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Abstract  
The Artificial Neural Network (ANN) Inverse Model (AIM) generates an output that is proportional to the voltage 

required at the input of the DC motor to produce the desired speed at the time intervals. It may not be easily obvious 
that precise control of speed translates to accurate control of the position. Thus for accurate position to be achieved, 

the profile of position should be incorporated in the equation governing the precise control of speed by simple 

integration; this is same for all DC motors. The input to the AIM is the DC motor position at four successive 

intervals. The plant model is identified first then; the controller is trained so that the plant output follows the 

reference model output. The concept is to bring down the tracking error to zero or minimal acceptable value. 

Simulation results show that using motor position as input ensures accurate position control which automatically 

brings about accurate speed tracking. 
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1.0 Introduction  

The advancements made in power electronics have 

made brushless DC motors quite popular in high-

performance control systems. Also low-time-constant 

properties have opened new applications for DC 

motors in computer peripheral equipment such as 

tape drives, printers, disk drives, and word 

processors, as well as in the automation and machine-

tool industries. 
 

Nonlinearities associated with the DC motor 

introduces error in the in the system, which must be 

compensated. Thus it is compulsory that an adaptive 

controller must be deployed in order to achieve this 

compensation (Pathak and Adhyaru, 2015). Artificial 

Neural Networks (ANN) is among the newest signal-

processing technologies in the engineer’s toolbox that 

can be used to achieve the compensation (Narendra 

and Parthasarathy, 1990).  An ANN is an adaptive, 

most often nonlinear system that learns to perform a 
function (an input/output map) from data. Being 

adaptive simply means that the system parameters are 

changed during operation, normally called the 

training phase. After the training phase the ANN 

parameters are fixed and the system is deployed to 

solve the problem at hand.  

The ANN is built with a systematic step-by-step 

approach to optimize a performance criterion or to 

follow some implicit internal constraint, which is 

commonly referred to as the learning rule. 

Accordingly, the input/output training data are 

fundamental in neural network technology, because 

they convey the necessary information to discover the 

optimal operating point (Principe, 2000). The 

nonlinear nature of the neural network processing 

elements (PEs) provides the system with lots of 

flexibility to achieve practically any desired 
input/output map, this means that some ANN are 

universal mappers (Beale, Hagan and Demuth, 2015). 

Adaptive techniques are best suited when the 

parameters to be controlled are unknown and 

nonlinear. The MRAC technique was deployed 

because it has better performance in control 

applications where precision is paramount. 

 

2.0 Theory  

Basically, the DC motor is a torque transducer that 

converts electric energy into mechanical energy. The 
torque developed on the motor shaft is directly 

proportional to the field flux and the armature 

current. Assume that a current-carrying conductor is 

established in a magnetic field with flux , and the 

conductor is located at a distance r from the center of 

rotation (Zhao and Yu, 2011).  
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The relationship among the developed torque, flux  

and current ia is given as: 

 

.   (1) 

Where; 

= the motor torque (in N-M) 

, =   the magnetic flux in (in Webers) 

 = the armature current (in Amperes) 

= a proportional constant 

 

In addition to the torque developed, when the 

conductor moves in the magnetic field, a voltage is 

generated across its terminals. This voltage is known 

as the back emf, which is proportional to the shaft 

velocity, and tends to oppose the current flow. The 

relationship between the back emf and the shaft 
velocity is: 

.   (2) 

Where; 

= the back emf (in volts) 

= the shaft velocity of the motor (in rad/sec) 

Equations 1 and 2 form the fundamentals of the DC-

motor operation. 

Generally, the magnetic field of a DC motor can be 

produced by field windings or permanent 

magnets (Brown, 2002). For the purpose of this 

work, focus is on PM DC motors in control system 

applications. PM DC motors can be classified 

according to commutation scheme and armature 

design. Conventional DC motors have mechanical 

brushes and commutators. However, an important 

type of DC motors in which the commutation is done 
electronically is called brushless DC. In accordance 

with the armature construction, the PM DC motor can 

be broken down into three types based on type of 

armature design: iron-core, surface-wound, and 

moving-coil motors. 

 

2.1 Artificial Neural Network Controller 

Model reference adaptive control (MRAC) is one of 

the neural network architectures for prediction and 

control implemented in Neural Network Toolbox 

software. The model reference architecture requires 

that a separate neural network controller be trained 

offline, in addition to the neural network plant model. 

The controller training is computationally expensive, 

because it requires the use of dynamic 

backpropagation. The MRAC architecture uses two 

neural networks: a controller network and a plant 

model network. The plant model is identified first, 

and then the controller is trained so that the plant 

output follows the reference model output (Beale, 
Hagan and Demuth, 2015) 

 

3.0 Mathematical Model of the PM DC motor 

DC motors are used extensively in control systems 

especially in industrial actuators so, it is paramount to 

establish mathematical model for analytical purposes 

for efficient control application of DC motors. The 

DC motor takes in single input in the form of an input 

voltage and generates a single output parameter in the 

form of output speed. It is a single-input, single-

output system (SISO). Fig 1 shows the electrical 
representation of a DC motor. 

 

Fig 1: Electrical Model of DC Motor (Kuo and 

Golnaraghi, 2002) 

The armature is modeled as a circuit with resistance 

Ra connected in series with an inductance La , and a 

voltage source eb representing the back electromotive 

force (emf) in the armature when the rotor rotates. 

Looking at the diagram of Fig 1, it can be seen that 

the control of the DC motor is applied at the armature 

terminals in the form of applied voltage ea (t). It can 

be deduced that the torque developed in the motor is 
proportional to the air-gap flux and the armature 

current. The equations that described the DC 

servomotor behavior are giving below (Kuo and 

Golnaraghi, 2002): 

Tm (t) = Km (t) ɸ ia (t)    (3) 

Since ɸ is constant, Equation 3 is in form 

Tm (t) = Ki ia (t)     

   

Ki ia (t) =      (4) 
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Where: 

=motor torque.  ia(t) = armature current.  TL (t) = 

load torque. = magnetic flux in the air gap.          

km = proportionality constant. Ki = torque constant in 

N-m/A.. = rotor angular velocity                                                                                                                                                                                                          

im = equivalent moment of inertia reflected at the 

motor shaft. Putting the control input voltage ea (t) 

into consideration, the cause and effect equations for 

the motor circuit in same Fig 1 are: 

.   (5) 

. (6) 

.(7) 

Where: 

la(t) = armature inductance  

Ra = armature resistance.  ea(t) = applied voltage 

= back emf. Kb  = back emf constant 

= rotor angular velocity. Bm  = viscous-friction 

coefficient. m (t)= rotor displacement                  

Jm=rotor inertia. From Equations 3 through 6, the 

applied voltage ea(t)  is considered as the cause and 

Equation 5 considers  the immediate effect 

due to the applied voltage. From Equation 3, 
armature current ia(t) causes the motor torque 

 , while in Equation 6 the back emf 

was defined. It can be seen also from 

Equation 7 that the motor torque produced causes the 

angular velocity and displacement m (t) 

of the rotor respectively. 

The state variables of the system can be define as;  

 Armature current = ia(t) 

 Rotor angular velocity =  

 Rotor angular displacement = m (t) 

It is possible to eliminate all the non-state variables 

from Equation 3 through 7 by direct substitution then 

present the DC state equation in vector-matrix form 

as follows: 

.    (8) 

Note that in the case of Equation 8, that TL(t) is 

handled as a second input to the state equations. The 

transfer function between the motor displacement and 

the input voltage is obtained as thus;  

            (9) 

Note that TL has been set to zero in Equation 9. Fig 2 

shows a block diagram of the DC motor system for 

speed control. From the diagram, it is clear how the 

transfer function is related to each block. It can be 

seen from Equation 9 that s can be factored out of the 
denominator and the significance of the transfer 

function    is that the DC motor is an 

integrating device between these two variables. 

Where  is the rotor angular displacement 

Laplace transfer function,  is the input voltage 

Laplace transfer function and Ωm(s) is the transform 

of angular velocity respectively. From Fig 2 also, it 

can be seen that the motor has a built-in feedback 

loop caused by the back emf (Eb). 

 
Fig 2: Block Diagram of DC Servomotor in Terms of 

Speed. 
 

The back-emf physically represents the feedback of a 

signal that is proportional to the negative of the speed 

of the motor. From Equation 9, it can be noted that 

back emf constant Kb represents an added term to the 

resistance Ra and the viscous-friction coefficient Bm . 
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Effectively, the back-emf effect is equivalent to an 

electric friction which tends to improve the stability 

of the motor and apparently the stability of the 

system. 

 

3.1. DC Motor Equivalent Circuit in Discrete 

Form 

 Recall that ANN is the modeling tool. Therefore, 
simulation can be performed on the control of Dc 

motor using ANN model so, there is need to 

construct an equivalent DC motor to a discrete time 

model. Effectively, the load torque is assumed as 

TL =    (10) 

Where = a constant 

It is obvious that from Equation (10) that load torque 

is always opposes the direction of motion. Note that 

the choice of load torque here is arbitral because 

considering load torque as one of the functions of a 

DC motor; it is a common characteristic for most 

propeller driven loads. Alternatively, direct 

substitution for position in equations (4), (5) and (10) 

i.e. rewriting the angular velocity , which 

is the speed in terms of angular displacement  

(position) as shown in Figure 3 can be deployed. 

 
Fig 3: Block Diagram of DC Servomotor in terms of 

Speed and Position. 

 

Then the equations yields; 

.              (11) 

                      (12) 

.               (13)   

Next is to estimate the derivatives of position and 

current in discrete form using a sampling interval of 

 and forward difference. 

.                (14) 

.        (15) 

          (16) 

.                      (17) 

.      (18) 

.       (19) 

Next is to evaluate the armature current  in terms 

angular displacement  which is the position here. 

Then substituting  in terms of   using 

Equations (11) into the following equation 

 from the work of 

Weerasooriya and El-Sharkawi (1991),   to determine 

the function governing the speed control of a DC 

motor, gives; 

 

. (20) 

Or 

(21) 
Integrating Equations (12), (13), (14), (15), (16) and 

(17) into Equation (19) then the input voltage in 

Equation (19) can be written as a function of; 

. 

. 

. 

. 

 (22) 
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Effectively, Equation (22) forms the relationship 

between the input voltage  and the motor position 

 at four successive sampling instances. Assume 

that the term  is replaced in Equation (22) 

with desired reference motor position at next instance 

as , and compute the control voltage (the 

input voltage)  with the following equation: 

  (23). 

So, if the computed voltage  at sampling 

instance k is applied, then the resulting motor 

position at instant  will be equal to:  

, i.e. the desired motor 

position, it effectively takes the following forms of 

input to the ANN; 

. = the reference position 

. = Position at first instance 

. = Position at second instance 

. Position at third instance 

 

4.0 Structure of the MRAC 

The adopted controller is the Artificial Neural 
Network (ANN) Controller. Here, the design of ANN 

incorporated a Feed Forward Neural Network 

(FFNN), which is made up of one input layer and one 

hidden layers with an output layer. The layers 

respectively consist of number of neurons. Each 

neuron has two functions as: 

 Summing up all the outputs from the 

previous layers multiplied by the 

corresponding weights 

 Performing the nonlinear sigmoidal or linear 

function on the sum 

During training, errors are back propagated and 

minimized using least mean square algorithm. The 

basis for weights connection between the input and 

hidden layers are based on the fact that errors in the 
output determine the measures of the hidden layer 

output errors. This adjustment of weights between the 

layers and recalculating the output in an iterative 

process is continued till the error falls below a 

tolerable level. 

4.1 Training the ANN Controller 

The feed-forward backpropagation undergoes 

supervised learning with a finite number of patterns 

consisting of an input pattern and a desired output 

pattern (Valluru, 1995). At the input layer, the input 

pattern is presented. Then, the input layer neurons 

pass the activations to the next layer neurons i.e. 

those in the hidden layer. The outputs of the hidden 

layer neurons are achieved by introducing a bias, and 
also a threshold function, with activations determined 

by the weights and the inputs (Zurada, 1992). The 

output from the hidden layer becomes the input to the 

output neurons, which processes the input using an 

optional bias and a threshold function. Then the final 

out of the network is determined by the activations 

from the output layer. 

The input and output of this network is guided by 

some basic equations, the net input of the jth neuron 

of the hidden layer at the time instant n is given as 

follows (Haykins, 1999): 

.              (24) 

Where  is the connecting weight between the ith 

neuron at the input layer and the jth neuron at the 

hidden layer. The  is the ith input, and N is the 

number of inputs. Then, the output from the jth neuron 

from the hidden layer at nth instant is given by: 
 

       (25) 

From Equation 25,  is the bias of the jth neuron 

and  is the activation function acting on each 

neuron at the hidden layer. The activation function 

can be tan sigmoidal, log sigmoidal or linear. The 

functions are described as follows (Beale, Hagan and 

Demuth, 2015): 

             (26) 

            (27) 

                         (28) 

In the above equations x represents the input to the 

activation function. It follows that the net input of the 

kth neuron of the output layer at time instant n is given 
by: 

    (29) 
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Where M is the number of neurons in the hidden 

layer and  is the weight between the jth 

neuron at the hidden layer and kth neuron at the output 
layer respectively. It therefore also followed that 

output from the kth neuron at the output layer at time 

instant n can be presented in the form: 

       (30) 

Where  = the activation function of the output 

layer and  

 = the bias of the kth  neuron at the output 

layer. It is also important to consider how the weight 

is updated at various levels during the network 

training. To do that, a basic equation that describes 

the updating of the weight through the error signal at 

the output of the neuron k  is given as follow:  

          (31) 

Where  represents the desired output for 

neuron k.  

5.0 ANN Model of DC Motor 

Before ANN can be used to control the operation of 

the DC motor, the DC motor being the plant must 

also be modeled using ANN. From Equation 23 

where  is a function of speed at successive 

time intervals k+1, k and k-1 for any required 

trajectory, what happens is that the ANN Inverse 

Model (AIM) generates an output that is proportional 

to the voltage required at the input of the DC motor 
to produce these speed at the time intervals. Here, the 

output-input mapping is many to one perhaps, 

disturbances and other uncertainties may lead to the 

input-output mapping to become one-to-many 

leading to degradation in the control performance. 

Though, the AIM relies on the accuracy of the model 

used for the controller design but, this work will not 

worry about the degradation. The block diagram of 

the speed based AIM is shown in Figure 4. 

ANN 
INVERSE 
MODEL

Motor Speed
Motor 

Voltage

 

Fig 4: Block Diagram of the AIM 

5.1 Structure of the AIM 

The AIM for this work comprised the inputs and a 

single output structure for the three successive speed 

instances. Based on Equation 23, the three inputs 

are ; Speed at first instance ; 

speed at second instance, ;speed at third 

instance and  the output is the Va(k) which is the 

motor terminal output voltage Vt(k) from Fig 5. 

                     
                                         

ωm(k)
Vt(k)

Target

The 
three 
inputs

ωm(k+1)

ωm(k-1)

 

Fig 5: The structure of AIM 

So based on the same Equation 23, the nonlinear 

function (f.) can be presented in the following form: 

  (32) 

The values of  

apparently form the independent inputs of the ANN 

and the corresponding output as well is generated 

from Equation 28. 

5.2 Evaluating the Performance of the AIM 

The generated  

inputs and the corresponding targets Va(k) are used 

for offline training of the AIM  to represent any DC 

servomotor with unknown parameters. From Figure 

6, it could be seen that the performance error is 

represented by ei(k). In evaluating the AIM 

performance, the value of [  for all kT that 

are elements of time from 0 to tf  is minimized, that is; 

              (33)  

Where T is the sampling period and tf is the time for 

which simulation is performed. The terminal voltage 

(estimated) is given by: 



International Journal of Engineering, Science and Mathematics 

Vol. 9 Issue 02, February 2020,  
ISSN: 2320-0294 Impact Factor: 6.765 
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com                             
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: 
Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A  

 

83 International Journal of Engineering, Science and Mathematics 
http://www.ijmra.us, Email: editorijmie@gmail.com 

 

t        (34) 

Once the DC motor is excited by an input signal, the 

output from the DC motor which is speed in this 

context is fed into the AIM as an input. The terminal 

voltage i.e. t(k-1) is compared with the actual motor 

output ei(k) for a common excitation signal. Then the 

mean square value of the error ei(k) between the 

actual motor input and the estimated output voltage 

yields the performance error of the AIM. 

5.3 Structure of the Position-based AIM 

From Equation 23, the input variables at four 
successive instances form the input to the ANN while 

the terminal VT(k) corresponds to the desired output 

of the controller, which is what is fed to the motor. 

To obtain the training sets, sequence of voltage 

signals capable of exciting the motor are applied and 

the motor position at successive sampling instants 

recorded then, the training set can be generated from 

those recorded input and output data. So, each 

training set is made up of the four successive motor 

positions and the applied voltage. The four 

successive instances are ; the reference 

position, ; Position at first instance, 

; Position at second instance, ; 

Position at third instance and the applied voltage  

Va(k). 

 

5.4. Performance Evaluation of the position-based 

AIM 

To evaluate the system performance for this position-

based AIM, the parameter that is most important to 

put into consideration is the modeling error. This 

error is recorded in the form of; 

              `` (35)  

Where T is the sampling period and tf is the time for 

which simulation is performed. The terminal voltage 

(estimated) is given by:  

t (k-1) = N[θm(k), θm(k-1), θm(k-2)]      (36) 

So, those randomly generated input variables at four 

successive instants and the corresponding output are 

the parameters that are used in offline training of the 

ANN. The block diagram for the performance 

evaluation of the AIM with position as input is shown 
in Figure 6. 

 

Fig 6: Performance Evaluation of the AIM with 

position as input 

The target value is the voltage at the instant k. Only 

one hidden layer is chosen as it was found to work 
well in order to arrive at the desired accuracy. In the 

simulation carried out, a sampling frequency of 0.01 

sec was used.  In order to test the performance of the 

AIM, the model was excited with the two different 

reference input voltage signals  and  as 

given in Eqs. (37 a) and (37b) respectively: 

  (37a) 

    (37b). 

Figure 7a illustrates the error between the AIM 

output and the reference voltage signal . 

.  

Fig 7a: Error Between The Reference Signal  

and Actual AIM Output. 

 
Figure 7b shows the error between the actual AIM 

output and reference signal . Both graphs of 

Figures 7a and 7b respectively show that the error is 

within ±0.2V which is within 1% variation from the 

input (reference) profile. 
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Fig 7b: Error Between The Reference Signal 

and Actual AIM Output. 

 

Conclusion  

The artificial inverse model (AIM) model of the DC 

motor was developed using the motor position as 

input to the controller at four successive instances. 
Result from performance evaluation test carried out 

showed that the error is within ±0.2V which is within 

1% variation from the input (reference) profile. Thus, 

previous researches show that using motor speed as 

inputs to the AIM brings about accuracy in speed 

control but not in position control. Perhaps, using 

positions as inputs ensures accurate position control 

which automatically translates into accurate speed 

control. 
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