
International Journal of Engineering, Science and Mathematics 
Vol.6Issue 4, August 2017,  
ISSN: 2320-0294 Impact Factor: 6.765 
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind 

Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: 
Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A 

  

229 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

 

SIMPLICAL HOMOLOGY THEORY AND ITS APPLICATION 

Gopal Kumar 

Researchscholar 

Dept.of mathematics, Veer Kunwar Singh University Ara , Bihar 

 
 

Abstract 

This paper explores the basic ideas of simplicial structures that lead to simplicial 

homology theory, and introduces singular homology in order to demonstrate the 

equivalence of homology groups of homeomorphic topological spaces. It concludes 

with a proof of the equivalence of simplicial and singular homology groups. 

 

 

1. Introduction.  

Homology theory is essentially an algebraic study of the connectivity properties of a space. 

The homotopy groups, ( ).
n

Y Although they are appealing intuitively, the homotopy 

groups are difficult to calculate even for comparatively simple spaces. The simplicial 

homology groups developed in this paper permit us to answer questions about connectivity 

similar to those answered by means of homotopy groups. And the simplicial homology 

groups are computed by almost mechanical methods. On the other hand,the difficulties in 

homology theory are found in the underlying structures and the combinatorial approach 

which, for the beginning student, seems to disguise the motivation for an inordinate length 

of time.  

To help the beginner keep sight of the forest, we will discuss at some length the 2-

dimenisional torus T pictured in Fig. 6-1. Our aim in this discussion is to explain the 

geometric significance of the purely algebraic concepts to be formulated shortly. First, look 

at T from the point-set standpoint. Clearly, this surface is a compact, connected and locally 

Euclidean metric space. It is also locally connected, etc. Of course, all such information 

above does not characterize the torus. All of these facts are also ture of the 2-dimensional 
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sphere as well. Suppose that our goal is modest, namely, that it is to distinguish 

topologically between T and S
2
. How might it be done? 

An immediate answer can be given by computing the fundamental groups of T and 

S
2
. It turns out that the group 

2

1
( )S is a trivial group whereas 

1
( )T is not (such a curve 

as Z in Fig. 1.1 cannot be shrunk to a point in T). Thus we already have knowledge that 

suffices to distinguish 

 

Figure 1.1 

Between a tours and a 2-sphere. Let us proceed, however, to give further study to the torus. 

 Envisioning a 2-sphere, it is intuitively obvious that any closed curve on the surface 

forms the boundary of a portion of the sphere. Or in equivealent terms, any closed curve on 

S
2
 disconnects S

2
. The same is not true of the torus. For cutting along the curve Z in Fig. 

1.1 does not disconnect the torus. This implies that the curve Z is not the boundary of a 

portion of T. Of course, there are closed curves, such as B in Fig. 1.1 which are boundaries. 

The curve B may be considered as the boundary of either the shaded disc or of the 

complement of that disc in T. 

Because the intuitive idea of a closed curve includes the notion that it “goes around 

something” and because it is 1-dimensional, we will temporarily and imprecisely refer to 

any closed curve such as B or Z in Fig. 1.1 as a 1-dimensional cycle on T. Note that while 

we have pictured only simple closed curves on T, we do not so restrict our cycles. Those 

special cycles, such as B, that bound a portion of the tours T do not tell us much about the 
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structure of the torus in the large. We will merely call them bounding 1-cycles and ignore 

tham. It is the nonbounding 1-cycles, such as Z, that interest us. 

There is obviously an uncoundatable number of such nonbounding 1-cycles on the 

tours. By utilizing simple notions, we will reduce this cardinality drastically. First, the two 

cycles Z1 and Z2 shown in Fig. 1.2 are not 

 

Figure 1.2 

intrinsically different since they both go aground the torus once latitudinally. More to the 

point, however, is the fact that taken together they form the boundary of a portion of the 

torus (e.g., the shaded cylinder). 

2. Oriented complexes. As we know from analytic geometry, the concept of a 

directed (oriented) line segment allows the introduction of algebraic methods into 

geometry. In an analogous manner, the oriented simplex permits the use of 

algebraic tools in our study of complexes. We will gain generality by phrasing our 

definitions in terms of abstract simplicial complexes, but most of our early complex 

will be taken from the geometric complexes. This is done to attain our double goal 

of explaining the geometry underlying homology theory while being sufficiently 

general to permit the necessary extensions later.  

An oriented simplex is obtained from an abstract p-simplex 

0
... p

p
v v   
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as follows. We choose some arbitrary fixed ordering of the vertices 
0 1
, ,...., .

p
v v v  The 

equivalence class of even permutations of this fixed ordering is the positively oriented 

simplex, which we denote by ,p and the equivalence class of odd permutations of the 

chosen ordering is the negatively oriented simplex, 
p . For example, if 

1

0 1
,v v  

then 
1

1 0
.v v   For a geometric simplex 

1

1
,

o
s p p  orientation is equivalent to a 

choice of a positive direction on the line segment. Again if we choosen to let 
2

represent 
0 2 1

,v v v then 
1 2 0

v v v and 
2 0 1

v v v also represent 
2 , while 

1 0 2
,v v v

0 2 1
,v v v and 

2 1 0
,v v v each represents 

2. For a geometric simplex 
2

0 1 2
,s p p p

orientation is equivalent to choosing a positive direction of traversing the three 1-faces of 

s
2
. We note that 

0 1 2
p p p and 

1 0 2
p p p are opposite cyclic orderings of the vertices 

0 1
, ,p p and 

2
p and correspond to opposite directions of traversing the boundary of the 2-

simplex. 

3. Incidence numbers. Given an oriented simplical complex K, we associate with 

every pair of simplexes 
m and 

1,m 
which differ in dimension by unity, an 

incidence number 
1,m m  

   defined as follows: 

  
1, 0m m       if 

1m 
 is not a cace of 

m in K; 

  
1, 1m m        if 

1m 
is a face of 

m in K. 

To decide between +1 and —1 in the case where 
1m 
is a face of 

m , we note that if 

0
.... ,m

m
v v  then 

1

0
ˆ... ....m

i m
v v v     (recall that the circumflex accent denotes 

the omission of the vertex 
i

v ), where the orientation of 
1m 
determines the sign. If 

1m   
0

ˆ.... .... ,
i m

v v v  consider the oriented simplex 
0

ˆ..... ..... .
i i m

v v v v This is either 
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 or ;m m   if it is +
m , we take the incidence number 

1,m m  
   to be +1, and if 

0
ˆ... ... ,m

i i m
v v v v   we take 

1, 1.m m       Again, if 
1

0 1
ˆ... ... ,m

i m
v v v v    then 

1, 1m m        if 
0

ˆ... ... ,m

i i m
v v v r   and 

1[ , ] 1m m     if 

0
ˆ... ... .m

i i m
v v v v    

If 
1, 1,m m       then 

1m 
is a positively oriented face of 

m and if the 

incidence number  is negative, then 
1m 
is a negatively oriented face of .m The choice of 

a positive ordering of the vertices of 
m clearly induces a natural ordering of the vertices 

in each face of 
m . Thus an orientation 

m induces a natural orientation of its faces. The 

definition above amounts to this: if 
1m 
is a face of 

m then the incidence number 

1,m m  
   is positive or negative depending upon whether the chosen orientation of 

1m 

agrees or disagrees with the orientation of 
1m 
induced by that of 

m . 

EXAMPLE. If 
2

0 1 2
v v v  and 

1

1 2
,v v  then it is easily verified that 

0 1 2 1 2
, 1.v v v v v     But if 

1

2 1
,v v  then we have 

0 1 2 2 1
, 1.v v v v v     For, 

inserting the missing vertex 
0

v in front of 
1, we have 

2

0 1 2
v v v   in the first case and 

2

0 1 2
v v v   in the second. The reader should work out a number of similar examples 

for higher-dimensional simplexes. 

The oriented simplicial complex K, together with the system of incidence number 

1, ,m m  
   constitutes the basic structure supporting a simplical homology theory. We 

develop this next. First, however, note that for each dimension m, we may associate with K 

a matrix  1[ , ]m m

i j
  

of incidence numbers, where the index i runs over all m-simplex of 

K and the index j runs over all (m-1)-simplexes. A study of this system of incidence 
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matrices would yield the connectivity properties we wish to investigate. This technique 

was commonly used in the early days of “combinatorial” topology, but we do not develop 

it. The group-theoretic formulation to be introduced below evolved slowly during the 

decade 1925-1935 and seems to have been first suggested by E. Noether.  

One basic property of the incidence numbers is needed. 

THEOREM 3.1 Given any particular simplex
0

m of an oriented simplicial complex K, the 

following relationship among the incidence numbers holds: 

1 1 2

0
,

[ , ]. [ , ] 0.m m m m

i i j
i j

        

Proof: Every ( 2)m simplex 
0

ˆ ˆ... ... ...
k i m

v v v v in 
m is a face of exactly two (m-1)-faces 

of .m  Hence the sum 

0 0 0 0
0

ˆ ˆ ˆ ˆ ... , ... ... . ... ... , ... ... ...
m

m i m i m k l m
i

v v v v v v v v v v v v

         

0 0 0 0
ˆ ˆ ˆ ˆ ... , ... ... . ... ... , ... ... ...

m k m k m k l m
v v v v v v v v v v v v         

0 0 0 0
ˆ ˆ ˆ ˆ ... , ... ... . ... ... , ... ... ... .

m l m l m k l m
v v v v v v v v v v v v         

There are several cases to be considered. First, if 

0 0
ˆ ˆ ˆ... ... ... ...

m l k l m
v v v v v v v   

and  

  
0 0

ˆ ˆ... ... ... ... ,
m k l k l m

v v v v v v v v   

then the first term of the above sum is (+1)(+1). Then there are two sub-cases: 

(i) If 

0 0
ˆ ˆ ˆ... ... ... ... ... ,

l m k k l m
v v v v v v v v   

then we have 

   
0 0

ˆ ˆ... ... ... ...
l k k l m m

v v v v v v v v   

and the second term in the sum is (-1) (+1). 

(ii) If 

0 0
ˆ ˆ ˆ... ... ... ... ... ,

k k l m l m
v v v v v v v v   
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 ISSN: 2320-0294Impact Factor: 6.765  

235 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

then the second term in the sum is (+1)(-1). 

 Thus in either subcase the sum is zero. The remaining cases are handled similarly. 

4. Chains, cycles, and groups. Let K denote an arbitrary oriented simplicial complex, 

finite or not, and let G denote an arbitrary (additively written) abelian group. (There 

will be no essential loss of generality if the reader always thinks of the additive 

group Z of integers whenever we say “arbitrary abelian group.”) We make the 

following definitions. An m-dimensional chain on the complex K with coefficients 

in th group G is a function 
m

C on the oriented m-simplexes of K with values in the 

group G such that if ( ) ,m

m
C g g  an element of G, then ( ) .m

m
C g   If K 

is infinite, then ( ) 0,m

m
C   the identity element of G, for all but a finite number 

of m-simplexes of K. The collection of all such m-dimensional chains on K will be 

denoted by the symbol ( , ).
m

C K G  

We introduce an addition of m-chains by means of the usual  functional addition. 

That is, we define 

1 2 1 2( ) ( ) ( ) ( ),m m m

m m m m
C C C C      

where the addition on the right is the group operation in G. 

 THEOREM 4.1 Under the operation just defined, ( , )
m

C K G is an abelian group, the 

m-dmensional chain group of K with coefficients in G. 

 The reader may prove Theorem 4.1 merely by verifying the axioms for an abelian 

group.  

 If the complex K has no m-simplexes, we take ( , )
m

C K G to be the trivial group 

consisting of the identity element 0 alone and write ( , )
m

C K G = 0.  
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An elementary m-chain on K is an m-chain 
m

C such that 
0 0

( )m

m
c g   for some 

particular simplex 
0

m in K and ( ) 0m

m
c   whenever 

0
.m m   Such an elementary m-

chain will be denoted by a formal product 
0 0
. .mg  Then an arbitrary m-chain 

m
c on K can 

be written as a formal linear combination . ,m

i i
g  where ( )m

i m i
g c   and all but a 

finite number of the coefficients 
i

g are zero. This notation explains the use of the word 

.coefficient Actually, this notation conveniently tabulates the function 
m

c in such a way 

that the addition of such functions is the addition of linear combinations. We use this 

presentation of chains throughout our subsequent development.  

THEOREM 4.2 If K is a finite complex and 
m

 is the number of m-simplexes in K, 

then the chain group ( , )
m

C K G is isomorphic to the direct sum of 
m

 groups, each 

isomorphic to the coefficient group G. If K is infinite, the ( , )
m

C K G is isomorphic to the 

weak direct sum of infinitely many isomorphic copies of G. 

Proof: If K is finite complex and 
m

 is the number of m-simplexes in K, then the chain 

group ( , )
m

C K G is isomorphic to the direct sum of 
m

 groups, each isomorphic to the 

coefficient group G. infinitely many isomorphic copies of G. 

Proof: If K is finite, then the correspondence  

,
1

. ( ..., )
m

m
m

i i i
i

g g g






   

is the desired isomorphism, as is readily checked. A similar argument will handle the 

infinite case, simply recalling the definition of a weak direct sum. 

 The results describes the chain groups completely, but so far there seems to be little 

if any geometric meaning in our development. This will be corrected shortly, both by the 

subsequent definitions and by examples. First, we introduce an algebraic mechanism that 
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corresponds to determining the boundary of a portion of a complex. The boundary 

operator is defined first on elementary chains by the formula 

1

1 1

0 0 0 0
( . ) [ , ]. . ,

m

m m m mg g


  


     

Where 
1

0
[ , ]m m  

is the incidence number. We note that 
0 0

( . )mg  is an (m-1) chain 

which has nonzero coefficients only the (m-1) faces of the simplex 
0

.m The above 

definition of  is extended linearly to arbitrary m-chains by setting 

. ( . ).m m

i i i i
i i

g g     
 
   

It is easy to see that the boundary of an m-chain is an (m-1) chain which depends only 

upon the m-chain itself and not upon the complex on which the m-chain is taken.  
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