ZAGREB INDICESOF BOOK GRAPH AND STACKED BOOK GRAPH *KAVITHA B N** INDRANI PRAMOD KELKAR
 *Assistant Professor, Department of Mathematics, Sri Venkateshwara College of Engineering, Bangalore, India
 ${ }^{* *}$ Professor, Department of Mathematics, Acharya Institute of Technology, Bangalore, India

Abstract

Zagreb indices are the parameters defined using sum and product of degrees of vertices, joining an edge, in a graph The roots of this concept come from Chemical graph theory, in recent years lot of work is published on Zagreb indices of standard graphs and graph operations. In this paper we establish the relation for Zagreb indices of book graph and Stacked book graph with its component graphs and also find their corresponding polynomials.

KEYWORDS: Zagreb Indices, Hyper Zagreb Indices, Book Graph, Stacked Book Graph
Classification number: 05C07, 05C35, 05C76

1.1 INTRODUCTION

The concepts of connectivity in Chemical Graph Theory, which define relationships between the structure of a molecule and its properties. One important parameter, topological index, which characterizes molecular graph and remain invariant under graph automorphism are called Zagreb Indices. These parameters introduced by Gutman I [5] are defined by using sum and product of degrees of vertices joining an edge.

Consider a subset of $E(G)$ denoted as $E_{a, b}=\{(u, v) \in E(G) / d(u)=a$ and $d(v)=b\}$. Partitioning the edge set $E(G)$ into disjoint sets $E_{a, b}$ with all possible choices of pairs a, b we can determine the Zagreb and hyper Zagreb indices and their corresponding polynomials for first and second kind. The Zagreb indices, hyper Zagreb indices and their corresponding polynomialswe use definitions given by Gutman [5] stated as follows:

$$
\begin{array}{cc}
M_{1}(G)=\sum_{\mathrm{E}_{\mathrm{uv} \in \mathrm{E}(\mathrm{G})}}\left[\mathrm{d}_{\mathrm{G}}(\mathrm{u})+\mathrm{d}_{\mathrm{G}}(\mathrm{v})\right] & M_{2}(G)=\sum_{u v \in V(G)}\left[d_{G}(u) d_{G}(v)\right] \\
H M_{1}(G)=\sum_{u v \in E}\left[d_{G}(u)+d_{G}(v]^{2}\right. & H M_{2}(G)=\sum_{u v \in E}\left[d_{G}(u) d_{G}(v)\right]^{2}
\end{array}
$$

$$
\begin{array}{cc}
\mathrm{M}_{1}(\mathrm{G}, x)=\sum_{u v \in E(G)} x^{\left[d_{G}(u)+d_{G}(v)\right]} & M_{2}(G, x)=\sum_{u v \in E(G)} x^{\left[d_{G}(u) d_{G}(v)\right]} \\
H M_{1}(G, x)=\sum_{u v \in E} x^{\left[d_{G}(u)+d_{G}(v)\right]^{2}} & H M_{2}(G, \mathrm{x})=\sum_{u v \in \mathrm{E}} \mathrm{x}^{\left[\mathrm{d}_{G}(\mathrm{u}) \mathrm{d}_{G}(\mathrm{v})\right]^{2}}
\end{array}
$$

In this paper we present results for Zagreb indices, hyper Zagreb indices and their polynomials for product graphs $B_{m}, B_{m, n}$ For simplicity of notation we write $d_{G}(u)=$ a and $\mathrm{d}_{\mathrm{G}}(\mathrm{v})=\mathrm{b}$, in all further proofs.

2 ZAGREB INDICES FOR B_{m}

Book graph B_{m} is the cross product of star S_{m+1} and path P_{2}. For $m \geq 3$, we have $\left|V\left(B_{m}\right)\right|=2 m+2,\left|E\left(B_{m}\right)\right|=3 m+1 . B_{m}$ is a biregular graph with two possible vertex degrees 2 and $m+1$. We can partition $V\left(B_{m}\right)$ in to two disjoint subsets V_{2} and V_{m+1} as follows.
$V_{2}=\left\{v \in V\left(B_{m}\right) / d(v)=2\right\}$ with $\left|V_{2}\right|=2 m$
$V_{m+1}=\left\{v \in V\left(B_{m}\right) / d(v)=m+1\right\}$ with $\left|V_{m+1}\right|=2$
Next, the edge set $E\left(B_{m}\right)$ can be partitioned into three disjoint subsets based on the condition that incident vertices belong to V_{2} and V_{m+1} as follows.
$E_{2,2}=\left\{u v \in E\left(B_{m}\right) ; u, v \in V_{2}\right\}$ with $\left|E_{2,2}\right|=m$
$E_{2, m+1}=\left\{u v \in E\left(B_{m}\right) ; u \in V_{2}, v \in V_{m+1}\right\}$ with $\left|E_{2, m+1}\right|=2 m$
$E_{m+1, m+1}=\left\{u v \in E\left(B_{m}\right) ; u, v \in V_{m+1}\right\}$ with $\left|E_{m+1, m+1}\right|=1$
Theorem2.1: The first Zagreb indices and their polynomial for B_{m} are

$$
\begin{gathered}
M_{1}\left(B_{m}\right)=2\left[(m+3)^{2}-8\right] \quad \text { where } m \geq 3 \\
M_{1}\left(B_{m}, x\right)=m x^{4}+2 m x^{m+3}+x^{2 m+2} \quad \text { where } m \geq 3
\end{gathered}
$$

Proof: The first Zagreb indices of B_{m} are

$$
\begin{gathered}
M_{1}\left(B_{m}\right)=\sum_{\mathrm{E}_{\mathrm{uv} \in \mathrm{E}(\mathrm{G})}}[a+b]=\sum_{\mathrm{E}_{2,2}}[a+b]+\sum_{\mathrm{E}_{\mathrm{m}+1,2}}[a+b]+\sum_{\mathrm{E}_{\mathrm{m}+1, \mathrm{~m}+1}}[a+b] \\
=\left|E_{2,2}\right|[2+2]+\left|E_{2, m+1}\right|[m+1+2]+\left|E_{m+1, m+1}\right|[m+1+m+1] \\
=2 m^{2}+12 m+2=2\left[(m+3)^{2}-8\right]
\end{gathered}
$$

The first Zagreb polynomial of B_{m} is

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
\mathrm{M}_{1}\left(\mathrm{~B}_{\mathrm{m}}, x\right)= & \sum_{u v \in E(G)} x^{a+b}=\sum_{E_{2,2}} x^{a+b}+\sum_{\boldsymbol{E}_{\boldsymbol{m}+\mathbf{1}, 2}} x^{a+b}+\sum_{\boldsymbol{E}_{\boldsymbol{m}+\mathbf{1}, \boldsymbol{m}+\boldsymbol{1}}} x^{a+b} \\
& =\left|E_{2,2}\right| x^{[2+2]}+\left|E_{2, m+1}\right| x^{[m+1+2]}+\left|E_{m+1, m+1}\right| x^{[m+1+m+1]} \\
& =m x^{4}+2 m x^{m+3}+x^{2 m+2}
\end{aligned}
$$

Theorem 2.2: The second Zagreb indices and their polynomial for B_{m} are

$$
\begin{gathered}
M_{2}\left(B_{m}\right)=5(m+1)^{2}-4 \text { wherem } \geq 3 \\
M_{2}\left(B_{m}, x\right)=m x^{4}+2 m x^{2(m+1)}+x^{(m+1)^{2}} \text { wherem } \geq 3
\end{gathered}
$$

Proof: The second Zagreb indices for B_{m} is,

$$
\begin{aligned}
& M_{2}\left(B_{m}\right)= \sum_{u v \in V(G)}[a . b]=\sum_{E_{2,2}}[a . b]+\sum_{E_{m+1,2}}[a . b]+\sum_{E_{m+1, m+1}} \quad[a . b] \\
&=\left|E_{2,2}\right|[2 \times 2]+\left|E_{2, m+1}\right|[(m+1) \times 2]+\left|E_{m+1, m+1}\right|\left[(m+1)^{2}\right. \\
&=4 m+4 m^{2}+4 m+m^{2}+2 m+1=5 m^{2}+10 m+1=5(m+1)^{2}-4
\end{aligned}
$$

Next second Zagreb polynomial for B_{m} is

$$
\begin{aligned}
M_{2}\left(B_{m}, x\right) & =\sum_{u v \in E(G)} x^{[a . b]}=\sum_{E_{2,2}} x^{[a . b]}+\sum_{E_{m+1,2}} x^{[a . b]}+\sum_{E_{m+1, m+1}} x^{[a . b]} \\
& =m x^{[2 \times 2]}+2 m x^{[(m+1) \times 2]}+x^{[(m+1) \times(m+1)]} \\
& =m x^{4}+2 m x^{2(m+1)}+x^{(m+1)^{2}}
\end{aligned}
$$

Theorem 2.3: The first hyper-Zagreb indices and their polynomial of B_{m} are

$$
\begin{gathered}
H M_{1}\left(B_{m}\right)=2 m\left[(m+4)^{2}+5\right]+4 \text { where } m \geq 3 \\
H M_{1}\left(B_{m}, x\right)=m x^{16}+2 m x^{[m+3]^{2}}+x^{[2(m+1)]^{2}}
\end{gathered}
$$

Proof: First hyper Zagreb indices for B_{m} is

$$
\begin{aligned}
& H M_{1}\left(B_{m}\right)=\sum_{u v \in E}[a+b]^{2}=\sum_{E_{2,2}}[a+b]^{2}+\sum_{E_{m+1,2}}[a+b]^{2}+\sum_{E_{m+1, m+1}}[a+b]^{2} \\
& \quad=m[2+2]^{2}+2 m[m+1+2]^{2}+1[m+1+m+1]^{2} \\
& \quad=2 m^{3}+16 m^{2}+42 m+4 H M_{1}\left(B_{m}\right) \\
& \quad=2 m\left[(m+4)^{2}+5\right]+4
\end{aligned}
$$

Now the first hyper-Zagreb-polynomial for B_{m} is

$$
\begin{aligned}
H M_{1}\left(B_{m}, x\right)= & \sum_{u v \in E} x^{[a+b]^{2}}=\sum_{E_{2,2}} x^{[a+b]^{2}}+\sum_{E_{2, m+1}} x^{[a+b]^{2}}+\sum_{E_{m+1, m+1}} x^{[a+b]^{2}} \\
& =m x^{[2+2]^{2}}+2 m x^{[m+1+2]^{2}}+x^{[m+1+m+1]^{2}}
\end{aligned}
$$

$$
H M_{1}\left(B_{m}, x\right)=m x^{16}+2 m x^{[m+3]^{2}}+x^{[2(m+1)]^{2}}
$$

Theorem 2.4:The second hyper-Zagreb indices and polynomial of B_{m} for $m \geq 3$ is

$$
\begin{gathered}
H M_{2}\left(B_{m}\right)=\left[(m+1)^{2}+4 m\right]^{2}-16 m(m-1) \\
H M_{2}\left(B_{m}, x\right)=m x^{16}+2 m x^{(2(m+1))^{2}}+x^{(m+1)^{4}}
\end{gathered}
$$

Proof: The second hyper Zagreb indices of B_{m} for $m \geq 3$ is

$$
\begin{aligned}
H M_{2}\left(B_{m}\right) & =\sum_{u v \in E}[a . b]^{2}=\sum_{E_{2,2}}[a . b]^{2}+\sum_{E_{2, m+1}}[a . b]^{2}+\sum_{E_{m}+1, m+1}[a . b]^{2} \\
& =m[2 \times 2]^{2}+2 m[(m+1) \times 2]^{2}+[(m+1) \times(m+1)]^{2} \\
& =m^{4}+12 m^{3}+22 m^{2}+28 m+1 \\
H M_{2}\left(B_{m}\right) & =\left[(m+1)^{2}+4 m\right]^{2}-16 m(m-1)
\end{aligned}
$$

Now, second hyper-Zagreb polynomial of B_{m} for $m \geq 3$ is

$$
\begin{aligned}
H \mathrm{M}_{2}\left(\mathrm{~B}_{\mathrm{m}}, \mathrm{x}\right) & =\sum_{\mathrm{uv} \in \mathrm{E}} \mathrm{X}^{[a . b]^{2}}=\sum_{\mathrm{E}_{2,2}} \mathrm{X}^{[a . b]^{2}}+\sum_{\mathrm{E}_{\mathrm{m}}+1,2} \mathrm{X}^{[a . b]^{2}}+\sum_{\mathrm{E}_{\mathrm{m}+1, \mathrm{~m}+1}} \mathrm{X}^{[a . b]^{2}} \\
& =m x^{[2 \times 2]^{2}}+2 m x^{[(m+1) \times 2]^{2}}+x^{[(m+1) \times(m+1)]^{2}} \\
& =m x^{16}+2 m x^{(2(m+1))^{2}}+x^{(m+1)^{4}} \square
\end{aligned}
$$

3 Zagreb indices for $\boldsymbol{B}_{\boldsymbol{m}, \boldsymbol{n}}$

The graph $B_{m, n}$ is the cross product of S_{m+1} and path P_{n} form ≥ 3 and $n \geq 2$, with the number of vertices $\left|V\left(B_{m, n}\right)\right|=m n+$ nand edges $\left|E\left(B_{m, n}\right)\right|=2 \mathrm{mn}-\mathrm{m}+\mathrm{n}-1$. We can partition $V\left(B_{m, n}\right)$ in to four disjoint subsets V_{2}, V_{3}, V_{m+1} and V_{m+2} as
$V_{2}=\left\{v \in V\left(B_{m, n}\right) ; d(v)=2\right\} ;\left|V_{2}\right|=2 m$

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
$V_{3}=\left\{v \in V\left(B_{m, n}\right) ; d(v)=3\right\} ;\left|V_{3}\right|=m(n-2)$
$V_{m+1}=\left\{v \in V\left(B_{m, n}\right) ; d(v)=m+1\right\} ;\left|V_{m+1}\right|=2$
$V_{m+2}=\left\{v \in V\left(B_{m, n}\right) ; d(v)=m+2\right\} ;\left|V_{m+2}\right|=n-2$
Next, the edge set $E\left(B_{m, n}\right)$ can be partitioned into six disjoint subsets based on the degree of incident vertices as follows:
$E_{2,3}=\left\{u v \in E\left(B_{m}\right) ; u \in V_{2}, v \in V_{3}\right\} ;\left|E_{2,3}\right|=2 m$
$E_{2, m+1}=\left\{u v \in E\left(B_{m}\right) ; u \in V_{2}, v \in V_{m+1}\right\} ;\left|E_{2, m+1}\right|=2 m$
$E_{m+1, m+2}=\left\{u v \in E\left(B_{m}\right) ; u \in V_{m+1}, \quad v \in V_{m+2}\right\} ;\left|E_{m+1, m+2}\right|=2$
$E_{3, m+2}=\left\{u v \in E\left(B_{m}\right) ; u \in V_{3}, v \in V_{m+2}\right\} ;\left|E_{3, m+2}\right|=m(n-2)$
$E_{3,3}=\left\{u v \in E\left(B_{m}\right) ; u \in V_{3}, v \in V_{3}\right\} ;\left|E_{3,3}\right|=m(n-3)$
$E_{m+2, m+2}=\left\{u v \in E\left(B_{m}\right) ; u \in V_{m+2}, \quad v \in V_{m+2}\right\} ;\left|E_{m+2, m+2}\right|=n-3$
We observe that when $n=3,\left|E_{3,3}\right|=0$ and $\left|E_{m+2, m+2}\right|=0$

Theorem 3.1: The first Zagreb indices and their polynomial of $B_{m, n}$ for $m \geq 3 \& n \geq 3$ are,

$$
\begin{gathered}
M_{1}\left(B_{m, n}\right)=\left\{\begin{array}{c}
m(m n+13 n-14)+2(2 n-3) \text { ifm } \geq 3 \text { and } n>3 \\
m^{2} n+5 m(n+2)+6 \quad \text { if } m \geq 3 \text { and } n=3
\end{array}\right. \\
M_{1}\left(B_{m, n}, x\right)=\left\{\begin{array}{l}
\begin{array}{c}
(m n-2 m) x^{[m+5]}+(n-3) x^{2 m+4}+2 m x^{m+3}+2 x^{2 m+3}+ \\
(n-3) m x^{6}+2 m x^{5} \\
(m n-2 m) x^{[m+5]}+2 m x^{m+3}+2 x^{2 m+3}+2 m x^{5}
\end{array} \quad \text { if } n=3
\end{array}\right.
\end{gathered}
$$

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory © , U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proof: The first Zagreb indices of $B_{m, n}$ is

$$
\begin{aligned}
\boldsymbol{M}_{\mathbf{1}}\left(\boldsymbol{B}_{\boldsymbol{m}, \boldsymbol{n}}\right)= & \sum_{\boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})}[\boldsymbol{a}+\boldsymbol{b}] \\
= & \sum_{E_{2,3}}[\boldsymbol{a}+\boldsymbol{b}]+\sum_{E_{2, m+1}}[\boldsymbol{a}+\boldsymbol{b}]+\sum_{\boldsymbol{E}_{\boldsymbol{m}+1, m+2}}[\boldsymbol{a}+\boldsymbol{b}]+\sum_{\boldsymbol{E}_{3, m+2}}[\boldsymbol{a}+\boldsymbol{b}] \\
& +\sum_{E_{3,3}}[\boldsymbol{a}+\boldsymbol{b}]+\sum_{\boldsymbol{E}_{\boldsymbol{m}+2, \boldsymbol{m}+2}}[\boldsymbol{a}+\boldsymbol{b}] \\
= & 2 m[2+3]+2 m[2+m+1]+2[m+1+m+2]+(m n-2 m) \\
& {[3+\boldsymbol{m}+2]+(\boldsymbol{n}-3) \boldsymbol{m}[\mathbf{3}+\mathbf{3}]+(\boldsymbol{n}-\mathbf{3})[\boldsymbol{m}+\mathbf{2}+\boldsymbol{m}+\mathbf{2}] }
\end{aligned}
$$

Case (i) if $n>3$

$$
M_{1}\left(B_{m, n}\right)=m(m n+13 n-14)+2(2 n-3)
$$

Case (ii) when $\mathbf{n}=\mathbf{3}$ in equation (1), terms $(\mathbf{n}-\mathbf{3}) \mathbf{6 m a n d}(n-3)[\mathbf{2 m}+\mathbf{4}]$ are equal to zero as $\mathbf{E}_{\mathbf{3}, \mathbf{3}}$ and $\mathbf{E}_{\mathbf{m}+\mathbf{2}, \mathbf{m}+\mathbf{2}}$ has no edges giving,

$$
M_{1}\left(B_{m, n}\right)=m^{2} n+5 m(n+2)+6
$$

Now, the first Zagreb polynomial of $B_{m, n}$ is

$$
\begin{aligned}
& \mathrm{M}_{1}\left(\mathrm{~B}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)=\sum_{\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \mathrm{X}^{[a+b]} \\
& =\sum_{\mathrm{E}_{2,3}} \mathrm{x}^{[a+b]}+\sum_{\mathrm{E}_{2, \mathrm{~m}+1}} \mathrm{x}^{[\mathrm{a}+\mathrm{b}]}+\sum_{\mathrm{E}_{\mathrm{m}+1, \mathrm{~m}+2}} \mathrm{x}^{[a+b]}+\sum_{\mathrm{E}_{3, \mathrm{~m}+2}} \mathrm{x}^{[\mathrm{a}+\mathrm{b}]}+\sum_{\mathrm{E}_{3,3}} \mathrm{X}^{[a+b]}+\sum_{\mathrm{E}_{\mathrm{m}+2, \mathrm{~m}+2}} \mathrm{X}^{[a+\mathrm{b}]} \\
& =2 \mathrm{mx}^{[2+3]}+2 \mathrm{mx}^{[2+\mathrm{m}+1]}+ \\
& 2 \mathrm{x}^{[\mathrm{m}+1+\mathrm{m}+2]}+(\mathrm{mn}-2 \mathrm{~m}) \mathrm{x}^{[3+\mathrm{m}+2]}+(\mathrm{n}-3) \mathrm{mx}^{[3+3]} \\
& \\
& \quad+(\mathrm{n}-3) \mathrm{x}^{[\mathrm{m}+2+\mathrm{m}+2]}
\end{aligned}
$$

Case (i) $n>3$
$M_{1}\left(B_{m, n}, x\right)=(m n-2 m) x^{[m+5]}+(n-3) x^{2 m+4}+2 m x^{m+3}+2 x^{2 m+3}+(n-3) m x^{6}+2 m x^{5}$

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \&
Listed at: Ulrich's Periodicals Directory © , U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
Case (ii) when $m=n$ in equation (2), $(n-3) m x^{6}$ and $(n-3) x^{(2 m+4)}$ become zero, as $\mathrm{E}_{3,3}$ and $\mathrm{E}_{\mathrm{m}+2, \mathrm{~m}+2}$ have no edges, giving,

$$
M_{1}\left(B_{m, n}, x\right)=(m n-2 m) x^{[m+5]}+2 m x^{m+3}+2 x^{2 m+3}+2 m x^{5}
$$

Theorem 3.2:The second Zagreb indices and their polynomial of $B_{m, n}$ for $m \geq 3 \& n \geq 3$ are,

$$
\begin{gathered}
\mathbf{M}_{\mathbf{2}}\left(\mathbf{B}_{\mathbf{m}, \mathbf{n}}\right)=\left\{\begin{array}{c}
\mathbf{m}(\mathbf{4 m n}+\mathbf{1 9 n}-\mathbf{3 m}-\mathbf{2 9})+\mathbf{4}(\mathbf{n}-\mathbf{2}) \mathbf{i f} \mathbf{m} \geq \mathbf{3} \text { and } \mathbf{n}>\mathbf{3} \\
(\mathbf{m}+\mathbf{2})[\mathbf{3 m n}+\mathbf{2}]+\mathbf{2}(\mathbf{5 m}+\mathbf{2}) \text { if } \mathbf{m} \geq \mathbf{3} \text { and } \mathbf{n}=\mathbf{3}
\end{array}\right. \\
M_{2}\left(B_{m, n}, x\right)=\left\{\begin{array}{c}
(n-3) x^{(m+2)^{2}}+(m n-2 m) x^{[3 m+6]}+2 m x^{2(m+1)}+ \\
+2 m x^{6}+(n-3) m x^{9} \text { if } m \geq 3 \text { and } n>3 \\
(m n-2 m) x^{[3 m+6]}+2 m x^{2(m+1)}+2 x^{\left(m^{2}+3 m+2\right)}+ \\
2 m x^{6} \text { if } m \geq 3 \text { and } n=3
\end{array}\right.
\end{gathered}
$$

Proof:The second Zagreb indices of $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ are

$$
\begin{aligned}
& M_{2}\left(B_{m, n}\right)= \sum_{u v \in E(G)}[a . b]= \\
& \sum_{E_{2,3}}[a . b]+\sum_{E_{2, m+1}}[a . b]+\sum_{E_{m+1, m+2}}[a . b]+\sum_{E_{3, m+2}}[a . b] \\
&+\sum_{E_{3,3}}[a . b]+\sum_{E_{m+2, m+2}}[a . b] \\
&= 2 m[2 \times 3]+2 m[2 \times(m+1)]+2[(m+1) \times(m+2)]+(m n-2 m) \\
&+(\boldsymbol{n}-\mathbf{3}) \boldsymbol{m}[\mathbf{3} \times \mathbf{3}]+(\boldsymbol{n}-\mathbf{3})[\boldsymbol{m}+\mathbf{2}) \times(\boldsymbol{m}+\mathbf{2})]
\end{aligned}
$$

Case (i) $\boldsymbol{n}>3$

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory © , U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
M_{2}\left(B_{m, n}\right)=m(4 m n+19 n-3 m-29)+4(n-2)
$$

Case (ii) $\boldsymbol{n}=\mathbf{3}$

Putting $n=3$ in equation $(3),(n-3) 6 m$ and $(n-3)[2 m+4]$ become zero giving.

$$
M_{2}\left(B_{m, n}\right)=(m+2)[3 m n+2]+2(5 m+2)
$$

Next second Zagreb polynomial for stacked book graph $B_{m, n}$ is,

$$
\begin{aligned}
M_{2}\left(B_{m, n}, x\right)= & \sum_{u v \in E(G)} x^{[a . b]}=\sum_{E_{2,3}} x^{[a . b]}+\sum_{E_{2, m+1}} x^{[a . b]}+\sum_{E_{m+1, m+2}} x^{[a . b]} \\
& +\sum_{E_{3, m+2}} x^{[a . b]}+\sum_{E_{3,3}} x^{[a . b]}+\sum_{E_{m+2, m+2}} x^{[a . b]} \\
& =2 m x^{[2 \times 3]}+2 m x^{[2 \times(m+1)]}+2 x^{[(m+1) \times(m+2)]}+(m n-2 m) x^{[3 \times(m+2])} \\
& +(n-3) m x^{[3 \times 3]}+(n-3) x^{[(m+2) \times(m+2)]}
\end{aligned}
$$

Case 1: $n>3$

$$
\begin{aligned}
M_{2}\left(B_{m, n}, x\right) & =(n-3) x^{(m+2)^{2}}+(m n-2 m) x^{[3 m+6]}+2 m x^{2(m+1)} \\
& +2 x^{\left(m^{2}+3 m+2\right)}+2 m x^{6}+(n-3) m x^{9}
\end{aligned}
$$

Case (ii) when $n=3$ in above equation, $(n-3) m x^{9}$ and $(n-3) x^{(m+2)^{2}}$ becomes Zero, as $E_{3,3}$ and $E_{m+2, m+2}$ has no edges, giving

$$
M_{2}\left(B_{m, n}, x\right)=(m n-2 m) x^{[3 m+6]}+2 m x^{2(m+1)}+2 x^{\left(m^{2}+3 m+2\right)}+2 m x^{6} \boldsymbol{\square}
$$

Theorem 3.3: The first hyper Zagreb indices and their polynomial of $B_{m, n}(m \geq 3$ and $n \geq$ 3 are

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory © , U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
& H M_{1}\left(B_{m, n}\right)=\left\{\begin{array}{c}
m n\left(m^{2}+14 m+77\right)-m(12 m-114)-2(8 n-15) \text { if } n>3 \\
m\left[(m+5)^{2} n+42\right]+18 \text { if } n=3
\end{array}\right. \\
& H M_{1}\left(B_{m, n}, x\right)=\left\{\begin{array}{c}
2 m x^{25}+2 m x^{(m+3)^{2}}+2 x^{(2 m+3)^{2}}+(m n-2 m) x^{(m+5)^{2}} \\
+m(n-3) x^{36}+(n-3) x^{[2 m+4]^{2}} \quad \text { if } n>3 \\
2 m x^{25}+2 m x^{(m+3)^{2}}+2 x^{(2 m+3)^{2}}+(m n-2 m) x^{(m+5)^{2}} \text { if } n=3
\end{array}\right.
\end{aligned}
$$

Proof: The first hyper Zagreb indices of $\boldsymbol{B}_{\boldsymbol{m}, \boldsymbol{n}}$

$$
\begin{aligned}
& \boldsymbol{H} \boldsymbol{M}_{\mathbf{1}}\left(\boldsymbol{B}_{\boldsymbol{m}, \boldsymbol{n}}\right)=\sum_{\boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})}[\boldsymbol{a}+\boldsymbol{b}]^{2} \\
& H M_{1}\left(B_{m, n}\right)=\sum_{E_{2,3}}[a+b]^{2}+\sum_{E_{2, m+1}}[a+b]^{2}+\sum_{E_{m+1, m+2}}[a+b]^{2}+\sum_{E_{3, m+2}}[a+b]^{2}+ \\
& \\
& \sum_{\mathrm{E}_{3,3}}[a+b]^{2}+\sum_{\mathrm{E}_{\mathrm{m}+2, \mathrm{~m}+2}}[a+\mathrm{b}]^{2} \\
& \quad=2 m[2+3]^{2}+2 m[2+m+1]^{2}+2[m+1+m+2]^{2}+(m n-2 m)[3+m+2]^{2}
\end{aligned}
$$

Case (i) : $n>3$

$$
\mathrm{HM}_{1}\left(\mathrm{~B}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{mn}\left(\mathrm{~m}^{2}+14 \mathrm{~m}+77\right)-\mathrm{m}(12 \mathrm{~m}-114)+2(8 \mathrm{n}-15)
$$

Case (ii) : when $n=3$ in equation (5), $(n-3) 36$ mand $(n-3)[2 m+4]$ becomes zero as $E_{3,3}$ and $E_{m+2, m+2}$ has no edges, giving

$$
H M_{1}\left(B_{m, n}\right)=m\left[(m+5)^{2} n+42\right]+18
$$

Next first hyper Zagreb polynomial of $B_{m, n}$ is,

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \&
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
& H M_{1}\left(B_{m, n}, x\right)=\sum_{u v \in E(G)} x^{[a+b]^{2}} \\
& =\sum_{E_{2,3}} x^{[a+b]^{2}}+\sum_{E_{2, m+1}} x^{[a+b]^{2}}+\sum_{E_{m+1, m+2}} x^{[a+b]^{2}}+\sum_{E_{3, m+2}} x^{[a+b]^{2}}+\sum_{E_{3,3}} x^{[a+b]^{2}} \\
& +\sum_{E_{m+2, m+2}} x^{[a+b]^{2}}+\sum_{E_{m+2, m+2}} x^{[a+b]^{2}} \\
& =2 m x^{[2+3]^{2}}+2 m x^{[2+m+1]^{2}}+2 x^{[m+1+m+2]^{2}}+(m n-2 m) x^{[3+m+2]^{2}}+(n-3) \\
& m x^{[3+3]^{2}}+(n-3) x^{[2 m+4]^{2}}
\end{aligned}
$$

Case (i) $\boldsymbol{n}>3$

$$
\begin{aligned}
H M_{1}\left(B_{m, n}, \mathbf{x}\right)= & 2 m x^{25}+2 m x^{(m+3)^{2}}+2 x^{(2 m+3)^{2}}+(m n-2 m) \mathbf{x}^{(m+5)^{2}}+m(n-3) \mathbf{x}^{36} \\
+ & \\
& +(n-3) x^{[2 m+4]^{2}}
\end{aligned}
$$

Case (ii) when $\mathbf{n}=\mathbf{3}$ in equation (6) $(\mathbf{n}-\mathbf{3}) \mathbf{m}$ and $(\mathbf{n}-\mathbf{3})$ are equal to zero as
$\boldsymbol{E}_{\mathbf{3 , 3}}$ and $\boldsymbol{E}_{\boldsymbol{m}+\mathbf{2}, \boldsymbol{m}+\mathbf{2}}$ has no edges
$H M_{1}\left(B_{m, n}, x\right)==2 m x^{25}+2 m x^{(m+3)^{2}}+2 x^{(2 m+3)^{2}}+(m n-2 m) x^{(m+5)^{2}}$

Theorem 3.4: The second hyper Zagreb indices and polynomial of $B_{m, n}(m \geq 3$ and $n=$ 3)are

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{gathered}
H M_{2}\left(B_{m, n}\right)=\left\{\begin{array}{c}
m n\left(m^{3}+9 m^{2}-12 m+168\right)-m\left(m^{3}-2 m^{2}-42 m+255\right) \\
+8(2 n-5) \text { if } n>3 \\
9 m n(m+2)^{2}+2 m\left(m^{3}+m^{2}-15 m+16\right)+8 \text { if } n=3
\end{array}\right. \\
H M_{2}\left(B_{m, n} x\right)=\left\{\begin{array}{c}
2 m x^{36}+2 m x^{[2 m+2)]^{2}}+2 x^{\left[m^{2}+3 m+2\right]^{2}}+(m n-2 m) x^{[3 m+6]^{2}} \\
+m(n-3) x^{36}+(n-3) x^{\left(m^{2}+4 m+4\right)^{2}} \text { if } n>3 \\
2 m x^{36}+2 m x^{[2 m+2)]^{2}}+2 x^{\left[m^{2}+3 m+2\right]^{2}}+(m n-2 m) x^{[3 m+6]^{2}} \\
\text { if } n=3
\end{array}\right.
\end{gathered}
$$

Proof: The first hyper Zagreb indices of $\boldsymbol{B}_{\boldsymbol{m}, \boldsymbol{n}}$ is

$$
\begin{aligned}
& H M_{2}\left(B_{m, n}\right)= \sum_{u v \in E(G)}[a . b]^{2}= \\
& \sum_{E_{2,3}}[a . b]^{2}+\sum_{E_{2, m+1}}[a . b]^{2}+\sum_{E_{m}+1, m+2}[a . b]^{2}+\sum_{E_{3, m+2}}[a . b]^{2} \\
&+\sum_{E_{3,3}}[a . b]^{2}+\sum_{E_{m}+2, m+2}[a . b]^{2} \\
&=2 m[2 \times 3]^{2}+2 m[2 \times(m+1)]^{2}+2[(m+1) \times(m+2)]^{2}+(m n-2 m) \\
& {[3 \times(m+2)]^{2}+(n-3) m[3 \times 3]^{2}+(n-3)[(m+2) \times(m+2)]^{2} }
\end{aligned}
$$

Case (i) $\boldsymbol{n}>3$

$$
\begin{gathered}
H M_{2}\left(B_{m, n}\right)=m^{4} n+17 m^{3} n+60 m^{2} n+149 m n-m^{4}-22 m^{3}-102 m^{2} \\
-307 m+16 n-40
\end{gathered}
$$

Case (ii) when $n=3$ in equation (7) $(n-3) 6 m$ and $(n-3)[2 m+4]$
are equal to zero as $E_{3,3}$ and $E_{m+2, m+2}$ has no edges

$$
H M_{2}\left(B_{m, n}\right)=9 m n(m+2)^{2}+2 m\left(m^{3}+m^{2}-15 m+16\right)+8
$$

Next second hyper Zagreb polynomial of $B_{m, n}$ is

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \&
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
& H M_{2}\left(B_{m, n}, x\right)=\sum_{u v \in E(G)} x^{[a . b]^{2}} \\
& =\sum_{E_{2,3}} x^{[a . b]^{2}}+\sum_{E_{2, m+1}} x^{[a . b]^{2}}+\sum_{E_{m+1, m+2}} x^{[a . b]^{2}}+\sum_{E_{3, m+2}} x^{[a . b]^{2}}+\sum_{E_{3,3}} x^{[a . b]^{2}}+\sum_{E_{m+2, m+2}} x^{[a . b]^{2}} \\
& \quad=2 m x^{[2 \times 3]^{2}}+2 \boldsymbol{m} x^{[2 \times(m+1)]^{2}}+2 x^{[(m+1) \times(m+2)]^{2}}+(m n-2 m) x^{[3 \times(m+2)]^{2}} \\
& \quad+(n-3) m x^{[3+3]^{2}}+(n-3) x^{[(m+2) \times(m+2)]^{2}}
\end{aligned}
$$

Case (i) $n>3$

$$
\begin{gathered}
\mathrm{HM}_{2}\left(\mathrm{~B}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)=2 \mathrm{mx} \mathrm{x}^{36}+2 \mathrm{mx}^{[2 \mathrm{~m}+2)]^{2}}+2 \mathrm{x}^{\left[\mathrm{m}^{2}+3 \mathrm{~m}+2\right]^{2}}+(\mathrm{mn}-2 \mathrm{~m}) \mathrm{x}^{[3 \mathrm{~m}+6]^{2}} \\
+\mathrm{m}(\mathrm{n}-3) \mathrm{x}^{36}+(\mathrm{n}-3) \mathrm{x}^{\left(\mathrm{m}^{2}+4 \mathrm{~m}+4\right)^{2}}
\end{gathered}
$$

Case (ii) when $n=3$ in equation (8), $(n-3) 6 m$ and $(n-3)[2 m+4]$ becomeszero as $E_{3,3}$ and $\mathrm{E}_{\mathrm{m}+2, \mathrm{~m}+2}$ has no edges, giving

$$
\mathrm{HM}_{2}\left(\mathrm{~B}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)=2 \mathrm{mx}^{36}+2 \mathrm{mx}^{[2 \mathrm{~m}+2)]^{2}}+2 \mathrm{x}^{\left[\mathrm{m}^{2}+3 \mathrm{~m}+2\right]^{2}}+(\mathrm{mn}-2 \mathrm{~m}) \mathrm{x}^{[3 \mathrm{~m}+6]^{2}}
$$

4 Results :

In the paper of Cangul et al [8] have given values for $\mathrm{M}_{1}, \mathrm{M}_{2}$ and we found the results for hyper Zagreb indices for star and path graph as given below :

Sl.no	Zagreab	$\mathbf{S}_{\mathbf{m}+\mathbf{1}}$	$\mathbf{P}_{\mathbf{n}}$
1	M_{1}	$\mathrm{~m}^{2}+\mathrm{m}$	$4 \mathrm{n}-6$
2	M_{2}	$\mathrm{~m}^{2}$	$4 \mathrm{n}-8$
3	HM_{1}	$\mathrm{~m}(\mathrm{~m}+1)^{2}$	$8(2 \mathrm{n}-3)$
4	HM_{2}	$\mathrm{~m}^{3}$	$16 \mathrm{n}-30$

International Journal of Engineering, Science and Mathematics
Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Expressing the results for product graphs in terms of their component graph parameters we observe that

1. ifm $\geq \mathbf{3}$ and $n>3$

$$
\begin{gathered}
M_{1}\left(B_{m, n}\right)=m(m n+13 n-14)+2(2 n-3) \\
=n\left(m^{2}+m\right)+(3 m+1)(4 n-6)+4 \\
=n_{1} M_{1}\left(S_{m+1}\right)+(3 m+1) M_{1}\left(P_{n}\right)+4 m \\
H M_{2}\left(B_{m, n}\right)=m n\left(m^{3}+9 m^{2}-12 m+168\right)-m\left(m^{3}-2 m^{2}-42 m+255\right)+ \\
+8(2 n-5) \\
=m^{3}[m n+9 n-m+2]+(10 m+1)(16 n-30)+8 n+35 \\
=[m n+9 n-m+2] \mathbf{H M}_{2}\left(S_{m+1}\right)+(10 m+1) H M_{2}\left(P_{n}\right)+8 n+35
\end{gathered}
$$

2. if $m \geq 3$ and $n=3$

$$
\begin{aligned}
& M_{1}\left(B_{m, n}\right)=m^{2} n+5 m(n+2)+6=n\left(m^{2}+m\right)+m(4 n-6)+16 m+6 \\
& =n M_{1}\left(S_{m+1}\right)+(m+1) M_{1}\left(P_{n}\right)+\mathbf{1 6 m} \\
& M_{2}\left(B_{m, n}\right)=(m+2)[3 m n+2]+2(5 m+2) \\
& =3 n m^{2}+\frac{3 m}{2}(4 n-8)+8(3 m+1) \\
& =3 n M_{2}\left(S_{m+1}\right)+\frac{3 m}{2} M_{2}\left(P_{n}\right)+8(3 m+1) \\
& H M_{1}\left(B_{m, n}\right)=m\left[(m+5)^{2} n+42\right]+18 \\
& =n m(m+1)^{2}+m(16 n-24)+8 m^{2} n+8 m n+66 m+18 \\
& =n H_{1}\left(S_{m+1}\right)+m H M_{1}\left(P_{n}\right)+8 m^{2} n+8 m n+66 m+18 \\
& 9 m n(m+2)^{2}+2 m\left(m^{3}+m^{2}-15 m+16\right)+8 \\
& H M_{2}\left(B_{m, n}\right)=9 m n(m+2)^{2}+2 m\left(m^{3}+m^{2}-15 m+16\right) \\
& =m^{3}[9 n+2 m+2]+(16 n-30)\left[\frac{9}{4} m\right](m+1)-\frac{144}{4} m^{2}+\frac{119}{4} m+8 \\
& =[9 n+2 m+2] \mathbf{H M}_{2}\left(S_{m+1}\right)+\left[\frac{9}{4} m\right](m+1) \mathbf{H M}_{2}\left(P_{n}\right) \\
& -\frac{144}{4} m^{2}+\frac{119}{4} m+8
\end{aligned}
$$

5 Conclusion:

Thus,from above results we can conclude the Zagreb indices of product graph $\boldsymbol{B}_{\boldsymbol{m} \boldsymbol{n}}$ with respective Zagreb indices of its factor graphs satisfy Vizing conjecture like results, where \boldsymbol{a} represents various Zagreb indices

International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 6, June 2020,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \&
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\alpha\left(B_{m, n}\right)=\alpha\left(\mathrm{S}_{\mathrm{m}+1} \times \mathrm{P}_{\mathrm{n}}\right) \geq\left|\mathrm{V}\left(P_{n}\right)\right| \alpha\left(\mathrm{S}_{\mathrm{m}+1}\right)+\left|\mathrm{V}\left(S_{m+1}\right)\right| \alpha\left(\mathrm{P}_{\mathrm{n}}\right)
$$

6 References:

1. AshrafiA.R., DošlićT., .HamzehA, The Zagreb coindices of graph operations, Discrete Applied Mathematics, Volume 158, Issue 15, 6 August 2010, Pages 15711578.
2. Das K.Ch. , Gutman I. , Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 52 (2004), pp. 103-112.
3. Das, K.C.; Xu, K.; Nam, J. On Zagreb indices of graphs. Front. Math. China 2015, 10, 567-582
4. HararyF., Graph Theory, Addison-Wesley, Reading MA (1969).
5. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535-538.
6. Khalifeha, M.H.; Yousefi-Azaria, H.; Ashrafi, A.R. The first and second Zagreb indices of some graph operations. Discret. Appl. Math. 2009, 157, 804-811.
7. Kulli V. R., Chaluvaraju B., Boregowda H. S, Some degree based connectivity indices of Kulli cycle windmill graph, South Asain J. Maths. 6(6) (2016) 263-268.
8. Togan, Muge\&Yurttas, Aysun\&Cangul, Ismail naci. (2016). All versions of Zagreb indices and coindices of subdivision graphs of certain graph types. 26. 227-236.
