SIGNED ROMAN DOMINATION IN AN INTERVAL GRAPH WITH ADJACENT CLIQUES OF SIZE 3
 ${ }^{1}$ C. JAYA SUBBA REDDY ${ }^{2}$ M. REDDAPPA ${ }^{3}$ B. MAHESWARI
 ${ }^{1}$ Assistant Professor,Department of Mathematics, S. V. University, Tirupati-517502.
 ${ }^{2}$ Research Scholar, Department of Mathematics, S. V. University, Tirupati-517502.
 ${ }^{3}$ Professor (Retd.), Department of Applied Mathematics, S. P. MahilaVisvavidyalayam, Tirupati-517502.

Abstract

The theory of Graphs is an important branch of Mathematics that was developed exponentially. The theory of domination in graphs is rapidly growing area of research in graph theory today. It has been studied extensively and finds applications to various branches of Science \& Technology.

Interval graphs have drawn the attention of many researchers for over 40 years. They form a special class of graphs with many interesting properties and revealed their practical relevance for modeling problems arising in the real world. The theory of domination in graphs introduced by Ore [11] and Berge [3] is a fast growing area of research in graph theory today. An introduction and an extensive overview on domination in graphs and related topics is surveyed and detailed in the two books by Haynes et.al. [7, 8].

In this paper a study ofsignedRoman domination in an interval graph with adjacent cliques of size 3 is carried out.

KEYWORDS: Signed Roman dominating function, Signed Roman domination number, Interval family, Interval graph.

2010 Mathematical Subject Classification: 05C69.

1. INTRODUCTION

Domination in graphs has been studied extensively in recent years and it is an important branch of Graph Theory. Allan, R.B. and Laskar, R.C.[2], Cockayne, E.J.andHedetniemi, S.T [4] and many others have studied various domination parameters of graphs.

Let $G(V, E)$ be a graph. A subset D of V is said to be a dominating set of G if every vertex in $V-D$ is adjacent to a vertex in D. The minimum cardinality of a dominating set is called as the domination number and is denoted by $\gamma(G)$.

We consider finite graphs without loops and multiple edges.

2. SIGNED ROMAN DOMINATING FUNCTION

The concept of signed dominating function was introduced by Dunbar et al. [6]. There is a variety of possible applications for this variation of domination. By assigning the values -1 or +1 to the vertices of a graph we can model such things as networks of positive and negative electrical charges, networks of positive and negative spins of electrons and networks of people or organizations in which global decisions can be made.

The Roman dominating function of a graph G was defined by Cockayne et.al [5]. The definition of a Roman dominating function was motivated by an article in Scientific American by Ian Stewart [9] entitled "Defend The Roman Empire!" and suggested by even earlier by ReVelle [12].Domination number and Roman domination number in an interval graph with consecutive cliques of size 3 are studied byJaya Subba Reddy. C, Reddappa. M and Maheswari. B [10].

A Roman dominating function on a graph $G(V, E)$ is a function $f: V \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$.The weight of a Roman dominating function is the value $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function on a graph G is called as the Roman domination number of G. It is denoted by $\gamma_{R}(G)$.

The concept of signed Roman dominating function was introduced by Ahangar et al. [1]. They presented various lower and upper bounds on the signed Roman domination number of a graph and characterized the graphs which have these bounds.The minimal signed Roman dominating functions of corona product graph of a path with a star is studied by Siva Parvathi [13].

Let $G(V, E)$ be a graph. A signed Roman dominating function on the graph G is a function $f: V \rightarrow\{-1,1,2\}$, which satisfies the following two conditions:
(i) For each $u \in V, \sum_{v \in N[u]} f(v) \geq 1$;
(ii) Each vertex u for which $f(u)=-1$ is adjacent to at least one vertex v for which $f(v)=2$.

Thevalue $f(V)=\sum_{u \in v} f(u) \quad$ is called the weight of the function f, and it is denoted by $w(f)$. The signed Roman domination number of $G, \gamma_{s R}(G)$ is the minimum weight of a signed Roman domination number on G.

Each signed Roman dominating function f on G is uniquely determined by the ordered partition $\left(V_{-1}, V_{1}, V_{2}\right)$ of $V(G)$, where $V_{i}=\{v \in V / f(v)=i\}$ for $i=-1,1,2$. Then
$w(f)=-\left|V_{-1}\right|+\left|V_{1}\right|+2\left|V_{2}\right|$.
There exists a 1-1 correspondence between the functions $f: V \rightarrow\{-1,1,2\}$ and the ordered partition $\left(V_{-1}, V_{1}, V_{2}\right)$ of V. Thus we write $f=\left(V_{-1}, V_{1}, V_{2}\right)$.

3. INTERVAL GRAPH

Let $I=\left\{I_{1}, I_{2}, I_{3}, \ldots \ldots \ldots I_{n}\right\}$ be an interval family, where each I_{i} is an interval on the real line and $I_{i}=\left[a_{i}, b_{i}\right]$ for $i=1,2,3, \ldots \ldots . . n$. Here a_{i} is called the left end point and b_{i} is called the right end point of I_{i}. Without loss of generality, we assume that all end points of the intervals in I are distinct numbers between 1 and 2 n. Two intervals $i=$ $\left[a_{i}, b_{i}\right]$ and $j=\left[a_{j}, b_{j}\right]$ are said to intersect each other if either $a_{j}<b_{i}$ or $a_{i}<b_{j}$. The intervals are labelled in the increasing order of their right end points.

Let $G(V, E)$ be a graph. G is called an interval graph if there is a 1-1 correspondence between V and I such that two vertices of G are joined by an edge in E if and only if their corresponding intervals in I intersect. If i is an interval in I the corresponding vertex in G is denoted by v_{i}.

Consider the following interval family.

Consider the following interval family.

The corresponding interval graph is given by

Interval graph

In what follows we consider interval graphs of this type. We observe that when n is odd this interval graph has adjacent cliques of size 3 and when n is even this interval graph has adjacent cliques of size 3 and the last clique has one adjacent edge. We denote this type of interval graph by $\boldsymbol{\mathcal { G }}$. The signedRoman domination is studied in the following for the interval graph \mathcal{G}.

4. RESULTS

Theorem 4. 1: Let $\boldsymbol{\mathcal { G }}$ be the interval graph with n vertices, where $n \geq 6$. Then the signed Roman domination number of $\boldsymbol{\mathcal { G }}$ is
$\gamma_{s R}(\mathcal{G})=k+1$ for $=4 k+4$,
$=k+2$ for $n=4 k+3,4 k+5$,
$=k+3$ for $n=4 k+2$
where $k=1,2,3$...respectively.
Proof: $\operatorname{Let} \boldsymbol{\mathcal { G }}$ be the interval graph with n vertices, where $n \geq 6$.
Let the vertex set of \mathcal{G} be $\left\{v_{1}, v_{2}, v_{3}, v_{4} \ldots \ldots \ldots \ldots . . v_{n}\right\}$.
Case 1: Suppose $n=4 k+2$, where $k=1,2,3$ \qquad
Let $f: V \rightarrow\{-1,1,2\}$ and let $\left(V_{-1}, V_{1}, V_{2}\right)$ be the ordered partition of V induced byfwhere $V_{i}=\{v \in V / f(v)=i\}$ for $i=-1,1,2$. Then there exist a 1-1 correspondence between the functions $f: V \rightarrow\{-1,1,2\}$ and the ordered pairs $\left(V_{-1}, V_{1}, V_{2}\right)$ of V.Thus we write $f=\left(V_{-1}, V_{1}, V_{2}\right)$.

Let $V_{1}=\left\{v_{1}, v_{5}, \ldots \ldots \ldots \ldots \ldots v_{n-13}, v_{n-9}, v_{n-5}, v_{n-1}\right\} ;$
$V_{2}=\left\{v_{3}, v_{7}, \ldots \ldots \ldots \ldots . . v_{n-11}, v_{n-7,}, v_{n-3}, v_{n}\right\} ;$

$$
V_{-1}=\left\{v_{2}, v_{4}, \ldots \ldots \ldots \ldots \ldots, v_{n-6}, v_{n-4}, v_{n-2}\right\} .
$$

It can be seen that V_{2} is a minimumdominating set of $\boldsymbol{\mathcal { G }}[10]$. Further the set V_{2} dominates V_{-1}. That is, every vertex u such that $f(u)=-1$ is adjacent to some vertex v with $f(v)=2$.
Therefore $f=\left(V_{-1}, V_{1}, V_{2}\right)$ becomes a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$.
Now $\left|V_{1}\right|=k+1,\left|V_{2}\right|=k+1,\left|V_{-1}\right|=2 k$.
There fore $\sum_{v \in V} f(v)=\sum_{v \in V_{-1}} f(v)+\sum_{v \in V_{1}} f(v)+\sum_{v \in V_{2}} f(v)$.

$$
=-2 k+k+1+2 k+2=k+3 .
$$

Let $g=\left(V_{-1}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ be a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$, where V_{2}^{\prime} dominates

$$
\begin{aligned}
V_{-1}^{\prime} \text {. Then } g(V) & =\sum_{v \in V^{\prime}} g(v)=\sum_{v \in V_{-1}^{\prime}} g(v)+\sum_{v \in V_{1}^{\prime}} g(v)+\sum_{v \in V_{2}^{\prime}} g(v) \\
& =-\left|V_{-1}^{\prime}\right|+\left|V_{1}^{\prime}\right|+2\left|V_{2}^{\prime}\right|
\end{aligned}
$$

Since V_{2} is a minimum dominating set of \mathcal{G} we have $\left|V_{2}\right| \leq\left|V_{2}^{\prime}\right|$. This implies that $g(V)=$ $-\left|V_{-1}^{\prime}\right|+\left|V_{1}^{\prime}\right|+2\left|V_{2}^{\prime}\right| \geq-\left|V_{-1}\right|+\left|V_{1}\right|+2\left|V_{2}\right|=f(V)$.
Therefore $f(V)$ is a minimum weight of $\boldsymbol{\mathcal { G }}$, where $f\left(V_{-1}, V_{1}, V_{2}\right)$ is a signed Roman dominating function.
Thus $\gamma_{s R}(\boldsymbol{\mathcal { G }})=k+3$.
Case 2: Suppose $n=4 k+3$, where $k=1,2,3$ \qquad
Now we proceed as in Case 1.

$$
\begin{aligned}
\operatorname{Let}_{1}= & \left\{v_{1}, v_{5}, \ldots \ldots \ldots \ldots \ldots v_{n-10}, v_{n-6}, v_{n-2}\right\} \\
& V_{2}=\left\{v_{3}, v_{7}, \ldots \ldots \ldots \ldots \ldots ., v_{n-8}, v_{n-4}, v_{n}\right\} \\
& V_{-1}=\left\{v_{2}, v_{4}, \ldots \ldots \ldots \ldots \ldots, v_{n-5}, v_{n-3}, v_{n-1}\right\} .
\end{aligned}
$$

Clearly V_{2} is a minimumdominating set of $\boldsymbol{\mathcal { G }}$. Here we observe that the $\operatorname{set} V_{2}$ dominates V_{-1}.Therefore $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a signed Roman dominating function of \boldsymbol{G}.
Now $\left|V_{1}\right|=k+1,\left|V_{2}\right|=k+1,\left|V_{-1}\right|=2 k+1$.
Therefor $\sum_{v \in V} f(v)=\sum_{v \in V_{-1}} f(v)+\sum_{v \in V_{1}} f(v)+\sum_{v \in V_{2}} f(v)$.

$$
=-2 k-1+k+1+2 k+2=k+2
$$

If $g=\left(V_{-1}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$, then in similar lines to Case 1, we can see that $f(V)$ is a minimum weight of \boldsymbol{G} for the signed Roman dominating function $f\left(V_{0}, V_{1}, V_{2}\right)$.
Thus $\gamma_{s R}(\boldsymbol{\mathcal { G }})=k+2$.

Case 3: Suppose $n=4 k+4$, where $=1,2,3 \ldots \ldots .$.
Now we proceed as in Case 1.
$\operatorname{Let} V_{1}=\left\{v_{1}, v_{5}, \ldots \ldots \ldots \ldots \ldots v_{n-11}, v_{n-7,}, v_{n-3}\right\} ;$

$$
\begin{aligned}
& V_{2}=\left\{v_{3}, v_{7}, \ldots \ldots \ldots \ldots \ldots, v_{n-9}, v_{n-5}, v_{n-1}\right\} ; \\
& V_{-1}=\left\{v_{2}, v_{4}, \ldots \ldots \ldots \ldots . v_{n-4,}, v_{n-2}, v_{n}\right\} .
\end{aligned}
$$

Obviously V_{2} is a minimumdominating set of $\boldsymbol{\mathcal { G }}$. Here we observe that the set V_{2} dominates V_{-1}.

Therefore $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$.
Now $\left|V_{1}\right|=k+1,\left|V_{2}\right|=k+1,\left|V_{-1}\right|=2 k+2$.
Therefore $\sum_{v \in V} f(v)=\sum_{v \in V_{-1}} f(v)+\sum_{v \in V_{1}} f(v)+\sum_{v \in V_{2}} f(v)$.

$$
=-2 k-2+k+1+2 k+2=k+1 .
$$

If $g=\left(V_{-1}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$, then we can show as in Case 1, that $f(V)$ is a minimum weight of \boldsymbol{G} for the signed Roman dominating function $f\left(V_{0}, V_{1}, V_{2}\right)$.
Thus $\gamma_{S R}(G)=k+1$.
Case 4: Suppose $n=4 k+5$, where $k=1,2,3 \ldots \ldots \ldots$.
Now we proceed as in Case 1.

$$
\begin{aligned}
& \text { Let } V_{1}=\left\{v_{1}, v_{5}, \ldots \ldots \ldots \ldots \ldots . v_{n-8}, v_{n-4}, v_{n}\right\} \\
& V_{2}=\left\{v_{3}, v_{7}, \ldots \ldots \ldots \ldots, v_{n-10}, v_{n-6}, v_{n-2}\right\} \\
& V_{-1}=\left\{v_{2}, v_{4}, \ldots \ldots \ldots \ldots \ldots, v_{n-5}, v_{n-3}, v_{n-1}\right\}
\end{aligned}
$$

Clearly V_{2} is a minimumdominating set of $\boldsymbol{\mathcal { G }}$. Here we observe that the $\operatorname{set} V_{2}$ dominates V_{-1}.Therefore $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$.
Now $\left|V_{1}\right|=k+2,\left|V_{2}\right|=k+1,\left|V_{-1}\right|=2 k+2$.
Therefore $\sum_{v \in V} f(v)=\sum_{v \in V_{-1}} f(v)+\sum_{v \in V_{1}} f(v)+\sum_{v \in V_{2}} f(v)$.

$$
=-2 k-2+k+2+2 k+2=k+2 .
$$

If $g=\left(V_{-1}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$. In similar lines to Case 1, we can show that $f(V)$ is a minimum weight of \boldsymbol{G} for the signed Roman dominating function $f\left(V_{0}, V_{1}, V_{2}\right)$.
Thus $\gamma_{s R}(G)=k+2$.
Theorem 4.2:Let \mathcal{G} be the interval graph of with n vertices, where $2<n<6$.
Then $\gamma_{s R}(\boldsymbol{\mathcal { G }})=1$ for $n=4$
$=2$ for $n=3,5$.
Proof: Let \mathcal{G} be the interval graph with n vertices, where $2<n<6$.
Case 1: Suppose $n=3$. Let v_{1}, v_{2}, v_{3} be the vertices of $\boldsymbol{\mathcal { G }}$.
Let $V_{1}=\left\{v_{3}\right\} ; V_{2}=\left\{v_{2}\right\} ; V_{-1}=\left\{v_{1}\right\}$.
Clearly V_{2} is a minimumdominating set of $\boldsymbol{\mathcal { G }}$ and the set V_{2} dominates V_{-1}.
Therefore $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$.
Therefore $\sum_{v \in V} f(v)=\sum_{v \in V_{-1}} f(v)+\sum_{v \in V_{1}} f(v)+\sum_{v \in V_{2}} f(v)$.

$$
=-1+1+2 \times 1=2 .
$$

Thus $\gamma_{s R}(G)=2$.
Case 2: Suppose $n=4$.Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices of \boldsymbol{G}.
Let $V_{1}=\left\{v_{1}\right\} ; V_{2}=\left\{v_{3}\right\} ; V_{-1}=\left\{v_{2}, v_{4}\right\}$.
Obviously V_{2} is a minimumdominating set of \mathcal{G} and the set V_{2} dominates V_{-1}.
Therefore $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$.
Therefore $\sum_{v \in V} f(v)=\sum_{v \in V_{-1}} f(v)+\sum_{v \in V_{1}} f(v)+\sum_{v \in V_{2}} f(v)$.

$$
=-2+1+2 \times 1=1 .
$$

Thus $\gamma_{s R}(\boldsymbol{G})=1$.
Case 3: Suppose $n=5$. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the vertices of $\boldsymbol{\mathcal { G }}$.
Let $V_{1}=\left\{v_{1}, v_{5}\right\} ; V_{2}=\left\{v_{3}\right\} ; V_{-1}=\left\{v_{2}, v_{4}\right\}$.
Again V_{2} is a minimumdominating set of $\boldsymbol{\mathcal { G }}$ and the set V_{2} dominates V_{-1}.
Therefore $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a signed Roman dominating function of $\boldsymbol{\mathcal { G }}$.
Therefore $\sum_{v \in V} f(v)=\sum_{v \in V_{-1}} f(v)+\sum_{v \in V_{1}} f(v)+\sum_{v \in V_{2}} f(v)$.

$$
=-2+2+2 \times 1=2 .
$$

Thus $\gamma_{s R}(\boldsymbol{\mathcal { G }})=2$.
Theorem 4. 3:Let $\boldsymbol{\mathcal { G }}$ be the interval graph with n vertices, where $n \geq 7$. Then $\gamma_{s R}(\boldsymbol{\mathcal { G }})=$ $\gamma(\boldsymbol{G})+1$ for $n=4 k+3,4 k+5$, where $k=1,2,3, \ldots \ldots \ldots$ respectively.

Proof : Let \mathcal{G} be the interval graph with n vertices, where $n \geq 7$.
Let $n=4 k+3,4 k+5$, where $k=1,2,3, \ldots \ldots \ldots$
Then $\gamma(\boldsymbol{\mathcal { G }})=k+1[10]$.
Now by Theorem 4.1, we have $\gamma_{s R}(\boldsymbol{\mathcal { G }})=k+2$.
Thus $\gamma_{s R}(\boldsymbol{\mathcal { G }})=k+2$
$=(k+1)+1=\gamma(\boldsymbol{G})+1$.

Theorem 4.4:Let $\boldsymbol{\mathcal { G }}$ be the interval graph with n vertices, where $n \geq 8$. Then $\gamma_{s R}(\boldsymbol{\mathcal { G }})=$ $\gamma(\boldsymbol{G})$ forn $=4 k+4$, where $k=1,2,3, \ldots \ldots \ldots$...respectively.
Proof :Let \mathcal{G} be the interval graph with n vertices, where $n \geq 8$.
Let $n=4 k+4$, where $k=1,2,3, \ldots \ldots \ldots$
$\operatorname{Then} \gamma(\boldsymbol{G})=k+2$ [10].
Now by Theorem 4.1, we have $\gamma_{s R}(\boldsymbol{\mathcal { G }})=k+2$
Hence $\gamma_{s R}(\boldsymbol{\mathcal { G }})=\gamma(\boldsymbol{\mathcal { G }})$.

5. ILLUSTRATIONS

Illustration 1: $n=7$

Interval family

Interval graph

$D=\left\{v_{3}, v_{7}\right\}$ and $\gamma(G)=2$.
$V_{1}=\left\{v_{1}, v_{5}\right\} ; V_{2}=\left\{v_{3}, v_{7}\right\} ; V_{-1}=\left\{v_{2}, v_{4}, v_{6}\right\}$.
$\sum_{v \in V} f(v)=\left|V_{-1}\right| \cdot-1+\left|V_{1}\right| \cdot 1+\left|V_{2}\right| \cdot 2=-1(3)+1(2)+2(2)=3=f(V)$
Therefore $\gamma_{s R}(G)=3$.
Illustration 2: $n=10$

Interval family

Interval graph

$D=\left\{v_{3}, v_{7}, v_{10}\right\}$ and $\gamma(G)=3$.
$V_{1}=\left\{v_{1}, v_{5}, v_{9}\right\} ; V_{2}=\left\{v_{3}, v_{7}, v_{10}\right\} ; V_{-1}=\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$.
$\sum_{v \in V} f(v)=\left|V_{-1}\right| .-1+\left|V_{1}\right| .1+\left|V_{2}\right| .2=-1(4)+1(3)+2(3)=5=f(V)$
Therefore $\gamma_{s R}(G)=5$.

6. REFERENCES

1 Ahangar, H.A., Henning, M.A., Zhao, Y., Lowenstein, C., Samodivkin, V. (2012) Signed

Roman domination in graphs, J.Comb.Optim.
2 Allan, R.B. and Laskar, R.C.(1978) - On domination, Independent domination numbers of a graph Discrete Math., 23, pp. 73-76.
3 Berge, C. (1980)- Graphs and Hyperactive graphs, North Holland, Amsterdam in graphs, Networks, vol.10, pp.211-215.
4 Cockayne, E.J. and Hedetniemi, S.T. (1977) - Towards a theory of domination in graphs. Networks, vol.7, pp. 247-261.
5 Cockayne, E.J. Dreyer, P.A., Hedetniemi, S.M. and Hedetniemi, S.T. (2004) - Roman domination in graphs, Discrete math., vol.278, pp.11-22.
6 Dunbar.J., Hedetniemi.S.T., Henning, M.A. and Slater, P.J.(1995)- Signed domination in graphs, in: Y. Alari and A. Schwenk (Eds.), Proc. $7^{\text {th }}$ Internat. Conf. on the Theory and Applications of Graphs, Wiley, New York, pp. 311-321.

7 Haynes, T.W., Hedetniemi, S.T. and Slater,P.J.(1998) - Domination in graphs: Advanced Topics, Marcel Dekkar, Inc., New York.
8 Haynes, T.W., Hedetniemi, S.T. and Slater,P.J.(1998) -Fundamentals of domination in
graphs, Marcel Dekkar, Inc., New York.
9 Ian Stewart (1999) - Defend the Roman Empire!., Scientific American, vol.281(6), pp.136-139.
10 Jaya Subba Reddy .C, Reddappa. M and Maheswari. B.(2019)-Roman domination in a certain type of interval graph, International Journal of Research and analytical Reviews, vol.6, Issue 1, pp. 665-672.
11 Ore O, Theory of Graphs, Amer, Math.Soc. Collaq.Publ.38, Providence (1962).
12 ReValle, C.S. and Rosing K,E. (2000) - Defendens imperium romanum: a classical problem in military Strategy, Amer. Math. Monthly, vol. 107 (7), pp.585-594.
13 Siva Parvathi, M and Maheswari, B. (2016) - Minimal Signed Roman dominating functions of a corona product Graph of a path with star - International Journal of Mathematics and computer Applications Research, Vol. 6, Issue 2, pp. 67 - 72.

