x}\right)\right)_{x=\alpha}=v^{(s)}(\alpha / x)=B_{s}(s=0,1)$
where (r) denotes rth detivative w.r.t. x.

4. References:

1. Singh S. N. (1988): Differential Equations and Generating relations, Ph. D. Thesis, Magadh University, Bodh - Gaya.
2. Singh, Chandrama (1992): A Study on B. V. P., Ph. D. Thesis, Magadh University, Bodh Gaya.
3. Mishra, D. N. (1973): Some problems on Eigen Function Expansions, Ph. D. Thesis, Patna University, Patna
4. Codding ton, E. A. and Levinson N. (1985) Theory of O. D. E., Tata Mc. Graw - Hill Publishing Co. Ltd., T. M.H. Ed, 1972, New - Delhi.
5. Kumar Rakesh (2012) : Differential Equations of Green Function \& Green Vectors, Ph. D. Thesis, V. K. S. U., Ara
