ON COEFFICIENT ESTIMATES FOR NEW SUBCLASSES OF q-BIUNIVALENT FUNCTIONS

READ. S. A. QAHTAN*

HAMID SHAMSAN**
S. LATHA ***

Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore 570005, INDIA

	ABSTRACT
	In this paper, we introduce and investigate two new subclasses of the function class Σ of λ - q-bi-spirallike functions defined in the open unit disc. Furthermore, We
KEYWORDS:	find estimates on the coefficients $\left\|a_{2}\right\|,\left\|a_{3}\right\|$ and $\left\|a_{4}\right\|$ for functions in these new subclasses .
Univalent functions, Bi-univalent functions, q- λ-spirallike, Coefficients bounds.	

Author correspondence:

Read S. A. Qahtan
Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore 570005,

1. INTRODUCTION

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1}
\end{equation*}
$$

which are analytic in the open disc $E=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Let S denote the subclass of function in \mathcal{A} which are univalent in E and indeed normalized by $f(0)=f^{\prime}(0)-1=$ 0 . It is well known that every function $f \in S$ has an inverse f^{-1} defined by

$$
f^{-1}(f(z))=z(z \in E)
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega,\left(|\omega|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

A function $f \in \mathcal{A}$ is said to bi-univalent function in E if f and f^{-1} are together univalent functions in E. Let Σ denote the class of bi-univalent functions defined in E. The inverse function $f^{-1}(\omega)$ is given by

$$
\begin{equation*}
g(\omega)=f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{3}^{2}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\ldots . \tag{2}
\end{equation*}
$$

A function ϕ is subordinate to a function φ, written as follows: $\phi(z) \prec \varphi(z),(z \in E)$, if there exists $\omega(z)$ analytic function in E such that $\omega(0)=0$, and $\phi(z)=\varphi(\omega(z))$, $(|\omega(z)|<1, z \in E$.
Let $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$ denote the classes Ma-Minda bi-starlike and bi-convex in E respectively. In the sequel, it is assumed that ϕ is an analytic function with positive real part in E such that $\phi(0)=1, \phi^{\prime}(0)>0$ and $\phi(E)$ is symmetric with respect to the real axis. Such a function has a series expansion of the following from:

$$
\phi(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots,\left(c_{1}>0, z \in E\right)
$$

We recall here a general Hurwite-Lerch Zeta function $\psi(z, s, a)$ defined in [7] by is given by

$$
\psi(z, s, a)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} .
$$

Now we recall the definition of generalized Hurwitz-Lerch zeta function and a linear operator due to Ibrahim and Darus [10] as below:

$$
\begin{equation*}
\Theta_{n}(z, s, a)=\frac{\psi(z, s, a+n v)}{\psi(z, s, a)}, n \in N \cup\{0\} . \tag{3}
\end{equation*}
$$

it is clear that $\Theta_{0}(z, s, a)=1$. Further considering the function

$$
z Y_{\mu}(z, s, a)=z+\sum_{n=2}^{\infty} \frac{\mu_{n-1}}{(n-1)} \Theta_{n-1}(z, s, a) z^{n}
$$

Ibrahim and Darus [10] defined the linear operator $\left(\mathrm{Y}_{\mu}(z, s, a)\right)^{-1} * f(z)=I_{\mu}^{\delta}(z, s, a): \mathcal{A} \rightarrow \mathcal{A}$ and is given by

$$
I_{\mu}^{\delta}(z, s, a) f(z)=\mathscr{f}_{\mu}^{\delta} f(z)=z+\sum_{n=2}^{\infty} \Psi_{n} a_{n} z^{n}
$$

Where $_{n}=\frac{\delta_{n-1}}{\mu_{n-1} \Theta_{n-1}(z, s, a)}, \mu \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}, a \in \mathbb{C} \backslash\{-(m+v n)\}, v \in$ $\mathbb{C} \backslash\{0\}, n, m \in N \cup\{0\},|s|<1,|z|<1$, and $\Theta_{n}(z, s, a)$ is defined in (3) and evidently we have

$$
\begin{equation*}
\Psi_{2}=\frac{\delta_{1}}{\mu_{1} \Theta_{1}(z, s, a)} \operatorname{and} \Psi_{3}=\frac{\delta_{2}}{\mu_{2} \Theta_{2}(z, s, a)} . \tag{4}
\end{equation*}
$$

In this paper we introduce two new subclasses of bi-univalent function class Σ by making use of the operator $\mathscr{\mathscr { L }}_{\mu}^{\delta} f(z)$ and obtain estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Further Fekete-Szegö inequalities for the function class are determined. We now have the following definitions:
Definition 1.1. The function $f(z)$, given by (1), is said to be a member of $\lambda-S P_{\Sigma}^{\beta}$ the class of strongly λ-bi-spirallike functions of order $\beta,(|\lambda| \leq \pi / 2,0 \leq \beta<1)$, if each of the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \operatorname{and}\left|\arg \left(e^{i \lambda \frac{z f^{\prime}(z)}{f(z)}}\right)\right|<\beta / 2,(z \in E) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(e^{i \lambda \frac{\omega g^{\prime}(\omega)}{g(\omega)}}\right)\right|<\beta / 2,(\omega \in E) \tag{6}
\end{equation*}
$$

In [11], Jackson introduced and studied the concept of the q-derivative operator ∂_{q} as follows :

$$
\begin{equation*}
\partial_{q} f(z)=\frac{f(z)-f(q z)}{z(1-q)},\left(z \neq 0,0<q<1, \quad \partial_{q} f(0)=f^{\prime}(0)\right) . \tag{7}
\end{equation*}
$$

Equivalently(7), may be written as

$$
\begin{equation*}
\partial_{q} f(z)=1+\sum_{n=2}^{\infty} \quad[n]_{q} a_{n} z^{n-1}, z \neq 0, \tag{8}
\end{equation*}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q}$, note that as $q \rightarrow 1^{-},[n]_{q} \rightarrow n$.

Definition 1.2.Let $h(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n}$ be an univalent function in E such that $h(0)=$ $1, \mathfrak{R}(h(z))>0$. The function $f \in \Sigma$ given by (1) is said to be in the class $\mathscr{H}_{\Sigma}^{\mu, \delta}(\beta, \lambda, h, q)$, if it satisfies the following conditions:

$$
\begin{equation*}
e^{i \lambda} \frac{z \partial_{q}\left(\mathscr{L}_{\mu}^{\delta} f(z)\right)}{(1-\beta) z+\beta \mathscr{L}_{\mu}^{\delta} f(z)}<h(z) \cos \lambda+i \sin \lambda \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \lambda} \frac{z \partial_{q}\left(\mathscr{f}_{\mu}^{\delta} g(\omega)\right)}{(1-\beta) \omega+\lambda \mathscr{f}_{\mu}^{\delta} g(\omega)}<h(\omega) \cos \lambda+i \sin \lambda, \tag{10}
\end{equation*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1$, the function g is given by (2) and $z, \omega \in E$.

Definition 1.3. Let

$$
\begin{equation*}
h(z)=\frac{1-z}{2\left(\beta^{2}-[2]_{q} \beta\right) \Phi_{2}^{2}+2\left([3]_{q}-\beta\right) \Phi_{3}}, \tag{11}
\end{equation*}
$$

be an univalent function in E such that $h(0)=1, \mathfrak{R}(h(z))>0$. The function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{K}_{\Sigma}^{\mu, \delta}(\beta, \lambda, h, q)$, if it satisfies the following conditions:

$$
\begin{equation*}
e^{i \lambda} \frac{z \partial_{q}\left(\mathscr{L}_{\mu}^{\delta} f(z)\right)+z^{2} \partial_{q}^{2}\left(\mathscr{L}_{\mu}^{\delta} f(z)\right)}{(1-\beta) z+\beta z \partial_{q}\left(\mathscr{Z}_{\mu}^{\delta} f(z)\right)} \prec h(z) \cos \lambda+i \sin \lambda \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \lambda} \frac{\omega \partial_{q}\left(\mathscr{A}_{\mu}^{\delta} g(\omega)\right)+\omega^{2} \partial_{q}^{2}\left(\mathscr{L}_{\mu}^{\delta} g(\omega)\right)}{(1-\beta) \omega+\beta \omega \partial_{q}\left(\mathcal{L}_{\mu}^{f} g(\omega)\right)}<h(\omega) \cos \lambda+i \sin \lambda, \tag{13}
\end{equation*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1$, the function g is given by (2) and $z, \omega \in E$.

Remark 1.1.If the function $h(z)=\frac{1+A z}{1+B z}$ the class $\mathscr{U}_{\Sigma}^{\mu, \delta}(\lambda, \beta, h, q) \equiv \mathscr{U}_{\Sigma}^{\mu, \delta}(\lambda, \beta, A, B, q)$ and satisfies the following conditions:

$$
\begin{equation*}
e^{i \lambda} \frac{z \partial_{q}\left(\mathscr{L}_{\mu}^{\delta} f(z)\right)}{(1-\beta) z+\beta \mathscr{Z}_{\mu}^{\delta} f(z)}<\frac{1+A z}{1+B z} \cos \lambda+i \sin \lambda \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \lambda} \frac{\omega \partial_{q}\left(\mathscr{A}_{\mu}^{\delta} g(\omega)\right)}{(1-\beta) \omega+\beta \mathscr{A}_{\mu}^{\delta} g(\omega)}<\frac{1+A \omega}{1+B \omega} \cos \lambda+i \sin \lambda, \tag{15}
\end{equation*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1,-1 \leq B<A \leq 1$, the function g is given by (2) and $z, \omega \in E$.

Remark 1.2.If the function $h(z)=\frac{1+(1-2 \alpha) z}{1-z}$ the class $\mathscr{M}_{\Sigma}^{\mu, \delta}(\lambda, \beta, h, q) \equiv \mathscr{M}_{\Sigma}^{\mu, \delta}(\lambda, \beta, \alpha, q)$ and satisfies the following conditions:

$$
\begin{equation*}
\mathfrak{R}\left(e^{i \lambda} \frac{z \partial_{q}\left(\mathscr{\mathscr { L }}_{\mu}^{\delta} f(z)\right)}{(1-\beta) z+\beta \mathcal{f}_{\mu}^{\delta} f(z)}\right)>\alpha \cos \lambda \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{R}\left(e^{i \lambda} \frac{\omega \partial_{q}\left(\mathcal{f}_{\mu}^{\delta} g(\omega)\right)}{(1-\beta) \omega+\beta \mathcal{f}_{\mu}^{\delta} g(\omega)}\right)>\alpha \cos \lambda, \tag{17}
\end{equation*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1,-1 \leq \alpha<1$, the function g is given by (2) and $z, \omega \in E$.

If i taken $h(z)=\frac{1+A z}{1+B z}$ or $h(z)=\frac{1+(1-2 \alpha) z}{1-z}$, we state analogous subclasses of $\mathcal{K}_{\Sigma}^{\mu, \delta}(\lambda, \beta, h, q)$ as in above remark 1.1, and 1.2, of respectively.
We need this the following lemma:
Lemma 1.1. [18]Let $\phi(z)$ given by $\phi(z)=\sum_{n=1}^{\infty} B_{n} z^{n},(z \in E)$ be convex in E.
Suppose that $h(z)=\sum_{n=1}^{\infty} h_{n} z^{n}$, is holomorphic in E. If $h(z) \prec \phi(z),(z \in E)$ then $|h(z)| \leq\left|B_{l}\right|,(n \in N)$.

Lemma 1.2. [17]If $p \in \mathcal{P}$ then $\left|p_{k}\right| \leq 2,(k \in N)$ where \mathcal{P} is the family of all functions p analytic in E which $\mathfrak{R}(p(z))>0,(z \in E)$, where $p(z)=1+p_{1} z+p_{2} z^{2}+$ $p_{3} z^{3}+\ldots, z \in E$.

2 MAIN RESULTS

Theorem 2.1. Let $f \in \mathcal{A}$ given by (1) in the class $\mathscr{A}_{F}^{\mu, \delta}(\lambda, \beta, h, q)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \sqrt{\frac{\left|B_{1}\right| \cos \lambda}{\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+\left([3]_{q}-\beta\right) \Psi_{2}^{\prime}}}, \tag{18}\\
& \left|a_{3}\right| \leq \frac{\left|B_{1}\right| \cos \lambda}{\left([3]_{q}-\beta\right) \Psi_{3}}+\left(\frac{\left|B_{1}\right| \cos \lambda}{\left([2]_{q}-\beta\right) \Psi_{2}}\right)^{2}, \tag{19}
\end{align*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1$, and Ψ_{2}, Ψ_{3} are given by (4).

Proof. From (9) and (10) that

$$
\begin{align*}
& e^{i \lambda} \frac{z \partial_{q}\left(\mathcal{L}_{\mu}^{\delta} f(z)\right)}{(1-\beta) z+\beta \mathcal{f}_{\mu}^{\delta} f(z)}=P(z) \cos \lambda+i \sin \lambda \quad(z \in E), \tag{20}\\
& e^{i \lambda} \frac{\omega \partial_{q}\left(\mathcal{D}_{\mu}^{\delta} g(\omega)\right)}{(1-\beta) \omega+\beta \mathcal{f}_{\mu}^{s} g(\omega)}=q(\omega) \cos \lambda+i \sin \lambda \quad(\omega \in E), \tag{21}
\end{align*}
$$

where $p(z)<h(z),(z \in E)$ and $q(\omega)<h(\omega),(\omega \in E)$, are have the following forms:

$$
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots, z \in E
$$

$$
q(\omega)=1+q_{1}(\omega)+q_{2}(\omega)^{2}+q_{3}(\omega)^{3}+\ldots, \omega \in E .
$$

Now,

$$
\begin{equation*}
e^{i \lambda} \frac{z+[2]_{q} \Psi_{2} a_{2} z^{2}+[3]_{q} \Psi_{3} a_{3} z^{3}+\ldots}{z+\beta \Psi_{2} a_{2} z^{2}+\beta \Psi_{3} a_{3} z^{3}+\ldots}=P(z) \cos \lambda+i \sin \lambda(z \in E), \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \lambda} \frac{\omega+[2]_{q} \Psi_{2} a_{2} \omega^{2}+[3]_{q} \Psi_{3} a_{3} \omega^{3}+\ldots}{\omega+\beta \Psi_{2} a_{2} \omega^{2}+\beta \Psi_{3} a_{3} \omega^{3}+\ldots}=q(\omega) \cos \lambda+i \sin \lambda(\omega \in E), \tag{23}
\end{equation*}
$$

from (20) and (21), it follows that

$$
\begin{gather*}
e^{i \lambda}\left([2]_{q}-\beta\right) \Psi_{2} a_{2}=c_{1} \cos \lambda, \tag{24}\\
e^{i \lambda}\left\{\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2} a_{2}^{2}+\left([3]_{q}-\beta\right) \Psi_{3} a_{3}\right\}=c_{2} \cos \lambda, \tag{25}\\
-e^{i \lambda}\left([2]_{q}-\beta\right) \Psi_{2} a_{2}=q_{1} \cos \lambda, \tag{26}
\end{gather*}
$$

and

$$
\begin{equation*}
e^{i \lambda}\left\{\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2} a_{2}^{2}+\left([3]_{q}-\beta\right)\left(2 a_{2}^{2}-a_{3}\right) \Psi_{3}\right\}=q_{2} \cos \lambda \tag{27}
\end{equation*}
$$

From (24) and (26), we find that

$$
\begin{equation*}
c_{1}=-q_{1} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
2 e^{2 i \lambda}\left([2]_{q}-\beta\right)^{2} \Psi_{2}^{2} a_{2}^{2}=\left(c_{1}^{2}+q_{1}^{2}\right) \cos ^{2} \lambda, \tag{29}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(c_{1}^{2}+q_{1}^{2}\right) \cos ^{2} \lambda e^{-2 u}}{2\left([2]_{q}-\beta\right)^{2} \Psi_{2}^{2}} . \tag{30}
\end{equation*}
$$

Adding (25) and (27), we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(c_{2}+q_{2}\right) \cos \lambda e^{-i \lambda}}{2\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+\left([3]_{q}-\beta\right) \Psi_{2}} . \tag{31}
\end{equation*}
$$

By applying Lemma 1.1 and 1.2, for the coefficients c_{2} and q_{2}, we have $\left|c_{k}\right|=\frac{c^{k}(0)}{K} \leq$ $\left|B_{1}\right|,(k \in N),\left|q_{k}\right|=\frac{q^{k}(0)}{K} \leq\left|B_{1}\right|,(k \in N)$ and using these in (31), we get

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{\left(\left|c_{2}\right|+\left|q_{2}\right|\right) \cos \lambda}{2\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+\left([3]_{q}-\beta\right) \Psi_{2}} \leq \frac{\left|B_{1}\right| \cos \lambda}{2\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+\left([3]_{q}-\beta\right) \Psi_{2}} . \tag{32}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{\left|B_{1}\right| \cos \lambda}{\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+\left([3]_{q}-\beta\right) \Psi_{2}}} . \tag{33}
\end{equation*}
$$

From (25) and (27), we get

$$
\begin{equation*}
a_{3}-a_{2}^{2}=\frac{\left(c_{2}-q_{2}\right) \cos \lambda e^{-u}}{2\left([3]_{q}-\beta\right) \Psi_{3}} . \tag{34}
\end{equation*}
$$

Substituting value of a_{2}^{2} from (30) and (34), we get

$$
\begin{equation*}
a_{3}=\frac{\left(c_{2}-q_{2}\right) \cos \lambda e^{-i u}}{2\left([3]_{q}-\beta\right) \Psi_{3}}+\frac{\left(c_{1}^{2}+q_{1}^{2}\right) \cos ^{2} \lambda e^{-2 u}}{2\left([2]_{q}-\beta\right)^{2} \Psi_{2}^{2}} . \tag{35}
\end{equation*}
$$

Also applying Lemma 1.1 and 1.2 , for the coefficients c_{2} and q_{2}, we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|B_{1}\right| \cos \lambda}{\left([3]_{q}-\beta\right) \Psi_{3}}+\left(\frac{\left|B_{1}\right| \cos \lambda}{\left([2]_{q}-\beta\right) \Psi_{2}}\right)^{2} . \tag{36}
\end{equation*}
$$

As $q \rightarrow 1^{-}$in the above Theorem we get the following result proved by Janani [12].
Corollary 2.1.Let $f \in \mathcal{A}$ given by (1) in the class $\mathscr{H}_{\mathcal{Z}}^{\mu, \delta}(\lambda, \beta, h)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \sqrt{\frac{\left|B_{1}\right| \cos \lambda}{\left(\beta^{2}-2 \beta\right) \Psi_{2}^{2}+(3-\beta) \Psi_{2}}} \tag{37}\\
& \left|a_{3}\right| \leq \frac{\left|B_{1}\right| \cos \lambda}{(3-\beta) \Psi_{3}}+\left(\frac{\left|B_{1}\right| \cos \lambda}{(2-\beta) \Psi_{2}}\right)^{2} \tag{38}
\end{align*}
$$

As $q \rightarrow 1^{-}$and $h(z)=\frac{1+A z}{1+B z},(-1 \leq B<A \leq 1)$, we get the following result proved by Janani [12].

Corollary 2.2.Let $f \in \mathcal{A g i v e n}$ by (1) in the class $\mathscr{X}_{\Sigma}^{\mu, \delta}(\lambda, \beta, A, B), t$ hen

$$
\begin{gather*}
\left|a_{2}\right| \leq \sqrt{\frac{(A-B) \cos \lambda}{\left(\beta^{2}-2 \beta\right) \Psi_{2}^{2}+(3-\beta) \Psi_{2}}}, \tag{39}\\
\left|a_{3}\right| \leq \frac{(A-B) \cos \lambda}{(3-\beta) \Psi_{3}}+\left(\frac{(A-B) \cos \lambda}{(2-\beta) \Psi_{2}}\right)^{2}, \tag{40}
\end{gather*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1$ and Ψ_{2}, Ψ_{3} are given by (4).
As $q \rightarrow 1^{-}$and $h(z)=\frac{1+(1-2 \alpha) z}{1-z}$, we get the following result proved by Janani [12].

Corollary 2.3. Let $f \in \mathcal{A}$ given by (1) in the class $\mathscr{M}_{F}^{\mu, \delta}(\lambda, \beta, \alpha, q)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \sqrt{\frac{2(1-\alpha) \cos \lambda}{\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+\left([3]_{q}-\beta\right) \Psi_{2}}}, \tag{41}\\
& \left|a_{3}\right| \leq \frac{2(1-\alpha) \cos \lambda}{\left([3]_{q}-\beta\right) \Psi_{3}}+\left(\frac{2(1-\alpha) \cos \lambda}{\left([2]_{q}-\beta\right) \Psi_{2}}\right)^{2}, \tag{42}
\end{align*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1$, and Ψ_{2}, Ψ_{3} are given by (4)

Theorem 2.2.Let $f \in \mathcal{A}$ given by (1) in the class $\mathcal{K}_{F}^{\mu, \delta}(\lambda, \beta, h, q)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \sqrt{\left.\frac{\left|B_{1}\right| \cos ^{2} \lambda}{\left\{[2]_{q}^{2}\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+[3]_{q}\left([2]_{q}+1\right)-\beta\right) \Psi_{2}}\right\}^{\prime}} \tag{43}\\
& \left|a_{3}\right| \leq \frac{\left|B_{1}\right| \cos \lambda}{[3]_{q}\left(\left([2]_{q}+1\right)-\beta\right) \Psi_{3}}+\left(\frac{\left|B_{1}\right| \cos \lambda}{[2]_{q}\left([2]_{q}-\beta\right) \Psi_{2}}\right)^{2}, \tag{44}
\end{align*}
$$

where $\lambda \in(-\pi / 2, \pi / 2), 0 \leq \beta \leq 1$, and Ψ_{2}, Ψ_{3} are given by (4).

Proof. From (20) and (21), we get

$$
\begin{equation*}
e^{i \lambda} \frac{z+[2]_{q} \Psi_{2} a_{2} z^{2}+[3]_{q} \Psi_{3} a_{3} z^{3}+\ldots+[2]_{q} \Psi_{2} a_{2} z^{2}+[2]_{q}[3]_{q} \Psi_{3} a_{3} z^{3}+\ldots}{z+[2]_{q} \Psi_{2} a_{2} \beta z^{2}+[3]_{q} \Psi_{3} a_{3} \beta z^{3}+\ldots}=p(z) \cos \lambda+i \sin \lambda . \tag{45}
\end{equation*}
$$

Then

$$
\begin{gather*}
{[2]_{q} e^{i \lambda}(2-\beta) \Psi_{2} a_{2}=c_{1} \cos \lambda,} \tag{46}\\
e^{i \lambda}\left\{[2]_{q}^{2}\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2} a_{2}^{2}+[3]_{q}\left(\left([2]_{q}+1\right)-\beta\right) \Psi_{3} a_{3}\right\}=c_{2} \cos \lambda \tag{47}\\
-[2]_{q} e^{i \lambda}(2-\beta) \Psi_{2} a_{2}=q_{1} \cos \lambda \tag{48}
\end{gather*}
$$

and
$\left\{[2]_{q}^{2}\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2} a_{2}^{2}+[3]_{q}\left(\left([2]_{q}+1\right)-\beta\right)\left(2 a_{2}^{2}-a_{3}\right) \Psi_{3}\right\}=q_{2} \cos \lambda$.
From (46) and (48), we get

$$
\begin{gather*}
c_{1}=-q_{1}, \tag{50}\\
2[2]_{q}^{2} e^{2 u \lambda}(2-\beta)^{2} \Psi_{2}^{2} a_{2}=\left(c_{1}^{2}+q_{1}^{2}\right) \cos ^{2} \lambda \tag{51}\\
a_{2}^{2}=\frac{\left(c_{1}^{2}+q_{1}^{2}\right) \cos 2}{2[2]_{q}^{2}\left(2-\beta e^{2} \Psi_{2}^{2}\right.} . \tag{52}
\end{gather*}
$$

Adding (47) and (49), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(c_{2}+q_{2}\right) \cos ^{2} \lambda e^{-i l}}{\left.2\left\{[2]_{q}^{2}\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+[3]_{q}\left([2]_{q}+1\right)-\beta\right) \Psi_{2}\right\}^{\prime}}, \tag{53}
\end{equation*}
$$

applying Lemma 1.1 and 1.2 , for the coefficients c_{2} and q_{2}, we have

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{\left(\left|c_{2}\right|+\left|q_{2}\right| \cos ^{2} \lambda\right.}{2\left\{[2]_{q}^{2}\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+[3]_{q}\left(\left([2]_{q}+1\right)-\beta\right) \Psi_{2}\right\}} . \tag{54}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\left.\frac{\mid B_{1} \cos ^{2} \lambda e^{-u}}{\left\{[2]_{q}^{2}\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+[3]_{q}\left([2]_{q}+1\right)-\beta\right) \Psi_{2}}\right\}} . \tag{55}
\end{equation*}
$$

From (47) and (49)

$$
\begin{equation*}
a_{3}-a_{2}^{2}=\frac{\left(c_{2}-q_{2}\right) \cos ^{2} \lambda e^{-i a}}{[3]_{q}\left(\left([2]_{q}+1\right)-\beta\right) \Psi 3}, \tag{56}
\end{equation*}
$$

Substituting value of a_{2}^{2} from (52) and (56), we get

$$
\begin{equation*}
a_{3}=\frac{\left(c_{2}-q_{2}\right) \cos ^{2} \lambda e^{-i \lambda}}{\left.[3]_{q}\left([2]_{q}+1\right)-\beta\right) \Psi_{3}}+\frac{\left(c_{1}^{2}+q_{1}^{2} 2\right) \cos ^{2} \lambda e^{-2 u}}{2[2]_{q}^{2}(2-\beta)^{2} \Psi_{2}^{2}} . \tag{57}
\end{equation*}
$$

Also applying Lemma 1.1 and 1.2 , for the coefficients c_{2} and q_{2}, we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|B_{1}\right| \cos \lambda}{\left.[3]_{q}\left([2]_{q}+1\right)-\beta\right) \Psi_{3}}+\left(\frac{\left|B_{1}\right| \cos \lambda}{[2]_{q}(2-\beta) \Psi_{2}}\right)^{2} . \tag{58}
\end{equation*}
$$

As $q \rightarrow 1^{-}$in the above Theorem we get the following result proved by Janani [12].
Corollary 2.4.Let $f \in \mathcal{A}$ given by (1) in the class $\mathcal{K}_{\sum}^{\mu, \delta}(\lambda, \beta, h), t$ hen

$$
\begin{align*}
& \left|a_{2}\right| \leq \sqrt{\frac{\left|B_{1}\right| \cos \lambda}{4\left(\beta^{2}-2 \beta\right) \Psi_{2}+3(3-\beta) \Psi_{3}^{\prime}}} \tag{59}\\
& \left|a_{3}\right| \leq \frac{\left|B_{1}\right| \cos \lambda}{3(3-\beta) \Psi_{3}}+\left(\frac{\left|B_{1}\right| \cos \lambda}{2(2-\beta)^{2} \Psi_{2}^{2}}\right)^{2} . \tag{60}
\end{align*}
$$

Theorem 2.3.Let $f \in \mathcal{A}$ given by (1) in the class $\mathscr{N}_{\Sigma}^{\mu, \delta}(\lambda, \beta, \alpha, q)$, then

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}2 \cos \lambda B_{1}|h(\eta)|, & |h(\eta)|>\frac{1}{2\left([3]_{q}-\beta\right) \Psi_{3}}, \tag{61}\\ \frac{B_{1} \cos \lambda}{\left([3]_{q}-\beta\right) \Psi_{3}}, & |h(\eta)|<\frac{1}{2\left([3]_{q}-\beta\right) \Psi_{3}},\end{cases}
$$

where

$$
\begin{equation*}
h(\eta)=\frac{1-\eta}{2\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+2\left([3]_{q}-\beta\right) \Psi_{3}} . \tag{62}
\end{equation*}
$$

Proof. From (34), we have

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{\left(c_{2}-q_{2}\right) \cos \lambda e^{-u}}{2\left([3]_{q}-\lambda\right) \Psi_{3}} . \tag{63}
\end{equation*}
$$

We compensate for the value of $a-2^{2}$ given by (33) in (34), we get

$$
a_{3}-\eta a_{2}^{2}=e^{-i \lambda} \cos \lambda\left[\left(h(\eta)+\frac{1}{2\left([3]_{q}-\beta\right) \Psi_{3}}\right) c_{2}+\left(h(\eta)-\frac{1}{2\left([3]_{q}-\beta\right) \Psi_{3}}\right) q_{2}\right],
$$

where

$$
h(\eta)=\frac{1-\eta}{2\left(\beta^{2}-[2]_{q} \beta\right) \Psi_{2}^{2}+2\left([3]_{q}-\beta\right) \Psi_{3}} .
$$

As $q \rightarrow 1^{-}$in the above Theorem we get the following result proved by Janani [12].

Corollary 2.5.

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}2 \cos \lambda B_{1}|h(\eta)|, & |h(\eta)|>\frac{1}{2(3-\beta) \Psi_{3}} \tag{64}\\ \frac{B_{1} \cos \lambda}{(3-\beta) \Psi_{3}}, & |h(\eta)|<\frac{1}{2(3-\beta) \Psi_{3}}\end{cases}
$$

where

$$
\begin{equation*}
h(\eta)=\frac{1-\eta}{2\left(\beta^{2}-2 \beta\right) \Psi_{2}^{2}+2(3-) \Psi_{3}} . \tag{65}
\end{equation*}
$$

Theorem 2.4.Let the function f given by (1) in the class $\mathcal{K}_{\mathcal{L}}^{\alpha, \delta}(\lambda, \beta, \alpha, q), t$ hen

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}2 \cos \lambda B_{1}\left|h_{\beta}(\eta)\right|, & |h(\eta)|>\frac{1}{2[3]_{q}\left([3]_{q}-\beta\right) \Psi_{3}} \tag{66}\\ \frac{B_{1} \cos \lambda}{[3]_{q}\left([3]_{q}-\beta\right) \Psi_{3}}, & |h(\eta)|<\frac{1}{2[3]_{q}\left([3]_{q}-\beta\right) \Psi_{3}}\end{cases}
$$

where

$$
\begin{equation*}
h(\eta)=\frac{1-\eta}{2[2]_{q}^{2}\left(\lambda^{2}-[2]_{q} \lambda\right) \Psi_{2}^{2}+2[3]_{q}\left([3]_{q}-\lambda\right) \Psi_{3}} . \tag{67}
\end{equation*}
$$

As $q \rightarrow 1^{-}$in the above Theorem we get the following result proved by Janani [12].
Corollary 2.6.Let $f \in \mathcal{A}$ given by (1) in the class $\mathcal{K}_{\Sigma}^{\mu, \delta}(\beta, \lambda, \alpha), t$ hen

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}2 \cos \lambda B_{1}\left|h_{\beta}(\eta)\right|, & |h(\eta)|>\frac{1}{6(3-\beta) \Psi_{3}} \tag{68}\\ \frac{B_{1} \cos \beta}{3(3-\lambda) \Psi_{3}}, & |h(\eta)|<\frac{1}{6(3-\lambda) \Psi_{3}}\end{cases}
$$

where

$$
\begin{equation*}
h(\eta)=\frac{1-\eta}{8\left(\beta^{2}-2 \beta\right) \Psi_{2}^{2}+6(3-\beta) \Psi_{3}} . \tag{69}
\end{equation*}
$$

REFERENCES

[1] Aleksandar, I.,"The Riemann Zeta-Function: Theory and Applications, John-Wiley and Sons," Inc.,
New York, (1985).
[2] Barnes, E.W., "The theory of the double gamma function. Philosophical Transactions of the Roy," Soc.
of Lond. Series A, Containing Papers of a Math. or Phys., vol. 196, pp.265-387, (1901).
[3] Bin-Saad, M.G., "Hypergeometric seires assotiated with the Hurwitz-Lerch zeta function," Acta Math.
Univ. Comenianae,vol. 2, pp. 269-286, (2009).
[4] Brannan, D.A. and Taha, T.S., " On some classes of bi-univalent functions," Studia Univ. Babe $\hat{A}_{s} \mathrm{~s}$ -
Bolyai, Math.,vol. 31, pp. 70-77, (1986).
[5] Choi, J. andSrivastava, H.M., " Certain families of series associated with the HurwitzLerch zeta
function," Appl. Math. Comput.,vol. 170, pp. 399-409, (2005).
[6] Deniz, E.,"Certain subclasses of bi-univalent functions satisfying subordinate conditions," J. Classical
Anal., vol. 2, pp. 49-60, (2013).
[7] Erdelyi, A. Magnus, W.,Oberhettinger, F. and Tricomi, F.G., "Higher Transcendental Functions,"
McGraw-Hill, New York, Toronto and London (1953).
[8] Frasin, B.A. and Aouf, M.K.,"New subclasses of bi-univalent functions," Appl. Math.,vol. 46, pp.
1569-1573, (2011).
[9] Goyal, S.P. and Goswami S.," Estimate for initial maclaurian coefficients of biunivalent functions for a
class defined by fractional derivative," J. Egyptian Math. Soc.,vol. 20, pp. 179-182, (2012).
[10] Ibrahim, R.W. and Darus, M., "On operator by double zeta functions,"Tamkang J. Math.,vol. 42, pp.
163-174, (2011).
[11] Jackson, F.,"On q-functions and a certain difference operator," Trans. Royal Soc., Edinburgh,vol. 46,
pp. 253-281, (1909).
[12] Janani, T. and Murugusundaramoorthy, G., "Coefficient estimates of bi-univalent functions associated
with double zeta functions," International Journal of Pure and Appl. Math.,vol. 101, pp. 903-913, (2015).
[13]Libera, R.J., "Univalent α-spiral functions," Canad. J. Math. vol. 19, pp. 449-456, (1967).
[14] Ma,W.C. andMinda, D.," A unified treatment of some special classes of functions, in: Proceedings
of the Conference on Complex Analysis," Tianjin, pp. 157-169, (1992).
[16] Murugusundaramoorthy, G,."Subordination results for spirallike functions associated with Hurwitz-

Lerch zeta function," Integ. Trans., and Special Fns., vol. 23, pp. 97-103, (2012).
[16] Murugusundaramoorthy, G, and Janani, T., "Bi- starlike function of complex order associated with
double zeta functions," Afrika Matematika online June,(2014).
[17] Pommerenke, C.,"Univalent Functions. Vandenhoeck and Ruprecht,"Gottingen, (1975).
[18] Rogosinski, W.,"On the coefficients of subordinate functions," Proc. London Math. Soc.,vol. 48, pp. 48-82, (1943).
[19] Siregar, S. and Raman, S.,"Certain subclasses of analytic and bi-univalent functions involving double
zeta functions," Inter. J.Advan.Sc.,Eng.and Inform.Tech., vol. 2, pp. 16-18, (2012).
[20] Spacek, L.,"Prisp \breve{e} vek k teorii funkei prostych," \breve{C} apopis Pest. Math. Fys.,vol. 62, pp. 12-19, (1933).
[21] Srivastava, H.M., Mishra, A.K. andGochhayat, P.,"Certain subclasses of analytic and bi-univalent
functions," Appl. Math., vol. 23, pp. 1188-1192, (2010).

