LINEAR PRESERVERS OF MAJORIZATION ON $\boldsymbol{\ell}^{\infty}$

MOHAMMED NOUR A.RABIH* MALIK HASSAN** AHMED TAHA***

	ABSTRACT :
	In this paper we give a notation of majorization on ℓ^{∞} and linear Preservers of majorization on closed linear subspace c of Banach space. We extend $D f$ of two functions f_{1}, f_{2} wen D is a bounded linear operator also, we extend some results of [4] abut f, g to several functions
Keywords:	
Linear Preservers majorization, stochastic operators	
Banach space.	
	Copyright © 2019 International Journals of Multidisciplinary Research Academy. All rights reserved.
Author correspondence:	
${ }^{1}$ Department of Mathematics -College of Science - University of Bakht Er-rudaEddwaim -Sudan.	
${ }^{2}$ Department of Mathematics -College of Science \& Arts in Oklat Alskoor -Al Qassim University -Saudia Arabia.	
${ }^{3}$ Department of Mathematics -College of Education University of Holy Quran and	

INTRODUCTION:

Two vectors $x, y \in \mathbb{R}^{n}$, the set of all n-tuples of real numbers, x is said to be majorized by y, and is denoted by $x<y$, whenever $\sum_{i=1}^{k} x_{i}^{\downarrow} \leq \sum_{i=1}^{k} y_{i}^{\downarrow},(k=1,2, \ldots, n-1)$ and $\sum_{i=1}^{k} x_{i}^{\downarrow}=\sum_{i=1}^{k} y_{i}^{\downarrow}$ Here x_{i}^{\downarrow} denotes the i th largest number between the components of a vector $x \in \mathbb{R}^{n}$, [5].

It is a well-known fact that for $x, y \in \mathbb{R}^{n}, x<y$ if and only if there exists a doubly stochastic $n \times n$ matrix D such that $x=D y$ (see, for example, [1, 2]). Recall that an $n \times$ n matrix $D=\left(d_{i j}\right)$ is called doubly stochastic if $d_{i j} \geq 0$, for all $i, j=1, \ldots, n$, and each of its row sums and column sums are equal to 1 .

In finite dimensions, a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to preserve majorization if whenever $x<y$, for $x, y \in \mathbb{R}^{n}$, then $T x<T y$. It is known that a linear map $T: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} preserves majorization if and only if T has one of the following forms.
(i) $T(x)=\operatorname{tr}(x) a$, for some $a \in \mathbb{R}^{n}$.
(ii) $T(x)=\beta P(x)+\gamma \operatorname{tr}(x) e$ for some $\beta, \gamma \in \mathbb{R}$ and a permutation

$$
P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

In this paper we prove that $D\left(f_{1}+f_{2}\right)=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} d_{m n}\left(f_{1}+f_{2}\right)(n)\right) e_{m}$.
Where $\sum_{\mathrm{n}=1}^{\infty} \mathrm{d}_{\mathrm{mn}}=1$, and $\sum_{\mathrm{m}=1}^{\infty} \mathrm{d}_{\mathrm{mn}}=1 \quad \forall \mathrm{~m}, \mathrm{n} \in \mathbb{N}$, and we prove that following conditions for $\mathrm{f}_{r}, \mathrm{~g}_{r} \in \mathrm{c}$ are equivalent.
(i) $\mathrm{f}_{r}<\mathrm{g}_{r}$ and $\mathrm{g}_{r}<\mathrm{f}_{r}$.
(ii) $\mathrm{f}_{r}=\mathrm{Pg}_{r}$, for some $\mathrm{P} \in \mathcal{P}$.

Now we discus a Majorization on ℓ^{∞} and its closed linear subspace. Let ℓ^{∞} be the Banach space of all bounded real sequences [4], with the norm
$\forall f \in \ell^{\infty},\|f\|_{\infty}=\sup _{\mathrm{n} \in \mathbb{N}}|\mathrm{f}(\mathrm{n})|$. Each $\mathrm{f} \in \ell^{\infty}$ can be represented in the form $\sum_{\mathrm{n}=1}^{\infty} \mathrm{f}(\mathrm{n})_{e_{n}}$, where the series is understood to be convergent in the weak*-topology. Here
$e_{n} \in \ell^{\infty}$ denotes the sequence $e_{n}(j)=0$ for all $j \neq n$, and $e_{n}(n)=1$. Following the same procedure as that of [3], we use doubly stochastic operators [1], on ℓ^{∞} to define. The majorization relation on this space. Hence it is necessary first to define these operators on ℓ^{∞}. We recall that an operator $\mathrm{D}_{0}: \ell^{1} \rightarrow \ell^{1}$ is called a doubly stochastic operator on ℓ^{1} if it is positive, i.e. $D_{0} f \geq 0$ for each non-negative $f \in \ell^{1}$, and

$$
\forall \mathrm{n} \in \mathbb{N}, \sum_{\mathrm{m}=1}^{\infty} \mathrm{D}_{0} \mathrm{e}_{\mathrm{n}}(\mathrm{~m})=1, \quad \forall \mathrm{~m} \in \mathbb{N}, \sum_{\mathrm{n}=1}^{\infty} \mathrm{D}_{0} \mathrm{e}_{\mathrm{n}}(\mathrm{~m})=1
$$

The set of all doubly stochastic operators on ℓ^{1} is denoted by $\mathcal{D S}\left(\ell^{1}\right)$. We refer to [3, 4], for more details.

Definition . 1 A bounded linear operator $D: \ell^{\infty} \rightarrow \ell^{\infty}$ is called a doubly stochastic operator [1], if there exists a doubly stochastic operator $D_{0} \in \mathcal{D} S\left(\ell^{1}\right)$. such that $D=D_{0}^{*}$, i.e. for every $f \in \ell^{\infty}$ and $g \in \ell^{1},\langle D f, g\rangle=\left\langle f, D_{0} g\right\rangle$, where
$\langle\because ;\rangle: \ell^{\infty} \times \ell^{1} \rightarrow \mathbb{R}$ denotes the dual pairing between ℓ^{1} and its dual space, ℓ^{∞}. The set of all doubly stochastic operators on ℓ^{∞} is denoted by $\mathcal{D S}\left(\ell^{\infty}\right)$.
Lemma . 2 Let $D \in \mathcal{D} S\left(\ell^{\infty}\right)$. Then there exists a family of non-negative real numbers $\left\{d_{m n} \mid m, n \in \mathbb{N}\right\}$ with

$$
\begin{equation*}
\forall n \in \mathbb{N}, \sum_{n=1}^{\infty} d_{m n}=1 \quad \text { and } \quad \forall m \in \mathbb{N}, \sum_{m=1}^{\infty} d_{m n}=1 \tag{1}
\end{equation*}
$$

and such that for all $f=\sum_{n=1}^{\infty} f(n) e_{n}$ in ℓ^{∞},

$$
D f=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} d_{m n} f(n)\right) e_{m}
$$

Proof. Suppose $D_{0} \in \mathcal{D} S\left(\ell^{1}\right)$ satisfies $D_{0}^{*}=D$ and let $d_{m n}:=\left(D_{0} e_{m}\right)(n)$, for all $m, n \in \mathbb{N}$. Then clearly the family $\left\{d_{m n} \mid m, n \in \mathbb{N}\right\}$ satisfies (27). Now for $f=\sum_{n=1}^{\infty} f(n) e_{n} \in \ell^{\infty}$ and $m \in \mathbb{N}$,

$$
\left\langle D f, e_{m}\right\rangle=\left\langle f, D_{0} e_{m}\right\rangle=\sum_{n=1}^{\infty} f(n)\left(D_{0} e_{m}\right)(n)=\sum_{n=1}^{\infty} d_{m n} f(n) .
$$

Therefore, $\quad D f=\sum_{m=1}^{\infty}\left\langle D f, e_{m}\right\rangle e_{m}=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} d_{m n} f(n)\right) e_{m}$.The following lemma which, in some respect, is the converse of the previous lemma, furnishes us with a method to construct doubly stochastic operators on ℓ^{∞}.
Corollary . $\mathbf{3}$ Let $D \in \mathcal{D S}\left(\ell^{\infty}\right)$. Then there exists a family of non-negative real numbers $\left\{d_{m n} \mid m, n \in \mathbb{N}\right\}$ with $\forall \mathrm{m}, \mathrm{n} \in \mathbb{N}, \sum_{\mathrm{n}=1}^{\infty} \mathrm{d}_{\mathrm{mn}}=1$, and

$$
\sum_{\mathrm{m}=1}^{\infty} \mathrm{d}_{\mathrm{mn}}=1
$$

and such that for all $f_{1}+f_{2}=\sum_{n=1}^{\infty}\left(f_{1}+f_{2}\right)(n) e_{n}$ in ℓ^{∞},

$$
D\left(f_{1}+f_{2}\right)=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} d_{m n}\left(f_{1}+f_{2}\right)(n)\right) e_{m}
$$

Proof. Suppose $D_{0} \in \mathcal{D S}\left(\ell^{1}\right)$ satisfies $D_{0}^{*}=D$ and let $d_{m n}:=\left(D_{0} e_{m}\right)(n)$, for all $m, n \in \mathbb{N}$.
Then clearly the family $\left\{d_{m n} \mid m, n \in \mathbb{N}\right\}$ satisfies (1). Now for
$f_{1}+f_{2}=\sum_{n=1}^{\infty}\left(f_{1}+f_{2}\right)(n) e_{n} \in \ell^{\infty}$ and $m \in \mathbb{N}$,

$$
\left\langle D\left(f_{1}+f_{2}\right), e_{m}\right\rangle=\left\langle f_{1}+f_{2}, D_{0} e_{m}\right\rangle=\sum_{n=1}^{\infty}\left(f_{1}+f_{2}\right)(n)\left(D_{0} e_{m}\right)(n)=\sum_{n=1}^{\infty} d_{m n}\left(f_{1}+f_{2}\right)(n)
$$

Therefore,

$$
D\left(f_{1}+f_{2}\right)=\sum_{m=1}^{\infty}\left\langle D\left(f_{1}+f_{2}\right), e_{m}\right\rangle e_{m}=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} d_{m n}\left(f_{1}+f_{2}\right)(n)\right) e_{m}
$$

Lemma . 4 Let $\left\{d_{m n} \mid m, n \in \mathbb{N}\right\}$ be a family of non-negative real numbers which satisfies the two relations of (26), in Lemma. 2 . Then there exists a doubly stochastic operator $D: \ell^{\infty} \rightarrow \ell^{\infty}$ which is represented by the infinite matrix $\left(d_{m n}\right)$ [1], in the sense that

$$
\forall f \in \ell^{\infty}, \forall m \in \mathbb{N}, D f(m)=\sum_{n=1}^{\infty} d_{m n} f(n)
$$

Proof. According to [3], Proposition 2.6, there exists a doubly stochastic operator $D_{0}: \ell^{1} \rightarrow$ ℓ^{1} such that, for all $m, n \in \mathbb{N}, D_{0} e_{m}(n)=d_{m n}$. Let
$D: D_{0}^{*} \in \mathcal{D} S\left(\ell^{\infty}\right)$.Then, for all $f \in \ell^{\infty}$ and all $m \in \mathbb{N}$,

$$
\left\langle D f, e_{m}\right\rangle=\left\langle f, D_{0} e_{m}\right\rangle=\sum_{n=1}^{\infty} d_{m n} f(n)
$$

which proves our claim. According to Lemmas. 2 and.4, it is worth noting that, unlike general linear operators on ℓ^{∞}, a doubly stochastic operator on this space is completely determined by its action on the set $\left\{e_{n} \mid n \in \mathbb{N}\right\}$. We are now ready to define the majorization relation on ℓ^{∞}.
Definition. 5 For f and g in ℓ^{∞}, f is said to be majorized by g (or, g majorizes f), and is denoted by $f<g$. [4], if there exists $D \in \mathcal{D S}\left(\ell^{\infty}\right)$ for which
$f=D g$. For a one-to-one map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{P\sigma }: \ell^{\infty} \rightarrow \ell^{\infty}$ be defined for each $f \in \ell^{\infty}$ by

$$
P_{\sigma} f=\sum_{n=1}^{\infty} f(n) e_{\sigma(n)}
$$

Then P_{σ} is a well-defined bounded linear operator on ℓ^{∞}. If, moreover, σ is onto then P_{σ} is called a permutation. The set of all permutations on ℓ^{∞} is denoted by P. Note that each permutation $P_{\sigma} \in P$ is invertible with $P_{\sigma}^{-1}=P_{\sigma^{-1}}$. Clearly, every permutation is a doubly stochastic operator. Therefore, if P is a permutation on ℓ^{∞} then for each $f \in \ell^{\infty}, P f<f$. In order to construct other examples for majorization on ℓ^{∞}, we use the following notation. Let $n \in \mathbb{N}$ and suppose $f_{0}:\{1, \ldots, n\} \rightarrow \mathbb{R}$ is an element of \mathbb{R}^{n}. Then for each $f \in \ell^{\infty}$, we use $\left(f_{0}, f\right)$
to denote a sequence in ℓ^{∞} which is defined as follows.

$$
\forall j \in \mathbb{N},\left(f_{0}, f\right)(j)=\left\{\begin{array}{cc}
f_{0}(j) & \text { if } \quad j \leq n \\
f(j-n) & \text { if } \quad f>n
\end{array}\right.
$$

Theorem . 6 For f and g in ℓ^{∞}, suppose $f<g$.

Then $\inf g \leq \inf f \leq \sup f \leq \sup g$ and $\lim \inf g(n) \leq \lim \inf f(n) \leq \lim \sup f(n) \leq \lim$ $\sup g(n)$.
PROOF. Let g be non-zero and suppose $D: \ell^{\infty} \rightarrow \ell^{\infty}$ is a doubly stochastic operator which satisfies $f=D g$. The first set of inequalities are clear. To prove the second inequalities, we first note that $f \prec g$ if and only if $f+a \prec g+a$, for each $a \in \mathbb{R}$ considered as a constant sequence. Hence, using a translation, if necessary, we may assume that $\lim \inf g(n) \leq 0 \leq \lim \lim g(n)$. Let $\alpha:=\lim \sup g(n)$. For $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $g(n)<\alpha+\frac{\epsilon}{2}$, for all $n \geq \mathbb{N}$. Let $\left\{d_{i j} \mid i, j \in \mathbb{N}\right\}$ be the family of nonnegative real numbers corresponding to D, introduced in Lemma(4.2.2).Then there exists $M \in \mathbb{N}$ such that for all
$m \geq M, \sum_{j=1}^{N} d_{m j}<\frac{\epsilon}{2\|g\|_{\infty}}$. Therefore, for any $m \geq M$,

$$
\begin{aligned}
& f(m)=\sum_{j=1}^{\infty} d_{m j} g(j)=\sum_{j=1}^{N} d_{m j} g(j)+\sum_{j=N+1}^{N} d_{m j} g(j) \\
& \quad \leq \sum_{j=1}^{N} d_{m j}\|g\|_{\infty}+\sum_{j=N+1}^{\infty} d_{m j}\left(\alpha+\frac{\epsilon}{2}\right)<\alpha+\epsilon
\end{aligned}
$$

Hence $\lim \sup f(n) \leq \lim \sup g(n)$.
The inequalitylim inf $g(n) \leq \lim \inf f(n)$ follows easily from the previous argument and the fact that $-f=D(-g)$. We continue this section by considering the majorization relation on these closed subspaces. Let e denote the constant sequence. Then the sets $\left\{e_{N} \mid n \in \mathbb{N}\right\}$ and $\left\{e_{N} \mid n \in \mathbb{N}\right\} \cup\{E\}$ form, respectively, Schauder bases for c_{0} and c. For $f \in c$, we use the notation $\lim f$ in place of $\lim _{n \rightarrow \infty} f(n)$. Then every $f \in c$ has the representation
$f=(\lim) e+\sum_{n=1}^{\infty}(f(n)-\lim) e_{n}$, where the series converges in the norm topology. The next lemma follows directly from Theorem. 7 .
Lemma . 7 For $f, g \in c$, if $f<g$ then limg $=\operatorname{limg}$.
there are sequences $f, g \in \ell^{\infty}$ with $f \prec g$ and
$g<f$ without, necessarily, each being a permutation of the other. However, in the spaces c and c_{∞} this does not happen. To see this fact, we need the following lemma whose proof is, in some respect, similar to Theorem 3.5 of [3]. However, for the sake of completeness, we bring here its proof. Let us first introduce some notations. For a real number a,let $\phi_{\mathrm{a}}, \psi_{\mathrm{a}}: \mathbb{R} \rightarrow \mathbb{R}$ be the non-negative convex functions defined, for each $\mathrm{x} \in \mathbb{R}$, by

$$
\phi_{a}(x)=\max \{x-a, 0\}, \quad \psi_{a}(x)=-\min \{a-x, 0\}
$$

Then, for each $f \in c_{0}$ and all $a>0$ and $b<0$, we have

$$
\sum_{n \in \mathbb{N}} \phi_{a}(f(n))=\sum_{n \in \mathbb{N}} \phi_{a}\left(f^{+}(n)\right), \quad \sum_{n \in \mathbb{N}} \psi_{a}(f(n))=\sum_{n \in \mathbb{N}} \phi_{|b|}\left(f^{-}(n)\right),
$$

where $f^{+}=\max \{f, 0\}$ and $f^{-}=-\min \{f, 0\}$. We recall that for a function $f: \mathbb{N} \rightarrow \mathbb{R}$, the support of f, denoted by $\operatorname{supp}(f)$, is the set $\{n \in \mathbb{N} \mid f(n) \neq 0\}$.
For a non-negative $f \in c_{0}$, let $\left\{A_{n}(f) \mid n \in \mathbb{N}\right\}$ be a family of subsets of $\operatorname{supp}(f)$ defined, inductively, as follows:

$$
A_{1}(f)=\left\{k \in \operatorname{supp}(f) \mid f(k)=\|f\|_{\infty}\right\}
$$

and for each $n \geq 2$,

$$
A_{n}(f)=\left\{k \in \operatorname{supp}(f) \mid f(k)=\left\|f-\sum_{j \in \cup_{i=1}^{n=1} A_{i}(f)} f(j) e_{j}\right\|_{\infty}\right\}
$$

Clearly $A_{n}(f) \cap A_{m}(f)=\emptyset$, for $n=m$, and $\operatorname{supp}(f)=\cup_{n \in \mathbb{N}} A_{n}(f)$. Let f_{n} denote the value of f on the set $A_{n}(f)$, if this set is non-empty, and define it equal to 0 , if $A_{n}(f)=\emptyset$. If $A_{n}(f)=\emptyset$, for some $n \in N$, then $f_{1}>f_{2}>\cdots>f_{n}$. If $A_{n}(f)=\emptyset$ then $A_{m}(f)=\emptyset$, for all $m \geq n$.
Again, for a non-negative $f \in c_{0}$, let f_{\downarrow} denote the rearrangement of f in the decreasing order. Therefore there exists a permutation $P_{\sigma} \in P$ for which $f_{\downarrow}=P_{\sigma} f$ and in such a way that $f_{\downarrow}(n) \geq f_{\downarrow}(n+1)$, for each $n \in \mathbb{N}$. Clearly $\operatorname{supp}(f)$ and $\sup \left(f_{\downarrow}\right)$ are in one-to-one correspondence. The same is true for the sets $A_{n}(f)$ and $\mathrm{A}_{\mathrm{n}}\left(\mathrm{f}_{\downarrow}\right)$, for all $n \in \mathbb{N}$. For each $a>0$ we also have,

$$
\sum_{n \in \mathbb{N}} \phi_{a}\left(f_{\downarrow}(n)\right)=\sum_{n \in \mathbb{N}} \phi_{a}\left(f\left(\sigma^{-1}(n)\right)\right)=\sum_{m \in \mathbb{N}} \phi_{a}(f(m)) .
$$

Lemma .8 For $f, g \in c_{0}$, if $f<g$ and

$$
\begin{array}{ll}
\forall a>0, & \sum_{n \in \mathbb{N}} \phi_{a}(f(n))=\sum_{n \in \mathbb{N}} \phi_{a}(g(n)), \\
\forall a>0, & \sum_{n \in \mathbb{N}} \psi_{a}(f(n))=\sum_{n \in \mathbb{N}} \psi_{a}(g(n)), \tag{2}
\end{array}
$$

then there exists a permutation $P \in \mathcal{P}$ such that $f=P g$.
Proof. We may assume that g is non-zero. By the first equation of (2), for each $a>0$ we have

$$
\sum_{n \in \mathbb{N}} \phi_{a}\left(f_{\downarrow}^{+}(n)\right)=\sum_{n \in \mathbb{N}} \phi_{a}\left(f^{+}(n)\right)=\sum_{n \in \mathbb{N}} \phi_{a}\left(g^{+}(n)\right)=\sum_{n \in \mathbb{N}} \phi_{a}\left(g_{\downarrow}^{+}(n)\right)
$$

Since this is true for each $a>0$, it is easily seen that $A_{n}\left(f_{\downarrow}^{+}\right)=A_{n}\left(g_{\downarrow}^{+}\right)$. Therefore, for each $n \in \mathbb{N}$, there is a one-to-one correspondence θ_{n} between the sets $A_{n}\left(f^{+}\right)$and $A_{n}\left(g^{+}\right)$, from which it follows that there is also a bijection
$\theta^{+}: \operatorname{supp}\left(g^{+}\right) \rightarrow \operatorname{supp}\left(f^{+}\right)$which maps $A_{n}\left(g^{+}\right)$to $A_{n}\left(f^{+}\right)$, for each $n \in \mathbb{N}$ with $A_{n}\left(f^{+}\right) \neq \emptyset$.
Let $D: c \rightarrow c$ be a doubly stochastic operator with $f=D g$. We first show that

$$
\begin{equation*}
\forall m \in \operatorname{supp}\left(f^{+}\right), \quad \sum_{n \in \operatorname{supp}\left(g^{+}\right)} D e_{n}(m)=1, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall m \in \operatorname{supp}\left(g^{+}\right), \quad \sum_{n \in \operatorname{supp}\left(f^{+}\right)} D e_{n}(m)=1, \tag{4}
\end{equation*}
$$

First suppose $m \in A_{1}\left(f^{+}\right)$. If $\lambda:=\sum_{n \in A_{1}\left(g^{+}\right)} D e_{n}(m)<1$, then

$$
0<f_{1}=f(m)=\sum_{n=1}^{\infty} D e_{n}(m) g(n)=\sum_{n \in A_{1}\left(g^{+}\right)} D e_{n}(m) g_{1}+\sum_{n \notin A_{1}\left(g^{+}\right)} D e_{n}(m) g(n)
$$

$\leq \lambda g_{1}+(1-\lambda) g_{2}<g_{1}$.
This contradicts the fact that $f_{1}=g_{1}$. Hence $\sum_{n \in A_{1}\left(g^{+}\right)} D e_{n}(m)=1$ and therefore $\sum_{n \in \operatorname{supp}\left(g^{+}\right)} D e_{n}(m)=1$. Furthermore, by the equations

$$
\left|A_{1}\left(g^{+}\right)\right|=\left|A_{1}\left(f^{+}\right)\right|=\sum_{m \in A_{1}\left(f^{+}\right)} \sum_{n \in A_{1}\left(g^{+}\right)} D e_{n}(m)=\sum_{n \in A_{1}\left(g^{+}\right)} \sum_{m \in A_{1}\left(f^{+}\right)} D e_{n}(m)
$$

Where for a set $A,|A|$ denotes its cardinal number, we have also $\sum_{m \in A_{1}\left(g^{+}\right)} D e_{n}(m)=$ 1 , for each $n \in A_{1}\left(g^{+}\right)$, whence $D e_{n}(m)=0$, for each
$m \notin A_{1}\left(f^{+}\right)$and for all $n \in A_{1}\left(g^{+}\right)$.
Using induction, a similar argument shows that, for each $k \in \mathbb{N}$ with $A_{k}\left(f^{+}\right)=\emptyset$, we have

$$
\begin{array}{ll}
\forall m \in A_{k}\left(f^{+}\right), & \sum_{n \in A_{k}\left(g^{+}\right)} D e_{n}(m)=1, \\
\forall m \in A_{k}\left(g^{+}\right), & \sum_{m \in A_{k}\left(f^{+}\right)} D e_{n}(m)=1 .
\end{array}
$$

This proves (3) and (4). The second equation of (2) and similar arguments yield a bijection $\theta^{-}: \operatorname{supp}\left(g^{-}\right) \rightarrow \operatorname{supp}\left(f^{-}\right)$which maps $A_{n}\left(g^{-}\right)$to $A_{n}\left(f^{-}\right)$, for all $n \in \mathbb{N}$ with non-empty $A_{n}\left(f^{-}\right)$. We also have the following relations.

$$
\begin{equation*}
\forall m \in \operatorname{supp}\left(f^{-}\right), \sum_{n \in \operatorname{supp}\left(g^{-}\right)} D e_{n}(m)=1, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\forall m \in \operatorname{supp}\left(g^{-}\right), \sum_{n \in \operatorname{supp}\left(f^{-}\right)} D e_{n}(m)=1 \tag{6}
\end{equation*}
$$

For a sequence $f \in c_{0}$, if $N(f):=\mathbb{N} \backslash \operatorname{supp}(f)$ then (3), (4), (5), and (6) imply that

$$
\begin{aligned}
& \forall m \in N(f), \quad \forall n \notin N(g), D e_{n}(m)=0 \\
& \forall m \notin N(f), \quad \forall n \in N(g), D e_{n}(m)=0 .
\end{aligned}
$$

This shows that

$$
\sum_{m \in N(f)} 1=\sum_{m \in N(f)} \sum_{n \in N(f)} D e_{n}(m)=\sum_{n \in N(g)} \sum_{m \in N(f)} D e_{n}(m)=\sum_{n \in N(g)} 1 .
$$

Thus $|N(f)|=|N(g)|$. Hence there exists a bijection $\theta^{0}: N(g) \rightarrow N(f)$. Nowwe can define a bijection $\theta: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\forall n \in \mathbb{N}, \quad \theta(n)=\left\{\begin{array}{l}
\theta^{+}(n) n \in \operatorname{supp}\left(g^{+}\right), \\
\theta^{0}(n) n \in N(g), \\
\theta^{-}(n) n \in \operatorname{supp}\left(g^{-}\right) .
\end{array}\right.
$$

Let $P=P_{\theta}$ be the corresponding permutation on c . Then, for each $m \in \mathbb{N}$,

$$
\operatorname{Pg}(m)=\left(\sum_{n=1}^{\infty} g(n) e_{\theta(n)}\right)(m)=g\left(\theta^{-1}(m)\right)
$$

If $m \in \operatorname{supp}\left(f^{+}\right)$, then $m \in A_{k}\left(f^{+}\right)$, for some $k \in \mathbb{N}$ and $\theta^{-1}(m) \in A_{k}\left(g^{+}\right)$. Hence $g\left(\theta^{-1}(m)\right)=g_{k}=f_{k}=f(m)$. Thus we have $f(m)=P g(m)$, for each
$m \in \operatorname{supp}\left(f^{+}\right)$. Similar arguments are true for $m \in N(f)$ and $m \in \operatorname{supp}\left(f^{-}\right)$. There fore $f=P g$.
Theorem . 9 The following conditions for $f, g \in$ care equivalent.
(i) $f<g$ and $g \prec f$.
(ii) $f=P g$, for some $P \in \mathcal{P}$.

Proof. (i) \Rightarrow (ii) First assume that f and g are in c_{0}. Let $D, D^{\prime} \in \mathcal{D} \mathcal{S}$ satisfy
$f=D g$ and $=D^{\prime} f$. Since for each $a \in \mathbb{R}$, the function ϕ_{a} is convex, using Jensen's inequality, we obtain that

$$
\phi_{a}(f(n)) \leq \sum_{m \in \mathbb{N}} D e_{m}(n) \phi_{a}(g(m)),
$$

for each $n \in \mathbb{N}$. Specially, for $a>0$ we will have

$$
\begin{aligned}
\sum_{n \in \mathbb{N}} \phi_{a}(f(n)) & \leq \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} D e_{m}(n) \phi_{a}(g(m))=\sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} D e_{m}(n) \phi_{a}(g(m)) \\
& =\sum_{m \in \mathbb{N}} \phi_{a}(g(m))
\end{aligned}
$$

Similarly,

$$
\sum_{m \in \mathbb{N}} \phi_{a}(g(m)) \leq \sum_{n \in \mathbb{N}} \phi_{a}(g(n)) .
$$

Hence $\quad \sum_{m \in \mathbb{N}} \phi_{a}(g(m))=\sum_{n \in \mathbb{N}} \phi_{a}(g(n))$. A similar argument shows that $\sum_{m \in \mathbb{N}} \psi_{a}(g(m))=\sum_{n \in \mathbb{N}} \psi_{a}(g(n))$, for each $a<0$.Thus Lemma.8implies that there is a permutation P for which $f=P g$. Now for the general case of $f, g \in c$, if $f<g$ and $g<f$ then $\lim f=\lim g$ and $f-(\lim f) e \prec g-(\lim g) e$ and $g-(\lim g) e<f-(\lim f) e$. By the previous argument, there is a permutation P such that $f-(\lim f) e=P(g-(\lim g) e)$, whence $f=P g$.
(ii) \Rightarrow (i) Clear. For $f, g \in \ell^{\infty}$, we use the notation $f \sim g$ whenever $\prec \prec g$ and $g \prec f$. According to the previous theorem, for $f, g \in c, f \sim g$ if and only if $f=P g$ for some permutation $P \in \mathcal{P}$.

Corollary .10 The following conditions for $f_{r}, g_{r} \in c$ are equivalent.
(i) $f_{r}<g_{r}$ and $g_{r}<f_{r}$.
(ii) $f_{r}=P g_{r}$, for some $P \in \mathcal{P}$.

Proof. (i) \Rightarrow (ii) First assume that f_{r} and g are in c_{0}. Let

$$
D_{1}+D_{2},\left(D_{1}+D_{2}\right)^{\prime} \in\left(D_{1}+D_{2}\right) \mathcal{S}
$$

satisfy $f_{r}=\left(D_{1}+D_{2}\right) g_{r}$ and $=\left(D_{1}+D_{2}\right)^{\prime} \mathrm{f}_{r}$. Since for each $a \in \mathbb{R}$, the function ϕ_{a} is convex, using Jensen's inequality, we obtain that

$$
\phi_{\mathrm{a}}\left(\mathrm{f}_{\mathrm{r}}(\mathrm{n})\right) \leq \sum_{\mathrm{m} \in \mathbb{N}}\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right) \mathrm{e}_{\mathrm{m}}(\mathrm{n}) \phi_{\mathrm{a}}\left(\mathrm{~g}_{\mathrm{r}}(\mathrm{~m})\right)
$$

for each $n \in \mathbb{N}$. Specially, for $a>0$ we will have

$$
\begin{aligned}
\sum_{n \in \mathbb{N}} \phi_{a}\left(f_{r}(n)\right) & \leq \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}}\left(D_{1}+D_{2}\right) e_{m}(n) \phi_{a}\left(g_{r}(m)\right) \\
& =\sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}}\left(D_{1}+D_{2}\right) e_{m}(n) \phi_{a}\left(g_{r}(m)\right)=\sum_{m \in \mathbb{N}} \phi_{a}\left(g_{r}(m)\right) .
\end{aligned}
$$

Similarly,

$$
\sum_{m \in \mathbb{N}} \phi_{a}\left(g_{r}(m)\right) \leq \sum_{n \in \mathbb{N}} \phi_{a}\left(g_{r}(n)\right) .
$$

Hence $\quad \sum_{m \in \mathbb{N}} \phi_{a}\left(g_{r}(m)\right)=\sum_{n \in \mathbb{N}} \phi_{a}\left(g_{r}(n)\right)$. A similar argument shows that $\sum_{m \in \mathbb{N}} \psi_{a}\left(g_{r}(m)\right)=\sum_{n \in \mathbb{N}} \psi_{a}\left(g_{r}(n)\right)$, for each $a<0$.Thus Lemma .8implies that there is a permutation P for which $f_{r}=P g_{r}$. Now for the general case of $f_{r}, g_{r} \in c$, if $f_{r}<g_{r}$ and $g_{r}<f_{r}$ then $\lim f_{r}=\lim g_{r}$ and $f_{r}-\left(\lim f_{r}\right) e<g_{r}-\left(\lim g_{r}\right) e$ and $\quad g_{r}-\left(\lim g_{r}\right) e \prec$
$f_{r}-\left(\lim f_{r}\right) e$. By the previous argument, there is a permutation P such that $f_{r}-$ $\left(\lim f_{r}\right) e=P\left(g_{r}-\left(\lim g_{r}\right) e\right)$, whence
$f_{r}=P g_{r}$.
(ii) \Rightarrow (i) Clear. For $f_{r}, g_{r} \in \ell^{\infty}$, we use the notation $f_{r} \sim g_{r}$ whenever $f_{r}<g_{r}$ and $g_{r}<f_{r}$. According to the previous theorem, for $f_{r}, g_{r} \in c, f_{r} \sim g_{r}$ if and only if $f_{r}=P g_{r}$ for some permutation $P \in \mathcal{P}$.

In this part of this paper we obtain a characterization of linear preservers of the majorization relation on c. As we will see, the restriction of a linear preserver of majorization to the linear subspace c_{0} of c is a majorization preserver on this subspace. Therefore, in order to characterize the structure of these maps on c, we first obtain the same characterization on c_{0}. Finally, using this result, we determine the structure of these maps on c, [2].
Definition .11 A bounded linear map $T: \ell^{\infty} \rightarrow \ell^{\infty}$ is called a majorization preserver on ℓ^{∞} if for each $f, g \in \ell^{\infty}, f \prec g$ implies that $T f \prec T g$, [4]. We denote the set of all linear majorization preservers $T: \ell^{\infty} \rightarrow \ell^{\infty}$ by $\mathcal{M}_{\mathrm{Pr}}\left(\ell^{\infty}\right)$. The set of all linear majorization preservers on c and c_{0} are denoted, respectively, by $\mathcal{M}_{\mathrm{Pr}}(\mathrm{c})$ and $\mathcal{M}_{\mathrm{Pr}}\left(\mathrm{c}_{0}\right)$. For brevity, in what follows, we use the word preserver instead of majorization preserver.
Example . 12 For any $h \in c$, let $T=T h$ be the bounded linear operator on c, defined by $T f=(\operatorname{limg}) h$. Then $f<g$, in c, implies that $T f=T g$. Thus T is a preserver.

For a bounded linear map $T: c \rightarrow c$, it is easily seen that for each $m \in N$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|T_{e_{n}}(m)\right| \leq\|T\| \tag{7}
\end{equation*}
$$

Theorem . 13 For each $T \in \mathcal{M}_{P r}(c)$ the following statements hold.
(i) $T\left(c_{0}\right) \subseteq c_{0}$, and therefore $\left.T\right|_{c_{0}} \in \mathcal{M}_{P r}\left(c_{0}\right)$.
(ii) If $\lim T e=\alpha$, then $\lim T f=\alpha \lim$, for each $f \in c$.

Proof. (i) Let $T \in \mathcal{M}_{P r}(c)$ be non-zero. It suffices to show that $T e_{n} \in c_{0}$, for all $n \in \mathbb{N}$.
Suppose, on the contrary, there exists $n_{0} \in \mathbb{N}$.with
$l:=\lim T e_{n_{0}} \neq 0$. Then, since $e_{n} \prec e_{n_{0}}$, by Lemma .7 , limT $e_{n}=l$, for each
$n \in \mathbb{N}$. We first choose $N \in \mathbb{N}$ with $N>\frac{2\|T\|}{|l|}$, and then $m_{0} \in \mathbb{N}$ such that
$\left|T e_{n}\left(m_{0}\right)\right|>\frac{|l|}{2}$, for each $n=1, \ldots, N$. Now, using (7), we obtain the following contradiction.

$$
\|T\| \geq \sum_{n=1}^{\infty}\left|T e_{n}\left(m_{0}\right)\right| \geq \sum_{n=1}^{N}\left|T e_{n}\left(m_{0}\right)\right| \geq N \frac{|l|}{2}>\frac{2|T|}{|l|} \cdot \frac{|l|}{2}=\|T\| .
$$

(ii) For $f \in c$, using the previous part, $T(f-(\lim f) e) \in c_{0}$. Therefore, $\lim T f=\lim T((\lim f) e)+\lim T(f-(\lim f) e)=(\lim f) \lim T e$. According to the previous theorem, if $T: c \rightarrow c$ is a linear preserver then the restriction of T to the closed subspace c_{0} of c is an operator on this subspace, and therefore a linear preserver on c_{0}. Hence we first obtain the structure of an operator $T \in \mathcal{M}_{P r}\left(c_{0}\right)$.. To this end, we need the following two lemmas.
Lemma . 14 Let $T \in \mathcal{M}_{P r}\left(c_{0}\right)$. Then for any $m \in \mathbb{N}$ there is at most one $n \in \mathbb{N}$ with $T e_{n}(m) \neq 0$.
Proof. Suppose that, on the contrary, there exists m_{0} and two distinct n_{1}, n_{2} in \mathbb{N}, for which $a:=T e_{n_{1}}\left(m_{0}\right)$ and $b:=T e_{n_{2}}\left(m_{0}\right)$ are both non-zero. Let $F \subset \mathbb{N}$ be given by

$$
F=\left\{m \in \mathbb{N} \mid T e_{n_{1}}(m)=a\right\}
$$

Then $F \neq \emptyset$. Moreover, since $T e_{n_{1}} \in c, \mathrm{~F}$ is finite. For $n \neq n_{1}$, and for all $\alpha, \beta \in \mathbb{R} \alpha e_{n_{1}}+\beta e_{n_{2}} \sim \alpha e_{n_{1}}+\beta e_{n}$. Therefore, $\alpha T e_{n_{1}}+\beta T e_{n_{2}} \sim \alpha T e_{n_{1}}+\beta e_{n}$ which, by Theorem .9, implies that

$$
\alpha a+\beta b=\left(\alpha T e_{n_{1}}+\beta T e_{n_{2}}\right)\left(m_{0}\right) \in\left\{\alpha T e_{n_{1}}(m)+\beta T e_{n}(m) \mid m \in \mathbb{N}\right\} .
$$

Thus, according to Lemma 4.6 of [3], there exists $m \in \mathbb{N}$ such that $T e_{n_{1}}(m)=b$ and $T e_{n}(m)=b$. Note that, by the definition of the set $F, m \in F$. In short, we saw that

$$
\forall n \neq n_{1}, \exists m \in F \text { such that } T e_{n_{1}}(m)=a \text { and } T e n(m)=b
$$

Since F is finite, there exists a fixed element $m \in F$ such that $\operatorname{Ten}(m)=b$, for infinitely many $m \in \mathbb{N}$. This contradicts the property declared by (7) .
Let $X_{i}, i \in I$, and Y be non-empty sets. A family of maps $\sum=\left\{\sigma_{i}: X_{i} \rightarrow Y \mid i \in I\right\}$ is called mutually disjoint if for all distinct pairs $i_{1}, i_{2} \in I$,

$$
\operatorname{Im}\left(\sigma_{i_{1}}\right) \cap \operatorname{Im}\left(\sigma_{i_{2}}\right)=\emptyset
$$

where by $\operatorname{Im}(\sigma)$ we mean the image set of a map σ.We recall that for a one-to-one map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$, the bounded linear map $P \sigma: c_{0} \rightarrow c_{0}$ is defined by $P \sigma e_{n}=e_{\sigma(n)}$, for each $n \in$ \mathbb{N}.

Lemma . 15 Let $D \in \mathcal{D S}$. Then, for a mutually disjoint family of one-to-one maps $\Sigma=\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$, there exists a doubly stochastic operator $\widetilde{D} \in \mathcal{D} \mathcal{S}$ such that, as linear operators on $c_{0}, P_{\sigma} D=\widetilde{D} P_{\sigma}$, for each $\sigma \in \Sigma$.
Proof. For $m, n \in \mathbb{N}$, let $\tilde{d}_{m n}$ be defined by

$$
\tilde{d}_{m n}=\left\{\begin{array}{cc}
& D e_{\sigma^{-1}(n)\left(\sigma^{-1}(m)\right) \text { if for some } \sigma \in \sum m, n \in \sigma(\mathbb{N}),} \\
0 & \text { if for some } \sigma \in \sum \text { either } m \in \sigma(\mathbb{N}) \text { and } n \neq \sigma(\mathbb{N}) \\
1 & \text { or } m \notin \sigma(\mathbb{N}) \text { and } n \in \sigma(\mathbb{N}), \\
0 & \text { if } \\
0 & \text { if }
\end{array}\right.
$$

Then it is easily seen that

$$
\forall m \in \mathbb{N}, \quad \sum_{n=1}^{\infty} \tilde{d}_{m n}=1, \quad \forall n \in \mathbb{N}, \quad \sum_{n=1}^{\infty} \tilde{d}_{m n}=1 .
$$

According to Lemma .4 , there exists a doubly stochastic operator $\widetilde{D} \in \mathcal{D} \mathcal{S}$, such that \widetilde{D} is represented by $\left(\tilde{d}_{m n}\right)_{m, n \in \mathbb{N}}$. To show that for each $\sigma \in P_{\sigma} D=\widetilde{D} P_{\sigma}$ on c_{0}, it suffices to show their equality on the Schauder basis $\left\{e_{n} \mid n \in \mathbb{N}\right\}$ of c_{0}. For each $n \in \mathbb{N}$,

$$
\begin{gathered}
\widetilde{D} P_{\sigma}\left(e_{n}\right)=\widetilde{D} e_{\sigma(n)}=\sum_{m=1}^{\infty} \widetilde{D} e_{\sigma(n)}(m) e_{m} \\
=\sum_{m=1}^{\infty} d_{m \sigma(n)} e_{m}=\sum_{m \in \sigma(\mathbb{N})} D e_{n}\left(\sigma^{-1}(m)\right) e_{m} \\
=\sum_{k=1}^{\infty} D e_{n}(k) e_{\sigma(k)}=P_{\sigma}\left(\sum_{k=1}^{\infty} D e_{n}(k) e_{k}\right)=P_{\sigma} D\left(e_{n}\right) .
\end{gathered}
$$

In the followingtheorem, we obtain the structure of linear preservers of majorization on c_{0}.
Theorem .16 For a bounded linear operator $T: c_{0} \rightarrow c_{0}$, [4]. the following conditions are equivalent.
(i) $T \in \mathcal{M}_{P r}\left(c_{0}\right)$.
(ii) There exists $\alpha \in \mathrm{c}_{0}$ and a mutually disjoint family of one-to-one maps
$\sum=\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$, where $I=\operatorname{supp}(\alpha)=\left\{i \in \mathbb{N} \mid \alpha_{i}:=\alpha(i) \neq 0\right\}$, for which $T=$ $\sum_{i \in I} \alpha_{i} P \sigma_{i}$. Here the series is understood to converge in the operator norm topology of $B\left(c_{0}\right)$, the set of all bounded linear operators on c_{0}.

Proof. Let $\mathrm{T}: \mathrm{c}_{0} \rightarrow \mathrm{c}_{0}$ be a non-zero bounded linear operator.
(i) \Rightarrow (ii) Since $T \neq 0$, there exists $n_{0} \in \mathbb{N}$ with $T e_{n_{0}} \neq 0$. Let $\alpha:=T e_{n_{0}}$ and
$I:=\left\{i \in \mathbb{N} \mid T e_{n_{0}}(i) \neq 0\right\}$. For each $n \in \mathbb{N}$, since $T e_{n} \sim T e_{n_{0}}$, by Theorem .9, there exists a bijection $\theta_{n}: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
T e_{n}=P_{\theta_{n}}\left(T e_{n_{0}}\right) .
$$

For $i \in I$, Let $\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N}$ be defined, for each $n \in \mathbb{N}$, by $\sigma_{i}(n)=\theta_{n}(i)$. Then, by Lemma .14, each σ_{i} is a one-to-one map and σ_{1}, σ_{2} have disjoint ranges for distinct $i_{1}, i_{2} \in I$. It is
easily seen that $\sum_{i \in I} \alpha_{i} P \sigma_{i}$ is a well-defined bounded linear operator on c_{0}. We show that $\sum_{i \in I} \alpha_{i} P \sigma_{i}$ converges in the operator norm topology to T. For each $f=\sum_{n=1}^{\infty} \quad f(n) e_{n} \in$ c_{n} and $m \in \mathbb{N}$, we have

$$
\begin{gathered}
T f-\sum_{i \in I, i \leq m} \alpha_{i} P \sigma_{i}(f)=\sum_{n=1}^{\infty} f(n) T e_{n}-\sum_{i \in I, i \leq m} \alpha_{i} \sum_{n=1}^{\infty} f(n) e_{\sigma_{i}(n)} \\
=\sum_{n=1}^{\infty} f(n) P_{\theta_{n}}\left(T e_{n_{0}}\right)-\sum_{i \in I, i \leq m} \sum_{n=1} \alpha_{i} f(n) e_{\sigma_{i}(n)} \\
=\sum_{n=1}^{\infty} \sum_{i \in I} f(n) P_{\theta_{n}}\left(T e_{n_{0}}(i) e_{i}\right)-\sum_{n=1}^{\infty} \sum_{i \in I} \alpha_{i} f(n) e_{\sigma_{i}(n)} \\
=\sum_{n=1}^{\infty} \sum_{i \in I} \alpha_{i} f(n) e_{\sigma_{i}(n)}-\sum_{n=1}^{\infty} \sum_{i \in I, i \leq m} \alpha_{i} f(n) e_{\sigma_{i}(n)} \\
=\sum_{n=1}^{\infty} \sum_{i \in I, i>m}\left(\alpha_{i} f(n)\right) e_{\sigma_{i}(n)}
\end{gathered}
$$

and therefore, by mutually dis joint ness of the family Σ,

$$
\left\|T f-\sum_{i \in I, i>m} \alpha_{i} P \sigma_{i}(f)\right\|=\sup _{n \in \mathbb{N}, i \in I, i>m}\left|\alpha_{i} f(n)\right| \leq\|f\|_{i>m}^{\sup _{i>m}}\left|T e_{n_{0}}(i)\right|
$$

Hence $\left\|T-\sum_{i \in I, i>m} \alpha_{i} P \sigma_{i}\right\| \leq \sup _{i>m}\left|T e_{n_{0}}(i)\right| \rightarrow 0$, as $m \rightarrow \infty$.thus

$$
T=\sum_{i \in I} \alpha_{i} P \sigma_{i}
$$

(ii) \Rightarrow (i) For f and g in c_{0}, let $f=D g$ for some $D \in \mathcal{D} \mathcal{S}$. By Lemma .15, there exists $\widetilde{D} \in \mathcal{D} \mathcal{S}$ such that $P_{\sigma} D=\widetilde{D} P_{\sigma}$, for each $\sigma \in \Sigma$. Therefore,

$$
\begin{gathered}
T f=\sum_{i \in I} \alpha_{i} P \sigma_{i}(f)=\sum_{i \in I} \alpha_{i} P \sigma_{i} D(g) \\
=\sum_{i \in I} \alpha_{i} \widetilde{D} P \sigma_{i}(g)=\widetilde{D} \sum_{i \in I} \alpha_{i} P \sigma_{i}(g) \\
=\widetilde{D}(T g)
\end{gathered}
$$

i. e. $T f<T g$.

It is deduced from Theorem .16,that if a bounded linear map $T: c_{0} \rightarrow c_{0}$ is represented by an infinite matrix $\left(t_{i j}\right)$, then T is a linear preserver if and only if the columns of this matrix are permutations of each other and in each row of it there exists at most one non-zero element. This structure is similar to that of linear preservers of majorization on ℓ^{p} spaces, with $1<p<\infty$, except in the fact that the columns of the latter belong to the space ℓ^{p}
while those of the former are in c_{0}. We now turn our attention towards the characterization of linear maps
$T \in \mathcal{M}_{\mathrm{Pr}}$ (c).. For each $T \in \mathcal{B}(\mathrm{c})$, let $T_{0}: \mathrm{c}_{0} \rightarrow \mathrm{c}$ be the restriction of T to c_{0}. The following corollary is obtained directly from Theorem.14, part (i) and Theorem. 16
Corollary . 17 For a bounded linear operator $T: c \rightarrow c$, the following statements are equivalent.
(i) $T \in \mathcal{M}_{P t}(c)$,
(ii) There exists a subset $I \subseteq \mathbb{N}$, a set of non-zero real numbers $\left\{\alpha_{i} \mid i \in I\right\}$ which, if infinite, belongs to $c_{0}(I)$, a mutually disjoint family of one-to-one maps
$\Sigma=\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$, and an element $h \in c$ with $h(n)=$ lim h, for each
$n \in U_{i \in I \sigma_{i}}(\mathbb{N})$, for which

$$
\forall\left(f_{1}+f_{1}\right) \in c, \quad T\left(f_{1}+f_{1}\right)=\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right)\left(f-\left(\lim \left(f_{1}+f_{1}\right)\right) e\right)+\left(\lim \left(f_{1}+f_{1}\right)\right) h
$$

Proof. (i) \Rightarrow (ii) Let $T \in \mathcal{M}_{\mathrm{Pt}}$ (c) and suppose $\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$ is as given in Corollary.18.
Let $h:=T e$ which clearly belongs to c. Then Theorem.19, shows that $h(m)=\lim h$, for each $m \in U_{i \in I \sigma_{i}}(\mathbb{N})$.

Moreover, for each $\left(f_{1}+f_{1}\right) \in c$,

$$
\begin{aligned}
T\left(f_{1}+f_{1}\right)= & t\left(\left(f_{1}+f_{1}\right)-\left(\lim \left(f_{1}+f_{1}\right)\right) e\right)+T\left(\left(\lim \left(f_{1}+f_{1}\right)\right) e\right) \\
& =T_{0}\left(\left(f_{1}+f_{1}\right)-\left(\lim \left(f_{1}+f_{1}\right)\right) e\right)+\left(\lim \left(f_{1}+f_{1}\right)\right) T(e) \\
& =\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right)\left(\left(f_{1}+f_{1}\right)-\left(\lim \left(f_{1}+f_{1}\right)\right) e\right)+\left(\lim \left(f_{1}+f_{1}\right)\right) h
\end{aligned}
$$

(ii) \Rightarrow (i) Let $\left(f_{1}+f_{1}\right)<g$, i.e. $\left(f_{1}+f_{1}\right)=D g$ for some $D \in \mathcal{D} \mathcal{S}$. By Lemma.15, there exists $\widetilde{D} \in \mathcal{D} \mathcal{S}$ such that for all $i \in I, P \sigma_{i} D=\widetilde{D} P \sigma_{i}$. In addition, using the definition of \widetilde{D} in the proof of this same lemma, it is easily seen that $\widetilde{D}\left(e_{n}\right)=e_{n}$, for each $n \notin \mathrm{U}_{i \in I \sigma_{i}}(\mathbb{N})$. Therefore,

$$
\begin{gathered}
\widetilde{D}(h)=\widetilde{D}(h-(\lim h) e+(\lim h) e)=\widetilde{D}\left(\sum_{n \in \mathbb{N}}(h(n)-\lim h) e_{n}\right)+(\lim) \widetilde{D} e \\
=\widetilde{D}\left(\sum_{n \notin \cup_{i \in I \sigma_{i}}(\mathbb{N})}(h(n)-\lim h) e_{n}+(\lim h) e\right) \\
=\sum_{n \notin \cup_{i \in I \sigma_{i}}(\mathbb{N})}(h(n)-\lim h) e_{n}+(\lim h) e \\
=\sum_{n \in \mathbb{N}}(h(n)-\lim) e_{n}+(\lim) e=h . \text { Thus }
\end{gathered}
$$

$$
\begin{gathered}
T\left(f_{1}+f_{1}\right)=\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right)\left(\left(f_{1}+f_{1}\right)-\left(\lim \left(f_{1}+f_{1}\right)\right) e\right)+\left(\lim \left(f_{1}+f_{1}\right)\right) h \\
=\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right) D(g-(\operatorname{limg}) e)+(\operatorname{limg}) h \\
=\left(\widetilde{D} \sum_{i \in I} \alpha_{i} P \sigma_{i}(g-(\operatorname{limg}) e)+(\operatorname{limg}) h\right) \\
=\widetilde{D}(T g)
\end{gathered}
$$

i.e. $T\left(f_{1}+f_{1}\right)<T g$. Hence T is a linear preserver.

Corollary . 18 If T is a preserver on c , then there exist $I \subseteq \mathbb{N}$, a set of non-zero real numbers $\left\{\alpha_{i} \mid i \in I\right\}$ (which, if infinite, belongs to $\mathrm{c}_{0}(\mathrm{I})$), and mutually disjoint family of one-to-one maps $\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$ such that $T_{0}=\sum_{i \in I} \alpha_{i} P \sigma_{i}$.
As the following example shows, there are bounded linear operators $T: c \rightarrow c$ whose restriction on c_{0} acts as a linear preserver on this subspace, while T itself is not a preserver on c.

Theorem .19 For $T \in \mathcal{M}_{\mathrm{Pr}}$ (c), let T_{0} be represented in the form $\sum_{i \in I} \alpha_{i} P_{\sigma_{i}}$, as described in Corollary.18. If $a=\operatorname{limTe}$ then $\operatorname{Te}(m)=a$, for each $m \in \bigcup_{i \in I} \sigma_{i}(\mathbb{N})$.

Proof. Suppose, on the contrary, that there exists $i_{0} \in I$ and $m_{0} \in \sigma i_{0}(\mathbb{N})$ such that $T e\left(m_{0}\right) \neq a$. Let $n_{0}:=\sigma-i_{0}\left(m_{0}\right)$. Then

$$
\begin{equation*}
T e_{n_{0}}=\sum_{i \in I} \alpha_{i} P_{\sigma_{i}}\left(e_{n_{0}}\right)=\sum_{i \in I} \alpha_{i} e_{\sigma_{i}}\left(n_{0}\right) . \tag{8}
\end{equation*}
$$

Since $\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$ is a mutually disjoint family, it follows from (34) that

$$
T e_{n_{0}}\left(m_{0}\right)=\sum_{i \in I} \alpha_{i} e_{\sigma_{i}\left(n_{0}\right)}\left(m_{0}\right)
$$

Let $:=\alpha_{i 0}$, and $d:=\inf \left\{|\alpha-x| \mid x \in\left\{\alpha_{i} \mid i \in I, \alpha_{i} \neq \alpha\right\} \cup\{0\}\right\}$. Then, since
$\alpha \neq 0$ and the only limit point of $\left\{\alpha_{i} \mid i \in I\right\}$, if any, is $0, d$ is positive. If $N \in \mathbb{N}$ is chosen with $N>\frac{2\|T e\|}{d}$ then

$$
\begin{equation*}
\left|\alpha N+T e\left(m_{0}\right)\right| \geq N|\alpha|-\left|T e\left(m_{0}\right)\right|>\frac{2\|T e\|}{d}|\alpha|-\|T e\| \geq\|T e\| . \tag{9}
\end{equation*}
$$

Furthermore, since $T_{0} \in \mathcal{M}_{P r}\left(c_{0}\right)$,, by Lemma.14, there exists $n_{1} \in \mathbb{N}$, with $n_{1}>n_{0}$, such that such that: $\forall n \geq n_{1}, \forall m=1, \ldots, m_{0}, T e_{n}(m)=T_{0} e_{n}(m)=0$.

On the other hand, using the fact that $\mathrm{e}+\mathrm{Ne}_{\mathrm{n}_{0}} \sim \mathrm{e}+\mathrm{Ne}_{\mathrm{n}_{1}}$, we have
$T e+N e_{n_{0}} \sim T e+N e_{n_{1}}$. Thus, by Theorem. 19,

$$
T e\left(m_{0}\right)+\alpha N=\left(T e+N T e_{n_{0}}\right)\left(m_{0}\right) \in\left\{\left(T e+N T e_{n_{1}}\right)(m) \mid m \in \mathbb{N}\right\} .
$$

By (35), the value $T e\left(m_{0}\right)+\alpha N$ does not belong to the image of Te. Hence

$$
T e\left(m_{0}\right)+\alpha N \notin\left\{T e(1), \ldots, T e\left(m_{0}\right)\right\}=\left\{\left(T e+N T e_{n_{1}}\right)(1), \ldots,\left(T e+N T e_{n_{1}}\right)\left(m_{0}\right)\right\} .
$$

Consequently, $\quad T e\left(m_{0}\right)+\alpha N=\left(T e+N T e_{n_{0}}\right)\left(m_{0}\right)=\left(T e+N T e_{n_{1}}\right)\left(m_{1}\right)$ for \quad some $m_{1}>m_{0}$. Repeating a similar argument for m_{1}, n_{1}, in place of m_{0}, n_{0}, one can find two sequences $m_{0}<m_{1}<m_{2}<\ldots$ and $n_{0}<n_{1}<n_{2}<\ldots$ in \mathbb{N}, for which

$$
\begin{equation*}
\forall k \in \mathbb{N}, T e\left(m_{0}\right)+\alpha N=\left(T e+N T e_{n k}\right)\left(m_{k}\right) \tag{10}
\end{equation*}
$$

Since the sequence $\left(T e\left(m_{k}\right)\right)_{k \in \mathbb{N}}$ converges, the sequence $\left(T e_{n k}\left(m_{k}\right)\right)_{k \in \mathbb{N}}$ should also be convergent. On the other hand, since each $T e_{n k}\left(m_{k}\right)$ is member of $\left\{\alpha_{i} \mid i \in I\right\} \cup\{0\}$, we havet $:=\lim T e_{n k}\left(m_{k}\right) \in \overline{\left\{\alpha_{i} \mid i \in I\right\} \cup\{0\}}=\left\{\alpha_{i} \mid i \in I\right\} \cup\{0\}$. If $\quad t=\alpha$ then, by (10), $T e\left(m_{0}\right)=\lim T e=a$, which contradicts our assumption. Hence $t=\alpha$. Therefore, using (36) once more, we obtain the equality

$$
T e\left(m_{0}\right)+\alpha N=\lim _{k \rightarrow \infty}\left(T e+N T e_{n k}\right)\left(m_{k}\right)=\alpha N t
$$

from which, by the fact that $|\alpha-t| \geq d$, it follows that

$$
N=\frac{a-T e\left(m_{0}\right)}{\alpha-t}=\frac{\left|a-T e\left(m_{0}\right)\right|}{|\alpha-t|} \leq \frac{2\|T e\|}{d} .
$$

This contradicts the choice of N. Our last theorem in this section gives the structure of a linear preserver on c.

Theorem . 20 For a bounded linear operator $T: c \rightarrow c$, the following statements are equivalent.
(i) $T \in \mathcal{M}_{P t}(c)$,
(ii) There exists a subset $I \subseteq \mathbb{N}$, a set of non-zero real numbers $\left\{\alpha_{i} \mid i \in I\right\}$ which, if infinite, belongs to $c_{0}(I)$, a mutually disjoint family of one-to-one maps
$\Sigma=\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$, and an element $h \in c$ with $h(n)=\lim h$, for each $n \in \bigcup_{i \in I \sigma_{i}}(\mathbb{N})$, for which

$$
\forall f \in c, \quad T f=\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right)(f-(\operatorname{limf}) e)+(\lim f) h .
$$

Proof. (i) \Rightarrow (ii) Let $T \in \mathcal{M}_{P t}(c)$ and suppose $\left\{\sigma_{i}: \mathbb{N} \rightarrow \mathbb{N} \mid i \in I\right\}$ is as given in Corollary(18). Let $h:=T e$ which clearly belongs to c. Then Theorem. 19 , shows that $h(m)=\lim \pi$, for each $m \in \bigcup_{i \in I \sigma_{i}}(\mathbb{N})$.
Moreover, for each $f \in c$,

$$
\begin{gathered}
T f=t(f-(\lim f) e)+T((\lim f) e)=T_{0}(f-(\lim f) e)+(\lim f) T(e) \\
=\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right)(f-(\lim f) e)+(\lim) h .
\end{gathered}
$$

(ii) \Rightarrow (i) Let $f<g$, i.e. $f=D g$ for some $D \in \mathcal{D S}$. By Lemma.15, there exists $\widetilde{D} \in \mathcal{D} \mathcal{S}$ such that for all $i \in I, P \sigma_{i} D=\widetilde{D} P \sigma_{i}$. In addition, using the definition of \widetilde{D} in the proof of this same lemma, it is easily seen that $\widetilde{D}\left(e_{n}\right)=e_{n}$, for each $n \notin \mathrm{U}_{i \in I \sigma_{i}}(\mathbb{N})$. Therefore,

$$
\begin{gathered}
\widetilde{D}(h)=\widetilde{D}(h-(\lim) e+(\lim h) e)=\widetilde{D}\left(\sum_{n \in \mathbb{N}}(h(n)-\lim h) e_{n}\right)+(\lim) \widetilde{D} e \\
=\widetilde{D}\left(\sum_{n \notin \cup_{i \in I \sigma_{i}(\mathbb{N})}}(h(n)-\lim h) e_{n}+(\lim) e\right) \\
=\sum_{n \notin U_{i \in I \sigma_{i}(\mathbb{N})}}(h(n)-\lim h) e_{n}+(\lim) e \\
=\sum_{n \in \mathbb{N}}(h(n)-\lim) e_{n}+(\lim) e=h . \text { Thus, } \\
T f=\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right)(f-(\lim) e)+(\lim) h \\
=\left(\sum_{i \in I} \alpha_{i} P \sigma_{i}\right) D(g-(\operatorname{limg}) e)+(\operatorname{limg}) h \\
=\left(\widetilde{D} \sum_{i \in I} \alpha_{i} P \sigma_{i}(g-(\operatorname{limg}) e)+(\operatorname{limg}) h\right) \\
=\widetilde{D}(T g),
\end{gathered}
$$

i.e. $T f<T g$. Hence T is a linear preserver.

In this section, without being able to characterize the set of all linear preservers of majorization on ℓ^{∞}, we will introduce two classes of these operators, each presenting a feature which distinguishes these operators from those on c and c_{0}, as well as those on ℓ^{p} spaces, for $1 \leq p<\infty$. We will also obtain some properties of operators in $\mathcal{M}_{\operatorname{Pr}}\left(\ell^{\infty}\right)$, the set of all linear preservers of majorization on ℓ^{∞}.In what follows, \mathbb{N}^{k} represents the set of all k-tuples of natural numbers, for some $k \in \mathbb{N}$.

REFERENCES:

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of Eigen values, Linear Algebra Appl. 118 (1989) 163-248.
[2] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl. 199 (1994) 17-67.
[3] F. Bahrami, A. Bayati, S.M. Manjegani, Linear preservers of majorization on $\ell^{p}(I)$, Linear Algebra Appl. 436 (2012) 3177-3195.
[4] F. Bahrami, A. Bayati, S.M. Manjegani ,Majorization on $\ell^{\infty}(I)$ and on its closed linear subspace c, and their linear preserver . Linear Algebra Appl. 437 (2012) 2340-2358.
[5] Malik Hassan Ahmed Taha1 ,Mohammed Nour A.Rabih2,3. Majorization on $\ell^{p}(I)$ and on its Linear Preservers .Journal of Environmental Science, Computer Science and Engineering \& Technology, November 2019; Sec. C; Vol.8. No.4, 265-279.

