RELATIONS BETWEEN NEAR- RINGS AND RINGS

A. R .GOTMARE .

ABSTRACT

In this paper we investigate the following conditions .
(i) $x y=(x y)^{n(x, y)}$
(ii) $x y=(x y)^{n(x, y)}$
(iii) $x y=y^{m(x, y)} x^{n(x, y)}$
(iv) $x y=x y^{n(x, y)} x$
(v) $x y=x^{n(x, y)} y^{m(x, y)}$ and finally prove that under appropriate additional hypothesis a $d-g$ near ring must be commutative ring. The Theorem proved here is generalization of many recently established results.

1: INTRODUCTION: A near rings R is called periodic if for each x in R there exits distinct positive integer m, n such that $x^{m}=x^{n}$. A standing result of of Her stein [7] states that a periodic ring is commutative if its nilpotent elements are central. In order to get the analogue of the result in near rings, Bell [4] established that if R is distributively generated $(d-g)$ near rings with its nilpotent elements lying in the centre, then the set N of nilpotent elements of R forms an ideal, and R / N is periodic then R must be commutative. Now we consider the following properties and notice that a near ring satisfying any one of the following is necessarily periodic.
(I) For each $x, y \in R$ there exists a positive integer $n=n(x, y)>1$ such that $x y=(x y)^{n}$
(II) For each $x, y \in R$ there exists a positive integer $n=n(x, y)>1$ such that $x y=(y x)^{n}$
(III) For each $x, y \in R$ there exists a positive integer $m=m(x, y), n=n(x, y)$ at least one of them is greater than 1 such that $x y=y^{m} x^{n}$
(IV) For each $x, y \in R$ there exists an integer $n=n(x, y)>1$ such that $x y=x y^{n} x$
(V) For each $x, y \in R$ there exists an integer $m=m(x, y)>1, n=n(x, y)>1$ such that $x y=x^{n} y^{m}$

Recently commutativity of rings under most of the above mentioned conditions has been investigated

In this paper Ligh [9] has remarked that some conditions implying commutativity in rings might turn a class of near rings into rings. The purpose of this paper is to examine whether some of our conditions may imply that certain near rings are rings

Besides providing a simpler and more attractive proof of result due to Bell [5], our theorem generalizes the results proved in [1],[2],[10].

2: NOTATIONS AND PRELIMINARIES

Throughout the paper R is a left near ring with multiplicative centre Z, and N denotes the set of nilpotent elements of R. An element x of R is said to be distributive if $(y+z) x=y x+z x$ and if all elements are distributive then the near is said to be distributive. A near ring R is distributively generated $(d-g)$ if it contains a multiplicative subsemigroup of distributive elements which generates the additive group R^{+}, and a near -ring R will be called strongly distributively generated $(s-d-g)$ if it contains a set of distributive elements whose squares generates R^{+}.

An ideal of a near ring R is defined to be normal subgroup I of R^{+}such that
(i) $R I \subseteq I$
(ii) $\quad(x+i) y-x y \in I$ for all $x, y \in R$ and $i \in I$

In a $(d-g)$ near ring (ii) may be replaced by (ii) $I R \subseteq I$. A near ring R is called zero symmetric if $0 x=0$ for all $x \in R$ and zero commutative if $x y=0$ $\Rightarrow y x=0$ for all $x, y \in R$.

3: RESULTS

We begin with the following known results which will be used extensively. He proofs of
(I) And (II) are straightforward where as those (III), (IV) and (V) Can be found in [6].
(I) If R is a zero -commutative near -ring, then $x y=0 \Rightarrow x r y=0$ for all $r \in R$.
(II) A $d-g$ near -ring is always zero symmetric.
(III) A $d-g$ near-ring R is distributive if and only if R^{2} is additively commutative.
(IV) A $d-g$ near ring with unity 1 is a ring if R is distributive or R^{+}is commutative.
(V) If N is s two sided ideal in a $d-g$ near ring R, then the elements of the quotient group $R^{+}-N$ form a $d-g$ near ring, which will be represented by R / N.

We pause to observe that a $d-g$ near ring R satisfying any of our conditions (1) -(4) is necessarily zero commutative . For example, R satisfy (1) and for a pair of elements $x, y \in R, x y=0$. Hence by virtue of (II),
$y x=(y x)^{n_{1}=n(y, x)}=y x y x y x \ldots y x=y(x y)^{n_{1}-1} x=(y 0) x=0$ Now we prove the following Lemma

LEMMA: Let R be a near ring $d-g$ be satisfying one of the following conditions, Then $N \subseteq Z$.

Proof:
(1) Since R is a zero commutative, it follows that if $a \in N$ and x is an arbitrary element of R then $a x$ is nil potent. Thus the nil potent element of R annihilate R on both sides. Hence a is central
(2) As same of the above
(3) Let $a \in N$ and $x \in R$, then there exists integers $m_{1}=m(a, x) \geq 1$, and
$n_{1}=n(a, x)>1$ such that $a x=x^{m_{1}} a^{n_{1}}$. Now choose $m_{2}=m\left(x^{m_{1}}, a^{n_{1}}\right) \geq 1, \quad$ and $\quad n_{2}=n\left(x^{m_{1}}, a^{n_{1}}\right) \quad>1$ such that $x^{m_{1}} a^{n_{1}}=a^{n_{1} n_{2}} x^{m_{1} m_{2}}$, and hence $a x=a^{n_{1} n_{2}} x^{m_{1} m_{2}}$. It is clear that for arbitrary t we have an integers $m_{1}, m_{2}, \ldots m \geq 1$ and $n_{1}, n_{2}, \ldots n_{t}>1$ such that $a x=a^{n_{1} n_{2}} x^{m_{1} m_{2}}$ his implies $a x=0$ and hence a is central. Similarly we can prove (4) and (5)

Theorem: Let R be a $d-g$ near- ring satisfying any one of the above (1)-(5) conditions, then R is commutative.

Corollary 1 : Let R be a $d-g$ near- ring satisfying any one condition (1)-(5). If $R^{2}=R$, then R is commutative ring.

Proof : In view of Theorem a $d-g$ near ring with unity satisfying any one of the conditions (1)- (5) is commutative .Thus for any $x, y, z \in R$, we have
$(y+z) x=x(y+z)=x y+x z=y x+z x$. This implies that R is distributive and hence by (III) R^{2} is additively commutative. Now $R^{2}=R$ means that R is also additively commutative. Hence R is commutative.

Corollary 2: Let R be a $d-g$ near ring with unity satisfying any one of the conditions (1)-(5) . Then R is a commutative ring . Proof: Applications of (IV) together with our theorem gives the result.

Corollary 3: Let R be a $d-g$ near ring satisfying any one of the conditions (1)- (5). Then R is commutative.

Proof: By Theorem, R is a commutative $s-d-g$ near ring in which every elements is distributive and by (III) R^{2} is additive. Hence the additive group R^{+}of the $s-d-g$ near ring is also commutative and R is a commutative ring.

REFERENCE:

[1] H.E.Bell, A commutativity conditions for rings Canada. J. Math. (1976)
[2] A. Frohlich , Distributively generated near rings London Math Soc.(1975)
[3] I.N. Herstein , A note on rings with central nil potent elements.
Proc. Amrer. Ath Soc.(1969)
[4]M.O. Searcoid and D. MacHaale , Two elementary generalizations for Boolean rings .Amer. Math (1986)

