# MINIMAL TOTAL UNIDOMINATING FUNCTIONS WITH MAXIMUM WEIGHT OF A PATH 

V.ANANTHA LAKSHMI ${ }^{1}$ * B.MAHESWARI ${ }^{2}$<br>${ }^{1}$ Lecturer, Department of Mathematics, P.R.Govt. College (A), Kakinada-533004, Andhra Pradesh, India<br>${ }^{2}$ Professor(Retd.), Department of Applied Mathematics, S.P.MahilaVisvavidyalayam(Women's University), Tirupati-517502, Andhra Pradesh, India


#### Abstract

The upper unidomination number of a path and the number of minimal unidominating functions of a path with maximum weight were found in [ 12 ]. The upper total unidomination number of a path was found in [ 13 ]. In this paper the number of minimal total unidominating functions of a path with maximum weight isfound.


## 1.INTRODUCTION

Graph Theory plays a vital role in several areas of computer science such as switching theory, logical design, artificial intelligence, formal languages, computer graphics, compiler writing, information organization retrieval etc.

In Graph Theory, one of the rapidly growing area of research is the theory of domination which was introduced by Berge [2] and Ore [7]. Total dominating sets were introduced by Cockayane, Dawes and Hedetniemi [3]. Some results on total domination can be seen in [1].

Domination and its properties have been extensively studied by T.W.Haynes et.al.in [8], [9]. Domination in graphs have applications to several fields such as School bus routing, Computer communication networks, Facility location problems, Locating radar stations problem etc.

Recently dominating functions in domination theory have received much attention. Hedetniemiet.al. [6] introduced the concept of dominating functions and the concept of total dominating functions, was introduced by Cockayne et.al. [4]. Properties of minimal
dominating functions are studied in [5]. The concept of total unidominating function was introduced by the authors in [10]. Minimal total unidominating functions and upper total unidomination number were introduced in [11]. The upper total unidominationnumber of a path was found in [13].

In this paper the minimal total unidominating functions and upper total unidomination number of a path are discussed and the number of minimal total unidominating functions with maximum weight is found and the results obtained are illustrated.

## 2.UPPER TOTAL UNIDOMINATION NUMBER OF A PATH

In this section the minimal total unidominating functions of a patharediscussed and also the number of minimal total unidominating functions withmaximum weight is found.

First the concepts of total unidominating function, minimal total unidominating functions and upper total unidomination number are defined as follows.

Definition 2.1: Let $G(V, E)$ be a connected graph. A function $f: V \rightarrow\{0,1\}$ is said to be a total unidominating function, if

$$
\begin{aligned}
& \sum_{u \in N(v)} f(u) \geq 1 \quad \forall v \in V \text { and } f(v)=1, \\
& \sum_{u \in N(v)} f(u)=1 \quad \forall v \in V \text { and } f(v)=0
\end{aligned}
$$

where $N(v)$ is the open neighbourhood of the vertex $v$.
Definition 2.2: Let $G(V, E)$ be a connected graph.A total unidominating function $f: V \rightarrow$ $\{0,1\}$ is called a minimal total unidominating function if for all $g<f, g$ is not a total unidominating function.

Definition 2.3: The upper total unidomination number of a connected graph $G(V, E)$ is defined asmax $\{f(V) / f$ is a minimal total unidominating function $\}$. It is denoted by $\Gamma_{t u}(G)$.

We need the following theorem published by the authors and the proof can be found in [13]

Theorem 2.1: The upper total unidomination number of a path $P_{n}$ is

$$
\Gamma_{t u}\left(P_{n}\right)= \begin{cases}2 & \text { if } n=2 \\ \left\lfloor\frac{5 n}{7}\right\rfloor & \text { if } n>2\end{cases}
$$

The number of minimal total unidominating functions with maximum weight is found in the following theorem.
Theorem 2.2: The number of minimal total unidominating functions of $P_{n}$ with maximum weight is

$$
\left\{\begin{array}{lr}
1 & \text { when } n \equiv 0(\bmod 7) \\
\left\lfloor\frac{n}{7}\right\rfloor\left\lceil\frac{n}{7}\right\rceil & \text { when } n \equiv 1(\bmod 7) \\
\left\lfloor\frac{2 n}{7}\right\rceil & \text { when } n \equiv 2(\bmod 7), n \neq 2 \\
1 & \text { when } n=2 \\
2 & \text { when } n \equiv 3(\bmod 7), \\
\frac{1}{2}\left\lceil\frac{n}{7}\right\rceil\left\lceil\frac{3 n}{7}\right\rceil+\frac{1}{6}\left\lceil\frac{n}{7}\right\rceil\left\lfloor\frac{n}{7}\right\rceil\left(\left\lfloor\frac{n}{7}\right\rfloor-1\right) & \text { when } n \equiv 4(\bmod 7) \\
\left\lceil\frac{n}{7}\right\rceil+\frac{1}{2}\left[\frac{n}{7}\right\rceil\left\lfloor\frac{n}{7}\right\rfloor+\left\lfloor\frac{n}{7}\right\rfloor & \text { when } n \equiv 5(\bmod 7) \\
\left\lceil\frac{n}{7}\right\rceil+1 & \text { when } n \equiv 6(\bmod 7)
\end{array}\right.
$$

Proof: Let $P_{n}$ be a path with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Now we find the number of minimal total unidominating functions with maximum weight in the following seven cases.

Case 1: Let $n \equiv 0(\bmod 7)$.
The minimal total unidominatingfunction $f$ defined in Case 1 of Theorem 2.1 is given by


```
0}1
```

The functional values of $f$ are $01111100111110---0111110$.

Take $a-0111110$. Then the functional values of $f$ are in the pattern of $a a a \ldots a$. These letters $a a a \ldots a$ can be arranged in one and only one way. Therefore there is only one minimal total unidominating function with maximum weight $\left\lfloor\frac{5 n}{7}\right\rfloor$.
Case 2: Let $n \equiv 1(\bmod 7)$.
The minimal total unidominating function $f$ defined in Case 2 of Theorem 2.1 is given by


The functional values of $f$ are $0111110 \ldots 011111001110011$.
Take $a-0111110, c-01110$. Then the functional values of $f$ are in the pattern of $a a a \ldots a c 011$. As there are $\frac{n-8}{7} a^{\prime}$ s and one $c$, these letters $a^{\prime} s$ and $c$ can be arranged $\operatorname{in} \frac{\left(\frac{n-1}{7}\right)!}{\left(\frac{n-8}{7}\right)!}=\frac{n-1}{7}$ ways. Therefore there are $\frac{n-1}{7}$ minimal total unidominating functions.

We further investigate some more minimal total unidominating functions of $P_{n}$ with maximum weight in the following way.

Define a function $f_{1}: V \rightarrow\{0,1\}$ by

$$
f_{1}\left(v_{i}\right)=\left\{\begin{array}{lr}
1 & \text { for } i \equiv 0,1,2,5,6(\bmod 7) i \neq n \\
0 & \text { for } i \equiv 3,4(\bmod 7)
\end{array}\right.
$$

$\operatorname{and} f_{1}\left(v_{n}\right)=0$.
As in Theorem 2.1 we can show that $f_{1}$ is a minimal total unidominating function. Also

$$
\begin{aligned}
\sum_{u \in V} f_{1}(u)= & \underbrace{1+1+0}+\underbrace{0+1+1+1+1+1+0}+\cdots+\underbrace{0+1+1+1+1+1+0} \\
& +\underbrace{0+1+1+1+0}=2+\frac{5(n-8)}{7}+3=\frac{5 n-5}{7}=\left\lfloor\frac{5 n}{7}\right\rfloor .
\end{aligned}
$$

This function is given by


The functional values of $f_{1}$ are $1100111110---011111001110$.
Take $a-0111110, b-011110, c-01110$.
Then the functional values of $f_{1}$ are in the pattern of 110aaa ... ac. In similar lines as above we can see that there are $\frac{n-1}{7}$ minimal total unidominating functions.

Define another function $f_{2}: V \rightarrow\{0,1\}$ by

$$
f_{2}\left(v_{i}\right)=f\left(v_{i}\right) \quad \text { for all } v_{i} \in V, i \neq n-7, n-9,
$$

$\operatorname{and} f_{2}\left(v_{n-7}\right)=1, f_{2}\left(v_{n-9}\right)=0, n \geq 15$.
We can see that this is a minimal total unidominating function.

$$
\begin{gathered}
\text { Now } \sum_{u \in V} f_{2}(u)=\underbrace{0+1+1+1+1+1+0}+\cdots+\underbrace{0+1+1+1+1+0}+ \\
\underbrace{0+1+1+1+1+0}+\underbrace{0+1+1}=\frac{5(n-15)}{7}+10=\left\lfloor\frac{5 n}{7}\right\rfloor .
\end{gathered}
$$

This function is given by


The functional values of $f_{2}$ are $01111110 \ldots 0111110011110011110011$.
Take $a-0111110$ and $b-011110$. Then $f_{2}$ is in the pattern of $a a a \ldots a b b 011$.These letters $a$ ' $s$ and $b$ ' $s$ can be arranged in $\frac{\left(\frac{n-1}{7}\right)!}{\left(\frac{n-15}{7}\right)!\cdot 2!}=\frac{\left(\frac{n-1}{7}\right)\left(\frac{n-8}{7}\right)}{2}$ ways.

Therefore there are $\frac{\left(\frac{n-1}{7}\right)\left(\frac{n-8}{7}\right)}{2}$ minimal total unidominating functions.
Define another function $f_{3}: V \rightarrow\{0,1\}$ by

$$
f_{3}\left(v_{i}\right)=f_{1}\left(v_{i}\right) \text { for all } v_{i} \in V, i \neq n-4, n-6
$$

And $f_{3}\left(v_{n-4}\right)=1, f_{3}\left(v_{n-6}\right)=0, n \geq 15$.
This is also a minimal total unidominating function.

$$
\begin{aligned}
\text { Now } \sum_{u \in V} f_{3}(u)= & \underbrace{1+1+0}+\underbrace{0+1+1+1+1+1+0}+\cdots \\
& +\underbrace{0+1+1+1+1+0}+\underbrace{0+1+1+1+1+0} \\
= & 2+\frac{5(n-15)}{7}+4+4=\left\lfloor\frac{5 n}{7}\right\rfloor .
\end{aligned}
$$

This function is given by


The functional values of $f_{3}$ are $1100111110 \ldots 0111110011110011110$.
Take $a-0111110$ and $b-011110$. Then $f_{3}$ is in the pattern of $110 a a a \ldots a b b$.
These letters $a^{\prime} s$ and $b^{\prime} s$ can be arranged in $\frac{\left(\frac{n-1}{7}\right)!}{\left(\frac{n-15}{7}\right)!.2!}=\frac{\left(\frac{n-1}{7}\right)\left(\frac{n-8}{7}\right)}{2}$ ways.
Therefore there are $\frac{\left(\frac{n-1}{7}\right)\left(\frac{n-8}{7}\right)}{2}$ minimal total unidominating functions.
Thus there are $\frac{n-1}{7}+\frac{n-1}{7}+\frac{\left(\frac{n-1}{7}\right)\left(\frac{n-8}{7}\right)}{2}+\frac{\left(\frac{n-1}{7}\right)\left(\frac{n-8}{7}\right)}{2}=\left\lfloor\frac{n}{7}\right\rfloor \cdot\left[\frac{n}{7}\right\rceil$ minimal total unidominating functions with maximum weight $\left\lfloor\frac{5 n}{7}\right\rfloor$.

Case 3: Let $n \equiv 2(\bmod 7)$.
The minimal total unidominating function $f$ defined in Case 3 of Theorem 2.1 is given by


The functional values of $f$ are $0111110 \ldots 0111110011110011$.
Take $a-0111110, b-011110$. Then $f$ is in the pattern of $a a a \ldots a b 011$. These letters $a a a \ldots a b$ can be arranged in $\frac{n-9}{7}+1=\frac{n-2}{7}$ ways.

Therefore there are $\frac{n-2}{7}$ minimal total unidominating functions.

Now as per the discussion in Case 2 we obtain some other minimal total unidominating functions.

Define a function $f_{1}: V \rightarrow\{0,1\}$ by

$$
f_{1}\left(v_{i}\right)=\left\{\begin{array}{lr}
1 & \text { for } i \equiv 0,1,2,5,6(\bmod 7) i \neq n \\
0 & \text { otherwise } .
\end{array}\right.
$$

On similar lines as in Theorem 2.1 we can show that $f_{1}$ is a minimal total unidominating function.

$$
\begin{aligned}
& \text { Now } \sum_{u \in V} f_{1}(u)=\underbrace{1+1+0}+\underbrace{0+1+1+1+1+1+0}+\cdots+ \\
& \underbrace{0+1+1+1+1+1+0}_{=\left\lfloor\frac{5 n}{7}\right\rfloor}+\underbrace{0+1+1+1+1+0}=2+\frac{5(n-9)}{7}+4=\frac{5 n-3}{7}
\end{aligned}
$$

This function $f_{1}$ is given by


That is the functional values of $f_{1}$ are $1100111110 \ldots 0111110011110$.
That is $f_{1}$ is in the pattern of $110 a a \ldots a b$.
Therefore there are $\frac{n-2}{7}$ minimal total unidominating functions.
Therefore there are $\frac{n-2}{7}+\frac{n-2}{7}=\frac{2 n-4}{7}=\left\lfloor\frac{2 n}{7}\right\rfloor$ minimal total unidominating functions with maximum weight $\left\lfloor\frac{5 n}{7}\right\rfloor$.

Case 4: Let $n \equiv 3(\bmod 7)$.
A minimal total unidominating function $f$ defined in Case 4 of Theorem 2.1 is given by


The functional values of $f$ are $0111110 \ldots 01111100111110011$.
Take $a-0111110$. Then $f$ is in the pattern of $a a a \ldots a a 011$. These letters can be arranged in only one way so that there is only one minimal total unidominating function.

Define another function $f_{1}: V \rightarrow\{0,1\}$ by

$$
f_{1}\left(v_{i}\right)=\left\{\begin{array}{lr}
1 & \text { for } i \equiv 0,1,2,5,6(\bmod 7) \\
0 & \text { otherwise } .
\end{array}\right.
$$

As above we can show that $f_{1}$ is a minimal total unidominating function.
Now $\sum_{u \in V} f_{1}(u)=\underbrace{1+1+0}+\underbrace{0+1+1+1+1+1+0}+\cdots+$

$$
\begin{aligned}
\underbrace{0+1+1+1+1+1+0}+\underbrace{0+1+1+1+1+1+0} & =2+\frac{5(n-3)}{7}=\frac{5 n-1}{7} \\
& =\left\lfloor\frac{5 n}{7}\right\rfloor
\end{aligned}
$$

This function is given by


The functional values of $f_{1}$ are $1100111110 \ldots 01111100111110$.
Take $a-0111110$. Then the functional values of $f_{1}$ are in the pattern of $110 a a \ldots a a$. These letters $a a a \ldots a a$ can be arranged in only one way.

Therefore there existsonly one function.
Thus there are only two minimal total unidominating functions with maximum weight $\left\lfloor\frac{5 n}{7}\right\rfloor$.
Case 5: Let $n \equiv 4(\bmod 7)$.
A minimal total unidominating function $f$ defined in Case 5 of Theorem 2.1 is given by


The functional values of $f$ are $0111110---011111001111100110$.

Take $a-0111110, d-0110$. Then $f$ is in the pattern of $a a a \ldots a d$. These letters aaa $\ldots a d$ can be arranged in $\frac{n-4}{7}+1=\frac{n+3}{7}$ ways.

Therefore there are $\frac{n+3}{7}$ minimal total unidominating functions.
As in Case 4 now we define another function $f_{1}: V \rightarrow\{0,1\}$ by

$$
f_{1}\left(v_{i}\right)=f\left(v_{i}\right), i \neq n-3, n-5,
$$

and $f_{1}\left(v_{n-3}\right)=1, f_{1}\left(v_{n-5}\right)=0, n \geq 11$.
We can see that $f_{1}$ is a minimal total unidominating function.
Also

$$
\begin{aligned}
\sum_{u \in V} f_{1}(u)= & \underbrace{0+1+1+1+1+1+0}+\cdots+\underbrace{0+1+1+1+1+0}+ \\
& \underbrace{0+1+1+1+0}=\frac{5(n-11)}{7}+4+3=\frac{5 n-6}{7}=\left\lfloor\frac{5 n}{7}\right\rfloor .
\end{aligned}
$$

This function is given by


The functional values of $f_{1}$ are $0111110 \ldots 011111001111001110$.

Take $a-0111110, b-011110, c-01110, d-0110$. Then $f_{1}$ is in the pattern of $a a \ldots a b c$. These $\frac{n+3}{7}$ letters $a$ 's, $b$ 's and $c$ 's can be arranged in $\frac{\left(\frac{n+3}{7}\right)!}{\left(\frac{n-11}{7}\right)!1!1!1!}=\left(\frac{n+3}{7}\right)\left(\frac{n-4}{7}\right)$ ways.

Therefore there are $\left(\frac{n+3}{7}\right)\left(\frac{n-4}{7}\right)$ minimal total unidominating functions.
Define another function $f_{2}: V \rightarrow\{0,1\}$ by

$$
f_{2}\left(v_{i}\right)=\left\{\begin{array}{lr}
1 & \text { for } i \equiv 0,1,2,5,6(\bmod 7), i \neq n-3, i \neq n-2, \\
0 & \text { for } i \equiv 3,4(\bmod 7), i \neq n-1, i \neq n
\end{array}\right.
$$

$\operatorname{and} f_{2}\left(v_{n-3}\right)=0, f_{2}\left(v_{n-2}\right)=0, f_{2}\left(v_{n-1}\right)=1, f_{2}\left(v_{n}\right)=1, n \geq 11$.
We can see that this is a minimal total unidominating function.
Also

$$
\begin{aligned}
& \sum_{u \in V} f_{2}(u)=\underbrace{1+1+0}+\underbrace{0+1+1+1+1+1+0}+\cdots+ \\
& \underbrace{}_{=\frac{5 n-6}{7}=\left\lfloor\frac{5 n}{7}\right\rfloor .} \quad .
\end{aligned}
$$

The function $f_{2}$ is given by


The functional values of $f_{2}$ are $1100111110 \ldots 011111001110011$.
Take $a-0111110, c-01110$. Then $f_{2}$ is in the pattern of 110aa ... ac011.
These $\frac{n-11}{7}$ a's and one $c$ can be arranged in $\frac{n-4}{7}$ ways.
Therefore there are $\frac{n-4}{7}$ minimal total unidominating functions.
Define another function $f_{3}: V \rightarrow\{0,1\}$ by $f_{3}\left(v_{i}\right)=f_{2}\left(v_{i}\right), i \neq n-7, n-9$
and $f_{3}\left(v_{n-7}\right)=1, f_{3}\left(v_{n-9}\right)=0, n \geq 18$.
We can see that this is also a minimal total unidominating function.
Now

$$
\begin{aligned}
\sum_{u \in V} f_{3}(u)= & \underbrace{1+1+0}+\underbrace{0+1+1+1+1+1+0}+\cdots+ \\
& \underbrace{0+1+1+1+1+0}+\underbrace{0+1+1+1+1+0}+\underbrace{0+1+1} \\
= & 2+\left(\frac{5(n-18)}{7}\right)+4+4+2=\frac{5 n-6}{7}=\left\lfloor\frac{5 n}{7}\right\rfloor .
\end{aligned}
$$

This function is given by


The functional values of $f_{3}$ are $1100111110 \ldots 011110011110011$.
Take $a-0111110, b-011110$. Then $f_{3}$ is in the pattern of 110aa $\ldots a b b 011$. These $\frac{n-18}{7}$ a's and two b's can be arranged in $\frac{\left(\frac{n-4}{7}\right)!}{\left(\frac{n-18}{7}\right)!.2!}=\frac{\left(\frac{n-4}{7}\right) \cdot\left(\frac{n-11}{7}\right)}{2}$ ways.

Therefore there are $\frac{\left(\frac{n-4}{7}\right) \cdot\left(\frac{n-11}{7}\right)}{2}$ minimal total unidominating functions.
Define another function $f_{4}: V \rightarrow\{0,1\}$ by

$$
f_{4}\left(v_{i}\right)=f_{1}\left(v_{i}\right), i \neq n-12, n-10, n-6, n-4
$$

$$
\operatorname{and} f_{4}\left(v_{n-12}\right)=0, f_{4}\left(v_{n-10}\right)=1, f_{4}\left(v_{n-6}\right)=0, f_{4}\left(v_{n-4}\right)=1, n \geq 18
$$

We can see that this is also a minimal total unidominating function.

$$
\text { Now } \begin{aligned}
\sum_{u \in V} f_{4}(u) & =\underbrace{0+1+1+1+1+1+0}+\cdots+\underbrace{0+1+1+1+1+0} \\
& +\underbrace{0+1+1+1+1+0}+\underbrace{0+1+1+1+1+0} \\
& =\frac{5(n-18)}{7}+4+4+4=\frac{5 n-6}{7}=\left\lfloor\frac{5 n}{7}\right\rfloor .
\end{aligned}
$$

This function is given by


The functional values of $f_{4}$ are $01111110 \ldots 0111110011110011110011110$.
Take $a-0111110, b-011110$. Then $f_{4}$ is in the pattern of $a a \ldots a b b b$. These $\frac{n-18}{7} a^{\prime} s$ and three b's can be arranged in $\frac{\left(\frac{n+3}{7}\right)!}{\left(\frac{n-18}{7}\right)!3!}=\frac{\left(\frac{n+3}{7}\right)\left(\frac{n-4}{7}\right)\left(\frac{n-11}{7}\right)}{3!}$ ways.

Therefore there are $\frac{\left(\frac{n+3}{7}\right)\left(\frac{n-4}{7}\right)\left(\frac{n-11}{7}\right)}{3!}$ minimal total unidominating functions.

Thus there are $\frac{n+3}{7}+\left(\frac{n+3}{7}\right)\left(\frac{n-4}{7}\right)+\frac{n-4}{7}+\frac{1}{2}\left(\frac{n-4}{7}\right)\left(\frac{n-11}{7}\right)+\frac{\left(\frac{n+3}{7}\right)\left(\frac{n-4}{7}\right)\left(\frac{n-11}{7}\right)}{3!}$

$$
=\frac{1}{2}\left\lceil\frac{n}{7}\right\rceil\left\lceil\frac{3 n}{7}\right\rceil+\frac{1}{6}\left\lceil\frac{n}{7}\right\rceil\left\lfloor\frac{n}{7}\right\rfloor\left(\left\lfloor\frac{n}{7}\right\rfloor-1\right) \text { minimal total unidominating functions with }
$$

maximum weight $\left\lfloor\frac{5 n}{7}\right\rfloor$.
Case 6: Let $n \equiv 5(\bmod 7)$.
A minimal total unidominating function $f$ defined as in Case 6 of Theorem 2.1 is given by


The functional values of $f$ are $0111110 \ldots 011111001110$.
Take $a-0111110, c-01110$. Then $f$ is in the pattern of $a a a \ldots a c$. These $\frac{n-5}{7} a^{\prime}$ s and one $b$ can be arranged in $\frac{n+2}{7}$ ways.

Therefore there are $\frac{n+2}{7}$ minimal total unidominating functions.
Define another function $f_{1}$ by

$$
f_{1}\left(v_{i}\right)=f\left(v_{i}\right) \text { for all } v_{i} \in V, i \neq n-4, n-6
$$

$\operatorname{and} f_{1}\left(v_{n-4}\right)=1, f_{1}\left(v_{n-6}\right)=0, n \geq 12$.
We can see that this is a minimal total unidominating function and $f_{1}(V)=\left\lfloor\frac{5 n}{7}\right\rfloor$.
This function is given by


The functional values of $f_{1}$ are $0111110 \ldots 011110011110$.

Take $a-0111110, b-011110$. Then $f_{1}$ is in the pattern of $a a a \ldots a b b$. Now there are $\frac{\left(\frac{n+2}{7}\right)!}{\left(\frac{n-12}{7}\right)!.2!}=\frac{\left(\frac{n+2}{7}\right)\left(\frac{n-5}{7}\right)}{2}$ minimal total unidominating functions.

Another function $f_{2}: V \rightarrow\{0,1\}$ is defined by

$$
f_{2}\left(v_{i}\right)=\left\{\begin{array}{lr}
1 & i \equiv 0,1,2,5,6(\bmod 7) i \neq n-3 \\
0 & i \equiv 3,4(\bmod 7) i \neq n-1
\end{array}\right.
$$

and $f_{2}\left(v_{n-3}\right)=0, f_{2}\left(v_{n-1}\right)=1$.
We can see that $f_{2}$ is a minimal total unidominating function and $f_{2}(V)=\left\lfloor\frac{5 n}{7}\right\rfloor$.
This function is given by


The functional values of $f_{2}$ are $1100111110 \ldots 0111110011110011$.
Take $a-0111110, b-011110$. Then $f_{2}$ is in the pattern of $110 a a a \ldots a b 011$.
These $\frac{n-12}{7}+1=\frac{n-5}{7}$ letters can be arranged in $\frac{n-5}{7}$ ways.
Therefore there are $\frac{n-5}{7}$ minimal total unidominating functions.
Hence there are $\frac{n+2}{7}+\frac{1}{2}\left(\frac{n+2}{7}\right)\left(\frac{n-5}{7}\right)+\frac{n-5}{7}=\left\lceil\frac{n}{7}\right\rceil+\frac{1}{2}\left\lceil\frac{n}{7}\right\rceil\left\lfloor\frac{n}{7}\right\rfloor+\left\lfloor\frac{n}{7}\right\rfloor$ minimal total unidominating functions with maximum weight $\left\lfloor\frac{5 n}{7}\right\rfloor$.

Case 7: Let $n \equiv 6(\bmod 7)$.
A minimal total unidominating function $f$ defined as in Case 7 of Theorem 2.1 is given by


The functional values of $f$ are 0111110 ... 0111110011110 .

Take $a-0111110, b=011110$.Then the function $f$ is in the pattern of $a a a \ldots a b$. As there are $\frac{n-6}{7} a^{\prime} s$ and one b , there exist $\frac{n-6}{7}+1=\frac{n+1}{7}$ minimal total unidominating functions.

Therefore the number of minimal total unidominating functions in the pattern of $f$ are $\frac{n+1}{7}$.
Define another function $f_{1}: V \rightarrow\{0,1\}$ by

$$
f_{1}\left(v_{i}\right)=\left\{\begin{array}{lr}
1 & \text { for } i \equiv 0,1,2,5,6(\bmod 7) \\
0 & \text { otherwise }
\end{array}\right.
$$

We can easily verify that $f_{1}$ is a minimal total unidominating function.


The functional values of $f_{1}$ are $1100111110 \ldots 0111110011$.
Take $a-0111110$. Then $f_{1}$ is in the pattern of 110aaa ... a011.
This is the only one function in this pattern.
Therefore there are $\frac{n+1}{7}+1=\left\lceil\frac{n}{7}\right\rceil+1$ minimal total unidominating functions with maximum weight $\left\lfloor\frac{5 n}{7}\right\rfloor$.

## 3. ILLUSTRATIONS

Example 3.1: Let $n=42$.
We know that $42 \equiv 0(\bmod 7)$.
The functional values of a minimal total unidominating function $f$ defined as in
Case 1 of Theorem 2.1 for $P_{42}$ are given at the corresponding vertices.

Upper total unidomination number $=\left\lfloor\frac{5 \times 42}{7}\right\rfloor=30$.
There is only one minimal total unidominating function for $P_{42}$ with maximum weight.

Example 3.2: Let $n=29$.
We know that $29 \equiv 1(\bmod 7)$.
The functional values of minimal total unidominating functions $f$ defined as in
Case 2 of Theorem 2.1 and $f_{1}, f_{2}, f_{3}$ defined as in Case 2 of Theorem 2.2for $P_{29}$ are given at the corresponding vertices.


Upper total unidomination number ofP ${ }_{29}$ is $\left\lfloor\frac{5 \times 29}{7}\right\rfloor=20$.
There are $\left\lfloor\frac{n}{7}\right\rfloor\left[\frac{n}{7}\right\rceil=\left\lfloor\frac{29}{7}\right\rfloor\left\lceil\frac{29}{7}\right\rceil=4 \times 5=20$ minimal total unidominating functions with maximum weight.

Example 3.3: .Let $n=30$.
We know that $30 \equiv 2(\bmod 7)$.
The functional values of minimal total unidominating functions $f$ defined as in
Case 3 of Theorem 2.1 and $f_{1}$ defined as in Case 3 of Theorem 2.2 for $P_{30}$ are given at the corresponding vertices.



Upper total unidomination number of $P_{30}$ is $\left[\frac{5 \times 30}{7}\right]=21$.
There are $\left\lfloor\frac{2 n}{7}\right\rfloor=\left\lfloor\frac{2 \times 30}{7}\right\rfloor=8$ minimal total unidominating functions with maximum weight.

Example 3.4: Let $n=24$.
We know that $24 \equiv 3(\bmod 7)$.
The functional values of a minimal total unidominating functions $f$ defined as in
Case 4 of Theorem 2.1 and $f_{1}$ defined as in Case 4 of Theorem 2.2for $P_{24}$ are given at the corresponding vertices.


Upper total unidomination number of $P_{24}$ is $\left\lfloor\frac{5 \times 24}{7}\right\rfloor=\left[\frac{120}{7}\right\rfloor=17$.
There are two minimal total unidominating functions with maximum weight.
Example 3.5:Let $n=25$.
We know that $25 \equiv 4(\bmod 7)$.
The functional values of minimal total unidominating function $f$ defined as in
Case 5 of Theorem 2.1 and $f_{1}, f_{2}, f_{3}, f_{4}$ defined as in Case 5 of Theorem 2.2 for $P_{25}$ are given at the corresponding vertices.



Upper total unidomination number is $\left\lfloor\frac{5 \times 25}{7}\right\rfloor=17$.
There $\operatorname{are} \frac{1}{2}\left[\frac{n}{7}\right\rceil\left\lceil\frac{3 n}{7}\right\rceil+\frac{1}{6}\left\lceil\frac{n}{7}\right\rceil\left\lfloor\frac{n}{7}\right\rceil\left(\left\lfloor\frac{n}{7}\right\rfloor-1\right)=26$ minimal total unidominating functions with maximum weight.

Example 3.6:Let $n=33$.
We know that $33 \equiv 5(\bmod 7)$.
The functional values of minimal total unidominating functions $f$ defined as in
Case 6 of Theorem 2.1 and $f_{1}, f_{2}$ defined as in Case 6 of Theorem 2.2 for $P_{33}$ are given at the corresponding vertices.



Upper total unidomination number is $\left\lfloor\frac{5 \times 33}{7}\right\rfloor=\left\lfloor\frac{165}{7}\right\rfloor=23$.

There are $\left\lceil\frac{33}{7}\right\rceil+\frac{1}{2}\left\lceil\frac{33}{7}\right\rceil\left[\frac{33}{7}\right\rfloor+\left\lfloor\frac{33}{7}\right\rfloor=5+10+4=19$ minimal total unidominating functions with maximum weight.

Example 3.7: Let $n=27$.
We know that $27 \equiv 6(\bmod 7)$.
The functional values of minimal total unidominating functions $f$ defined as in
Case 7 of Theorem 2.1 and $f_{1}$ defined as in Case 7 of Theorem 2.2 for $P_{27}$ are given at the corresponding vertices.


Upper total unidomination number is $\left\lfloor\frac{5 \times 27}{7}\right\rfloor=19$.
There are $\left\lceil\frac{27}{7}\right\rceil+1=5$ minimal totalunidominating functions with maximum weight.

## 4. REFERENCES

1. Allan, R.B.Laskar, R.C.Hedetniemi, S.T. A note on total domination, Discrete Math. 49(1984), 7 - 13.
2. Berge, C., The Theory of Graphs and its Applications, Methuen, London (1962).
3. Cockayne, C.J.Dawes, R.M.Hedetniemi, S.T. - Total domination in graphs, Networks, 10 (1980), 211 - 219.
4. Cockayne, E.J.Mynhardt, C.M.Yu, B., Total dominating functions in trees: Minimality and Convexity, Journal of Graph Theory, 19(1995), 83-92.
5. Cockayne, E.J.Fricke, G.Hedetniemi, S.T.Mynhardt, C.M. - Properties of minimal dominating functions of graphs. ArsCombin., 41(1995), 107 - 115.
6. Hedetniemi, S.M.Hedetniemi, S.T.Wimer, T.V., Linear time resource allocation algorithms for trees. Technical report URI - 014, Department of Mathematics, Clemson University, (1987).
7. Ore, O., Theory of Graphs, Amer. Soc. Colloq. Publ. Vol.38. Amer. Math. Soc., Providence, RI, (1962).
8. Haynes, T.W.Hedetniemi, S.T.Slater, P.J. - Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
9. Haynes, T.W.Hedetniemi, S.T.Slater, P.J. - Domination in Graphs : Advanced Topics, Marcel Dekker, Inc., New York (1998).
10. Anantha Lakshmi, V and Maheswari, B. - Total Unidominating Functions of a Path, IJCA, vol 126-No.13, (2015), 43-48.
11. V. Anantha Lakshmi, B. Maheswari - Total Unidominating functions of a complete $k$-partite graph: Open Journal of Applied \& Theoretical Mathematics, Vol.2, No.4, December (2016) pp.795-805.
12. V. Anantha Lakshmi, B. Maheswari - Upper unidomination number of a path: IJRAR, Vol.5, Issue 4, November (2018) pp. 621-630
13. V. Anantha Lakshmi, B. Maheswari - Upper total unidomination number of a path: IJESM,Vol. 8 Issue 11, November(2019) pp. 44-59
