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  Abstract  

 
 The present paper concerns study of peristaltic transport in relation to 

temperature effect and varying wall moment. A two layered peristaltic fluid 

flow model is employed in estimating the physiological flow parameters 

(velocity, flux, limitation of flux). Peristaltic flows are assumed to be the 

propagation waves along the flexible walls which can be compared with the 

transport of blood within the small blood vessels. The elasticity of varying 

wall consists of distensibility of the layer. The wall of the tube in a man is 

accounted for four coats and three neural mechanisms. The coats namely 

serous, muscular submucus and mucus play a role in the forward propulsion 

and the excellent lubricant. Therefore a series of contractions of the 

progressive waves enable the fluid to be transported under the peristaltic 

action. The resulting wave is sinusoidal due to the longitudinal and 

transverse moments produced by muscular fibers. The amplitude of the 

traveling wave on the elastic wall is so large that at the narrowest point the 

wall is pressed by each other. Numerical method is employed for the 

analytical expression as series form and the corresponding flow rate is 

studied in relation to peripheral circulation. 
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1. INTRODUCTION  

 The artery wall consists of three coats namely intima, media and advantia. The inner wall intima of 

the artery includes the delicate lining endothelium on which the peristaltic effect approximates the flow 

impact on variable wall moment. Normally intestine, ureter, movement of spermatozoa and the number of 

biomedical instruments such as some heart lung machines have been identified for the propelling action of 

the fluid and the fluid mixtures. By the unique pumping process, the fluid is transported by regular 

coordinated waves of muscular contractions along the wall of the vessel. The vagus nerve functions as a fine 
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tuner to stimulate the peristaltic moments. The chemical and mechanical stimulations of peristaltic wave are 

well supported for its movement by the gel(mucus). This is alkaline secreted by columnar cells serves as a 

protective function. The gel prevents the damage of the wall along the progressive wave. The wall of the tube 

in a man is accounted for four coats and three neural mechanisms. The coats namely serous, muscular 

submucus and mucus play a role in the forward propulsion and the excellent lubricant. Therefore a series of 

contractions of the progressive waves enable the fluid to be transported under the peristaltic action. The 

resulting wave is sinusoidal due to the longitudinal and transverse moments produced by muscular fibers. 

Human aorta, carotid artery, capillaries and other vessels of the sizes constituted by connective tissues 

followed by smooth muscular fibers are contractile in nature. The amplitude of the traveling wave on the 

elastic wall is so large that at the narrowest point the wall pressed by each other.Peristaltic transport of two 

layered viscous incompressible fluid is studied theoretically through the axisymmetric geometry. An attempt 

has been made to examine the rate of positive pumping against the decrease of friction force at the innerwall 

of the tube.  

 Over the past few years, analytical and experimental studies have been carried out to analyze the 

flow parameters under the peristaltic transport. Burns et. al. [1] studied the peristaltic motion through a pipe 

under the assumptions of small Reynold’s number. Fung et. al. [2] analyzed the flow of urine with peristaltic 

action in a two-dimensional channel. Shapiro et. al. [3] analyzed the peristaltic pumping using long wave 

length at low Reynold’s number for mechanical effectiveness in relevance to ureter function. Weinberg et. al. 

[4] made the experimental investigations on two-dimensional peristaltic pumping to measure the flow 

parameters at fixed locations of the tube. Tin-Kanet. al. [5] analyzed the insight into the mechanism of solid 

particle by peristaltic. Shuklaet. al. [6] observed the peristaltic transport of a power-law fluid with variable 

consistency. Srivastava et. al. [7] described the peristaltic transport of blood using Casson model under zero 

Reynold’s number. Liepsch [8] discussed a detailed discussion on blood circulatory system by which the 

human heart operates as a double working pump for the flow of blood similar to a piston in the tube network. 

He also described about the contraction and expansion waves produced by the pumping action using 

Newtonian and non-Newtonian nature of blood. Usha et al. [9] investigated the effects of curvature and 

inertia on the peristaltic transport in two fluid system.  Basavarajappaet. al. [10] described the peristaltic 

transport of two-layered viscous incompressible fluid to approximate the stream functions and the interface. 

Vajraveluet. al. [11] analyzed the peristaltic transport of a Herschel-Bulkley fluid in contact with Newtonian 

fluid. G. Radhakrishnamacharya, Ch. Srinivasulu[12] analyzed the effects of pertinent parameters on 

temperature and heat transfer.DulalChandra Sanyal, Ananda Biswas [13] were discussed by assuming blood 

to be incompressible viscous Newtonian fluid. EthemToklu [14] developed a new mathematical model for 

peristaltic transport in the esophagus which is monomeric measurements of luminal pressure have been 

obtained in the esophagus and interpreted both biological and mechanical point of view. AbdelhalimEbaid 

et.al. [15] explained the influence of viscosity variation on peristaltic flow in an asymmetric channel in view 

of new exact solutions. These solutions are used to study the effects of viscosity parameter, Daray’s number, 

porosity, amplitude ratio, Jeffrey fluid parameter and amplitudes of the waves on the pressure rise and the 

axial velocity. B J Gireeshaet.al. [16] investigated non linear radiative Casson –Carreau liquid models 

considering the aspects of homogeneous and heterogeneous reactions and have shown that the liquid 

velocities in case of Casson fluid is higher than the carreau fluid with varying magnetic parameter. A Tanveer 

et al [17] investigated the effects of slip condition and joule heating on peristaltic flow of Bingham nano fluid 

and presented the formulation under the assumption of long wavelength and small Reynolds number. 

 In view of the research done by various authors, it is necessary to understand the effect of varying 

wall moment on the peristaltic transport with a reference to Herschel-Bulkley fluid flow to compare the 

physiological flow parameters. Newton-Raphson method is used to determine the interface between core 

layer and peripheral layer employing the iterations with six stages in each approximation.   

 
2. FORMULATION 

 Consider the peristaltic transport of axi-symmetric flow of Herschel-Bulkley fluid through the tube 

of radius ‘a’ of which the core layer with radius h1 is filled with 90 % of the Herschel-Bulkley fluid with 

another immiscible fluid as plasma in peripheral layer with radius as h. λ is the wavelength when the wall is 

subjected to periodic peristaltic movement. The flow becomes steady in the reference frame moving in the 

direction of the wave propagation with speed ‘c’. Geometry of the fluid flow is sinusoidal, travelling with 

amplitude b1 and b in two layers respectively.  

 Under the peristaltic action R = H(z) be the instantaneous radius when the fluid is surrounded co 

axially. ( R , Z) be the fixed frame  and (R', Z') be the reference frame, then z′ = Z + ct′, r′ = R, wi
′ = wi + c 

Taking Herschel-Bulkley fluid, the non-Newtonian fluid is modeled as, 

τ =  
μ eni + τ0 τ ≥ τ0

e = 0     τ < τ0

         (1) 
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Where τ- shear stress,τ0- yield stress, e = γ – deformation rate,μ - viscosity and ni- fluid behavior index. 

i = 1 (core layer),  i = 2 (peripheral layer), 

μ
1
- viscosity of chime layer, μ

2
- viscosity of mucus layer, 

mr = μ
r

=  μ =
μ1

μ2

inh1 ≤ r ≤ h 

mr = μ
r

=  μ = 1in0 ≤ r ≤ h 

 Geometry of the tube wall is taken for cylindrical polar coordinates (r, θ ,  z) to study the problem,  

H z = a + bsin  
2πz

λ
   

 H z = 1 + ϵ sin  
2πz

λ
         (2) 

Where ϵ =
b

a
 the amplitude ratio                    

For varying wall thickness, we consider    

h(η) = a + η cos(c − λz)  

H(z) is taken as h(η). 

Where a =tube radius, η = amplitude ratio, c = wave speed, λ = wave length, 
z = axial coordinate  

 Using long wave length approximation, neglecting wall slope and inertia forces for steady flow under 

lubrication theory, the equations of motion is 

∂p ′

∂z ′
=

1

r′

∂

∂r′
 r′mr

∂w i
′

∂r′
  
∂w i

′

∂r′
 

n i−1

         (3) 

∂p ′

∂z ′
= 0          (4) 

Non-dimensional quantities are,  

r =
r′

a
      z =

z ′

λ
  h1 =

H1

a
wi =

w i
′

a
mr =

μ2

μ1

         p =
p ′an i +1

m1λcn i
    (5) 

 

3. ANALYSIS 

Equation (3) becomes 
∂p

∂z
=

1

r

∂

∂r
 r mr

∂w i

∂r
  
∂w i

∂r
 

n i−1

    

∂p

∂z
= p   (constant) 

p =
1

r

∂

∂r
 r mr

∂w i

∂r
  
∂w i

∂r
 

ni−1

    

Equation (7) becomes 

 
∂w i

∂r
  
∂w i

∂r
 

ni−1

  =
pr

2mr
  

The conditions at the fluid interface are the continuity of the velocity and the stress across it. Then 

 
∂w i

∂r
 =  

pr

2mr
 

1

n i          (6)  

For the binary system we considerυc + υp = 1.  

The conservation of mass for each phase can be taken to be as,  
∂υc

∂t
+ ∇.  υβvβ = 0  

where the velocity vc =
∂w i

∂t
 

The overall continuity equation is obtained by adding the equations for both phase so that, 

∇.  υcvc + υp vp = 0        (7) 

∇. vf = 0         (8) 

 We define vf =  υcvc + υpvp   as a macroscopic fluid vector. The momentum equation for each 

phase can be modeled as, 

ρβ  
∂vβ

∂t
+  vβ. ∇ vβ = ∇. Tβ + ρβbβ + πβ      (9) 

 where 
βT  is the stress tensor and for the β  phase, 

βb   is the resultant external body force 

(neglected here) and 
βπ  is a drag force between the constituents representing inertial forces due to frictional 

interaction between the two layers. For small velocities and deformation rates, the inertia terms can be 

assumed to be negligible. With these assumptions equation (9) becomes 

∇. Tβ = −πβ         (10) 
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 Newton’s third law implies
pcπ  = - π . Then the stress tensor can be modeled as 

Tβ = −υβPI + σβ         (11) 

−πc = πpK vc − vp − P∇υs        (12) 

 Where 
pσ  represents a stress, ‘K’ is the drag coefficient of relative motion; ‘P’ is the pressure and ‘I’ 

is the identity tensor. These stress equations split the stress tensors into contributions due to hydrostatic 

pressure and those due to viscous stress. The interaction term represents the linear drag between the 

constituents. 

Substituting the interaction terms of equation (12) in to equation (10) and using  

σp = 1 − υc  leads to 

∇. σ =
k

υf
 vc − vp   

We get, 

vf = −1 −  C2 k2
 a+ηcos (c−λz) m k2+1

mk2+1
+  C2 ki

rm k i +1

mki +1
     (13) 

 For the peristaltic transport of two layered Herschel-Bulkley fluid in circular tube in an axi-

symmetric flow  0 ≤ r ≤ h1 and h1 ≤ r ≤ h 

vf =   C2rm−1  
1

n i  
 R−Rp  

k i +1
− r−rp  

k i +1

ki +1
   

For the core layer r - h1 and for the mucus layer  h1 – h  

vi
f = −1 −  C2 ki  

rm k i +1−h1
m k i +1

mki +1
 +  C2 k2  

h1
m k 2+1− a+ηcos (c−λz) m k2+1

mk2+1
    (14) 

The flow rate q1:   0 ≤ r ≤ h1   [For chyme layer] 

q1 = 2  rv1
f  dr

h1

0
  

q1 = −h1
2 −  C2 k1  

h1
mk 1+3

mk1+3
 +  C2 k2  

h1
m k 2+3− a+ηcos (c−λz) m k 2+1h1

2

mk2+1
    (15)  

The flow rate  q2:   h1 ≤ r ≤ h [For mucus layer] 

Where  h(η) = a + ηcos(c − 𝜆𝑧) 

q2 = 2  rv2
f  dr

h

h1
  

q2 = − a + η cos c − λz  2 + h1
2 −  C2 k2 ×  

×

 
 
 

 
 − a + η cos c − λz  mk2+3

mk2 + 3
+

+
h1

2

 mk2 + 1  mk2 + 3 
 2h1

mk2+1
−  mk2 + 3  a + η cos c − λz  mk2+1 

 
 
 

 
 

(16) 

 The flow rate ‘q’ across any cross section is independent of ‘z’ under lubrication approach. Then the 

instantaneous volume flow rate in terms of two layers is given by   

q = q1 + q2  

q = − a + η cos c − λz  2 −  C2 k1
h1

m k 1+3

mk1+3
+  C2 k2  

h1
m k 2+3

mk2+3
−

 a+ηcos (c−λz) m k2+3

mk2+3
  (17) 

Dimensionless time average flux in terms of flow rate is obtained as, 

Q =  
− a + η cos c − λz  2 −  C2 k1

h1
m k 1+3

mk1+3
  +          

+   C2 k2  
h1

m k 2+3

mk2+3
−

 a+ηcos (c−λz) m k2+3

mk2+3
 

 + 1 +
ϵ2

2
  

Where ϵ- the amplitude ratio  

The stream functions 1 2ψ  and  ψ in terms of velocities are given by, 

v1
f = −

1

r

∂Ψ1

∂r
 or 

∂Ψ1

∂r
= −r v1

f  

Ψ1 =
r2

2
 1 −  C2 k1  

2rm k1+1−(mk1+3)h1
m k 1+1

 mk1+3 (mk1+1)
 −  C2 k2  

h1
m k 2+1

− a+ηcos (c−λz) m k2+1

(mk2+1)
    (18)                                                                                                                          

v2
f = −

1

r

∂Ψ2

∂r
or

∂Ψ2

∂r
= −r v2

f  

 Ψ2 =

=      
2q + r −  a + ηcos(c − λz) 2

2
 

−  
2rmk2+3 −  mk2 + 3 r2 a + η cos c − λz  mk2+1 +  mk2 + 1  a + η cos c − λz  mk2+1

2 mk2 + 3  mk2 + 1 
    (19) 
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Taking  Ψ1 =
q1

2
  or  Ψ1 =

q1

2
 

For stream functions at    k1 = k2 = k   we get, 

 Ψ1 =
r2

2
+

q+h2

hmk +3(mk +1)
 rmk +3 −  mk + 3 h1

mk +1r2 + (mk + 3)[a + η cos c − λz ]mk +1 r2

2
 (20) 

             
 

                  Ψ2
=  

2q+r2+ a+η cos  c−λz  2

2
 +    

                       + 
q+h2

2hmk +3(mk +1)
 

2rmk +3 −  mk + 3  a + η cos c − λz  mk +1r2

.
+(mk + 1)[a + η cos c − λz ]mk +3

         (21) 

 

                                                                                                                                          

For  h1= 0 

L 0 = [a + η cos c − λz ]mk +3  mk + 1  q1 − q − [a + η cos c − λz ]2 − 

  −   q + [a + η cos c − λz ]2  mk + 1 [a + η cos c − λz ]mk +3   

           (22) 

 

For  h1= h   

L[a + η cos c − λz ] = [a + η cos c − λz ]mk +3 (mk + 1)  

                                                                                     {q1 − q − [a + η cos c − λz ]2}     (23) 

            

 Equation of the interface is obtained for a particular case at  1h = α  and  
1

𝑛1
=

1

𝑛2
  with the condition 

that the flow rate in core layer is twice the stream function (r = h1). Substituting equation (17) in q1 and further 

Q1 = q1 + h2 gives  

 Q1 = 2  
α5−α3{[a+η cos  c−λz ]mk +3+7Q }−α{[a+η cos  c−λz ]4+[a+η cos  c−λz ]2−16Q α2

−13𝛼4−3𝛼2[a+η cos  c−λz ]2−23α2       (24) 

 For a given flow rate with non uniform interface ( Q1 = 0 ), equation (24) is reduced to 5th degree 

polynomial in ‘ α ’. Newton-Raphson method is employed with ten iterations in each step to obtain the set of 

values for α . Series of values of α  represent interface. The initialization is made with α = 0.3 to 2.6143 

chosen as sufficiently close to the root in comparison with H(z). 

The pressure gradient under the assumptions of (24) with  
1

n1
=

1

n2
= nis obtainedby separating P from 

equation (6) and for single layer model. mr= 1 and n =1. 

     For various amplitudes, fifth degree equations are proposed and solved numerically as, 

α = 0, and  α4 + 16.25α3 − {[a + η cos c − λz ]2 + 7.7}α2 + 

    −{[a + η cos c − λz ]4  +  [a + η cos c − λz ]2} = 0   

           (25) 

Here we claim that numerically α ≠ 0, since the radius of the artery ranges from     0.3mm to 2.6143mm 

Again by equation (25), 

[a + η cos c − λz ]4 +  α2 − 3.75α + 1 [a + η cos c − λz ]2 + 

                             + −α4 − 16.25α3 + 7.7α2 − 11.15α = 0      

         (26)                                                                                                

      Tube radius- a=1,   Wave speed- c=6,    Wave length-𝜆=9,     Q = 1.1  are substituted to equation (26) 

and   

Forη = 0.2, 0.4, 0.6 and 0.8 , we obtain the corresponding values of h η = α as, 

α: ranging from 0 to 0.078125 

The non-uniform wall moment variation (Q1) is approximated by using Halving method. 

The expressions for pressure difference  p  studied between the extreme locations of each wavelength as, 

∆p =

−8 [a+η cos  c−λz ]2−
C 2

k h 1
m k 1+3

 m k2+3 
+C2

k  
h 1

m k 2+3

 m k 2+3 
−

[a +η cos  c−λz ]m k 2+3

 m k 2+3 
  [2+3ϵ2]

[1−ϵ2]
7

2 
−   

8

[1−ϵ2]
3

2 
    (27) 

 

Friction force at the wall is given by,  

F =

8  [a + η cos c − λz ]2 −
C2

k h1
m k1+3

 mk2+3 
+ C2

k  
h1

m k 2+3

 mk2+3 
−

[a+η cos  c−λz ]m k 2+3

 mk2+3 
  

[1 − ϵ2]
3

8 
+ 8 
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F =
8

 1−ϵ2 
3

8 
−  

            −[a + η cos c − λz ]2 −  
p

2mr
 

1
n1 

 
h1

1

n 1
+3

1

n1
+ 3

  −  
p

2mr
 

1
n2 

 
h1

2[a + η cos c − λz ]
1

n 2
+3

− h1

1

n 2
+3

1

n2
+ 1

 + 

                +  
p

2mr
 

1
n2 

 
−[a+η cos  c−λz ]

1
n 2

+3

1

n 2
+3

 +
 

1

n 2
+3 h1

2[a+η cos  c−λz ]
1

n 1
+1

−2h1

1
n 2

+3

 
1

n 2
+1  

1

n 2
+3 

  (28)  

            

            

From finite range of flux
LQ  the limitation of the flux

LQ   is calculated as 

2 k + 3 k + 2 k +2 k + 3

L k+1 k k + 1

ε α - (k +1) + 2(k +3)α - (k + 3)α - (k + 3)α
Q  =  +

2 4α - 2(k + 3)α + (k + 3)α - (α +3)

 
 
          (29) 

The ratio of average pressure rise and the time averaged flux is determined as Rf., 

Rf =

 
 
 
 
 −8  a+η cos  c−λz  2−

C 2
k h 1

m k 1+3

 m k 2+3 
+C2

k  
h 1

m k 2+3

 m k2+3 
−

 a +η cos  c−λz  m k 2+3

 m k 2+3 
  (2+3ϵ2)

 1−ϵ2 
7

2   a+η cos  c−λz  2−
C 2

k h 1
m k 1+3

 m k 2+3 
+C2

k  
h 1

m k 2+3

 m k2+3 
−

 a +η cos  c−λz  m k 2+3

 m k 2+3 
 +1+

ϵ2

2
 

−

              −  
8

 1−ϵ2 
7

2   a+η cos  c−λz  2−
C 2

k h 1
m k 1+3

 m k2+3 
+C2

k  
h 1

m k2+3

 m k 2+3 
−

 a +η cos  c−λz  m k2+3

 m k2+3 
 +1+

ϵ2

2
 
 
 
 
 

  (30) 

4. RESULT AND DISCUSSION 

Due to wall varying in the axial direction the effect of peristaltic transport gives the importance of radial 

velocity and its effect on axial velocity distribution. The instantaneous velocity gets disturbed due to varying 

wall moment. Velocities above the centerline are radial in the irrotational motion with mucus in the core 

layer and chyme in the peripheral layer. The positive pumping is derived at non-varying wall and the change 

in the heights of sinusoidal waves is appeared in the varying wall. The slope of the wall decreases and causes 

the disturbance to deviate from a parabolic slope. 

Due to varying temperature the velocity profiles are stagnant. This is shown in graph (fig.5) for the 

numerical computation of fifth degree equations for α = f(h), at ϵ =0.2, 0.4, 0.6, 0.8 to achieve the positive 

pumping. Frictional force gives the influence of varying wall moment on peristaltic flow in the axial 

direction.  
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Figure 1: Geometry of two layered Peristaltic Transport 

 

 

 

 
 

 

 

 

Figure 2: Peristaltic Transport in Axi-symmetric Tube 
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Figure 3: Total Flux (Q) Vs Applied force (F) 

 

 

 

 

 
 

 

Figure 4: Variation of Force (F) v/sFlux(Q)  

 

 

 

 

0

4

8

12

16

20

0 0.2 0.4 0.6 0.8 1

T
o
ta

l 
fl

u
x
 

Applied Force

ε = 0.8 ε = 0.4ε = 0.6 ε = 0.2

-35

-30

-25

-20

-15

-10

-5

0

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q  (mol/cm2-s)



 ISSN: 2320-0294 Impact Factor: 6.765  

56 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

 

 

 

 

 
 

 

 

Figure 5: Varying wall moment 
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