INTER SECTION GRAPH OF FINITE ABELIAN GROUP AND SUB

GROUPS OF FINITE GROUPS

1. S.DEVI LATHA 2.G.ROHITH

1 .Assistant Professor of Vel Tech Ranga Sanku Arts College, Avadi, Chennai.

2. Assistant Professor of Vel Tech Ranga Sanku Arts College, Avadi, Chennai

ABSTRACT

In a graph theory we have use basis of the group like abelian group and subgroup for intersection. An intersection containing a non- unit element .We characterize certain classes of subgroup intersection graphs corresponding to finite abelian groups. We check all its solvable groups whose intersection graphs are triangle-free. Surrounded the other results, we analysis all abelian groups whose intersection graphs are complete. Finally, we study the intersection graphs of cyclic groups.

KEYWORDS:

Abelian group, Subgroup,

Intersection graph, Trivial,

vertex, Isolated, Frobenius,

Kernal

Author correspondence:

S.DEVI LATHA, Assistant professor, Vel Tech Ranga Sanku Arts college

CHAPTER 1

DEFINITION 1.1.

Let G be a group. The intersection graph G (G) of G is the undirected graph

(without loops and multiple edges) whose vertices are in a one-to-one correspondence with

all proper non-trivial subgroups of G and two vertices are joined by an edge, if and only if

the

1

corresponding subgroups of G have a non- trivial intersection(ie, an intersection containing

a non- unit element).

We know that, for every finite cyclic group n, for each divisor d of n there exists a unique Sub group of order d.

Example.1.2.

Consider the cyclic group of order 12(i.e, Z₁₂)

Soln.

Z₁₂ has 4 proper subgroups as follows:

Example 1.3.

Consider the cyclic group of order 36 (i.e, Z_{36})

Soln.

 Z_{36} has proper subgroups as follows:

$$\begin{split} H_1 &= \{0, 2, 4 \dots .34\}, \\ H_2 &= \{0, 3, 6 \dots .33\}, \\ H_3 &= \{0, 4, 8 \dots .32\}, \end{split}$$

Example 1.4.

Consider cyclic group of order 30 (ie, Z_{30}).

Soln.

Z₃₀ has 6 proper subgroups as follows:

_

$$\begin{split} H_1 &= \{0,2,4\,\ldots\,\ldots\,28\}\;,\\ H_2 &= \{0,3,6\,\ldots\,.27\}\;,\\ H_3 &= \{0,5,10,\ldots\,25\},\\ H_4 &= \{0,6,1218,24\}\;,\\ H_5 &= \{0,10,20\}\;,\\ H_6 &= \{0,15\}. \end{split}$$

Lemma 1.5.

Any finite non-trivial abelian group contains a cyclic subgroup whose order in a prime number.

Proof.

Any finite abelian group can be expressed as a direct product of a primary cyclic groups.

ie, cyclic groups of the order equal to a power of a prime number.

If a is the generator and p^{α} the order f any of these primary cyclic groups, then it is subgroup generated by $\alpha^{p\alpha-1}$ is cyclic and has the order p, which is a prime number.

Evidently, a primary cyclic group can contain only one such subgroup.

Lemma 1.6.

The vertex independence number of the graph GG is equal to the maximal number of prime order subgroups of G.

Proof.

Two distinct prime order subgroups of G have always a trivial intersection .

Because such groups contain only one proper subgroup, namely the trivial one.

Therefore any system of prime order subgroups of G corresponds to an independent set in G (G). Now, let us have a maximal independent set in G (G). Any vertex of this set corresponds to a subgroup G : this subgroup has a prime order subgroup lemma, As any two subgroups of G corresponding to vertices of this independent set have trivial intersection , the prime order subgroups in subgroups of G corresponding to distinct vertices of this set must be distinct.

This implies that an independent set in G(G) corresponds to a subgroup of G containing more than one prime order subgroup, the cardinality of this independent set is less than the independence number of the graph G(G).

Corollary 1.7.

A vertex of G (G) corresponds to a primary cyclic subgroup of G. If and only if it belongs to some independent set of G(G) of maximal cardinality.

Lemma 1.8.

Let G be a finite abelian group which is not a direct of a product of two prime order groups .Let u, v be two vertices of G(G) not joined by an edge and corresponding to primary cyclic subgroups U, B of G(G). Then the orders of U and B are powers of different prime numbers, if and only if there exists a vertex w in G(G) joined with both u and v and with no vertex which is not joined with u and v.

Proof.

Let the orders of U and B be powers of different prime numbers.

Let W be the subgroup of G generated by the prime order subgroups of U and B .

The subgroup W is a proper subgroup of, because G is not a direct product of two prime order groups.

The vertex w of GG corresponding to (W) is evidently joined with both u and v.

Now let some vertex x of G (G) be joined with w.

This means that x correspondence to a subgroup X of G such that $X \cap W \neq \{e\}$.

Let $e \neq a \in X \cap W$; then $a = b^m c^n$, where b, c are generators of U and B respectively.

If p,q are orders of b,c respectively, take $a^p = b^{mp}c^{np}$.

This is equal to c^{np} , because $b^{mp} = c$.

According to the assumption , p ,q are relatively prime.

Therefore $c^{np} = e$ implies $np \equiv 0 \pmod{(q)}$ and $n \equiv 0 \pmod{(q)}$ which means $c^n = e$ and $a = b^m$.

We have either $a=b^m$, or $a^p = c^{np} \neq e$.

As both a and a^p are in (X), this means either $X \cap U \neq \{e\}$, or $X \cap B \neq \{e\}$ and x is

joined either with u or with v.

Now, let the orders of U and B be powers of the same prime number p: Let the order of U be p^{α} , the order of B be p^{3} .

Without loss of generality , $\alpha \leq \beta$.

Let b,c be the generators of U and B respectively.

Then $c^{p\beta-\alpha}$ has the same order p^{α} as b and the product of $bc^{p\beta-\alpha}$ has also this order.

The primary cyclic subgroup generator by $bc^{p\beta-\alpha}$ will be denoted by W : evidently, it has trivial intersection with U and B.

Let S be a subgroup of G which has non-trivial intersection with both U and B;

Thus $X \cap U \ni b^r$, $X \cap B \ni c^8$, where r,s are positive integers, $r \equiv 0 \pmod{\alpha}$,

 $s \equiv 0 \pmod{\beta}$. Then X contains also the product $(bc^{p\beta-\alpha})$, where t is the least common multiple of r and of the greatest common divisor of $p^{\beta-\alpha}$ and s.

This element evidently different from e and belongs to W.

Therefore $X \cap W \neq \{e\}$ and x is joined also with w.

As X was chosen arbitrarily, the assertion is proved.

Hence the proof.

Lemma 1.9.

Let G be a direct product of two prime order groups. If these groups have different orders, the graph G (G) consists of two isolated vertices. If these groups have equal order, the graph G (G) contains more than two vertices.

Lemma 1.10.

Let G be a finite Abelian group whose order is a power of a prime number p.

Then the vertex independence number of G (G) is equal to $\sum_{i=0}^{n-1} p^i$, where n is the number of

direct factors in the expression of G as a direct product of primary cyclic groups.

Proof.

Let G_1 G_n be the factors in the mentioned direct product.

Evidently G contains exactly one prime order subgroup S for i = 1, ..., n;

Therefore it contains p-1 elements of prime order .

All elements of the order p are products of these elements; thus their number is $p^n - 1$.

As any prime order subgroup G has the order p and thus p - 1 non – unit elements which are all of the order p and as any two of such subgroup have trivial intersection, there are $(p^n - 1)/(p^n - 1) = \sum_{i=0}^{n-1} p^i$ prime order subgroups of G.

According to lemma, this is also the vertex independence number of the graph G (G),

We can find $\sum_{i=0}^{n-1} p^i$ for any of these Sylow subgroups.

Theorem 1.11.

Let G be a finite Abelian group. Let G (G) be its intersection graph. Knowing the graph G (G) , we can determine the number of factors in the expression of G as a direct product of Sylow groups and the intersection graph for any of these sylow groups.

Moreover, for any of these sylow subgroups of G, we can determine the number $\sum_{i=0}^{n-1} p^i$,

where p is the prime number whose power is the order of this group and n the number of factors in its expression as a direct product of primary cyclic groups.

Proof.

Let G (G) be given .We find an independent set A of vertices in G (G) maximal cardinality: it corresponds to a system of primary cyclic subgroups of G with pairwise trivial intersection (Lemma and its corollary).

According to Lemma, we shall decide for an pair of vertices of A whether the orders of the subgroup of G corresponding to these vertices are powers of the same prime number or not .

Now, let B be a subset of A such that all vertices of B correspond to the subgroups of G whose orders are powers of the same prime number p and any vertex of A - B corresponds to a subgroup whose order is a power of another prime number.

The subgraphs of G corresponding to vertices of A – B belong to other sylow subgroup.

The mentioned sylow subgroup contains as its non-trivial subgroups exactly all subgroups of G which have a non-trivial intersection with atleast one subgroup corresponding to a vertex of S and have trivial intersections with all subgroups corresponding to vertices A - C

Β.

This can be proved simply .

The subgroups corresponding to vertices of B contain as their subgroups all subgroups of G of the order p (any of them contains exactly one such subgroup);

Therefore any subgroup of G of the order equal to a power of p must have a non-trivial intersection with some of them.

Now, if a subgroup of G has a non-trivial intersection with a subgroup corresponding to a vertex of A - B, this intersection contains an element whose order is equal to a power of a

prime number different from p and thus this subgroup is not a subgroup of the mentioned sylow subgroup.

The intersection graph of this sylow subgroup is therefore the subgraph of S (G) induced by the

vertex set consisting of B and all vertices set of G(G) which are joined with atleast one vertices

of B with no vertex of A - B.

In this way we can construct intersection graphs of all sylow subgroups of G and thus also

recognize the number of these subgroups .

According to Lemma,

Hence the proof

CHAPTER 2

INTERSECTION GRAPH OF SUBGROUPS

OF FINITE GROUPS

Definition 2.1.

If there exist non trivial subgroups $L_1 \dots L_n$ of G such that

 $H \sim L_1, L_1 \sim L_2 \dots L_{n-1} \sim L_n$, $L_n \sim K$,then we say that H and K are connected by the chain

 $H \sim L_1 \sim L_2 \sim \ldots \sim L_n \sim K$. Clearly, in this case ρ (H , K) \leq n+1.

The Dihedral group of order 2n.

$$D_{2n} = \langle r, s \rangle \{ 1, r, r^2, r^3, ..., r^{n-1}, s, sr, sr^2, sr^3, ..., sr^{n-1} \},$$

where $r^n = 1, s^2 = 1$ and $r^i s = sr^{n-i}$.

Note 2.2.

For each positive integer n, let d(n) denote the number of positive divisors of n.

And let σ denote the sum of the positive divisors of n. The number of subgroups of dihedral

group $D_{2n}(n \ge 3)$ is $d(n) + \sigma(n)$.

Example 2.3.

Consider the dihedral group order 8.

 $D_8 = < r, \, s > = \{ \ 1, \, r, \, r^2, \, r^3, \, r^4, \, s, \, sr, \, sr^2, \, sr^3, \, sr^4 \ \}, \, \text{where} \ r^4 = 1, \, s^2 = 1$

The proper sub group of D_8 are

$$H_{1} = \{1, r^{2}\},$$

$$H_{2} = \{1, r^{2}, s, sr^{2}\},$$

$$H_{3} = \{1, r^{2}, sr, sr^{3}\},$$

$$H_{4} = \{1, r, r^{2}, r^{3}\},$$

$$H_{5} = \{1, s\},$$

$$H_{6} = \{1, sr\},$$

$$H_{7} = \{1, sr^{2}\},$$

$$H_{8} = \{1, sr^{3}\}.$$

Example 2.4.

The quarternion group of order 8.

Soln.

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$
, where $ij = k$, $ji = -k$, $ik = j$, $ki = -j$, $jk = i$, $kj = -i$

$$\begin{split} H_1 &= \{\pm 1\}, \\ H_2 &= \{\pm 1, \pm i\}, \\ H_3 &= \{\pm 1, \pm j\}, \\ H_4 &= \{\pm 1, \pm k\}. \end{split}$$

and o(i) = o(j) = o(k) = 4.

 H_1

 Q_8

Example 2.5.

Consider the dihedral group order 12.

Soln.

$$D_{12} = \langle r, s \rangle = \{1, r, r^2, r^3, r^4, r^5, r^6, s, sr, sr^2, sr^3, sr^4, sr^5, sr^6\}, \text{where } r^3 = 1, s^2 = 1.$$

$$H_1 = \{1, r^3\},$$

$$H_2 = \{1, r^3, s, sr^3\},$$

$$H_3 = \{1, r^2, r^4\},$$

$$H_4 = \{1, s\},$$

Lemma 2.6.

If G is connected, then the diameter $\delta(G)$ is equal to max { $\rho(P,Q)$: both P,Q are subgroups of prime order of G}.

Lemma 2.7.

Let B be a block of G and M be a proper subgroup of the group G.

If $B \cap M \neq 1$, then $M \subseteq B$.

Lemma 2.8.

Let B be a block of G. Then B is a subgroup of G or a normal subset of G.

Lemma 2.9.

Let G be disconnected and $B = \{B_1, B_2, \dots, B_l\}$ be the set of all the subgroup blocks of G. Then any conjugate of B, is connected in B for $i = 1 \dots l$.

Lemma 2.10.

If G is not a simple group, then one of the following cases occurs:

- (1) The diameter δ (G) ≤ 4 .
- (2) G is $Z_p \times Z_q$, where p, q are primes.
- (3) G is a Frobenius group whose complement is a group of prime order and the kernel is a minimal normal subgroup.

Proof.

Suppose that N is a non-trivial proper normal subgroup of G.

By Lemma, the required result δ (G) ≤ 4 is equivalent to (P,Q) ≤ 4 for any prime order subgroups P,Q with P \neq Q.

Let $|P| = |\langle a \rangle| = p$ and $|Q| = |\langle b \rangle| = q$.

Case 1:

PN = G.

(a) If $Q \cap N = \langle b \rangle \cap N = 1$, then $b \in G/N \cong P$, the order of every element of $G \setminus N$ is a multiple of p.

So the order of b is p ,that is o(b) = p = q.

If $C_G(a) = G$, then $G = P \times N$, Since o(a) = o(b) = p, we can assume that $Q = \langle (a, x) \rangle$,

where $x \in N$ and o(x) = p.

Now, we set $H = \{(y, z): y \in \langle a \rangle, z \in \langle x \rangle\}.$

If $|N| \neq p$, then H is a proper subgroup of G.

So that we have a chain $P \sim H \sim Q$.

Thus $\rho(P,Q) \leq 2$.

Certainly, when G is $Z_P \times Z_P$, there are p + 1 nontrivial.

(i.e., the intersection graph Γ (G) is the p + 1 isolated vertices graph .

If $C_G(b) = G$, then $\langle b \rangle \lhd G$.

Since $b \neq N$, we have $G = \langle b \rangle \times N$ by virtue of |G| = p|N|.

So we can assume that $\langle a \rangle = \langle b, x \rangle$, where $x \in N$ and o(x) = p.

Similarly we choose a group $H = \{(y, z): y \in \langle b \rangle, z \in \langle x \rangle\}.$

When $|N| \neq p$, then H is a proper subgroup of G.

So, P and Q are connected by a chain P - H - Q.

Thus we have also $\rho(P,Q) \leq 2$.

Now we suppose that $C_G(a) \neq G$ and $C_G(b) \neq G$.

If $C_G(a) \cap N \neq 1$ and $C_G(b) \cap N \neq 1$, then $\langle a \rangle \sim C_G(a) \sim N$ and $\langle b \rangle C_G(b) \sim N$,

So $\langle a \rangle \sim C_G(a) \sim N \sim C_G(b) \sim \langle b \rangle$.

Then we have $(P, Q) \leq 4$.

If $C_G(a) \cap N = 1$ or $C_G(b) \cap N = 1$, we may assume without loss of generality,

That $C_G(a) \cap N = 1$, then $\langle a \rangle$ acts non-fixed point on the subgroup N.

Thus G = N: $\langle a \rangle$ is a Frobenius group.

Clearly, if N is not a minimal normal subgroup of G, then we can choose a non-trivial normal subgroup N_1 of N such that $N_1 \sim G$.

So we get a chain $\langle a \rangle \sim N_1(a) \sim N_1(b) \sim \langle b \rangle$, hence we have $\rho(P,Q) \leq 3$.

Certainly, if N is minimal normal subgroup of G, then G satisfies the requirement (3).

(b) Case $Q \le N$

If $C_G(a) = G$ (or $C_G(b) = G$), then $p \triangleright G$ (or $Q \triangleright G$).

Hence, when $PQ \neq G$, we have a chain $P \sim PQ \sim Q$ and then $\rho(P, Q) \leq 2$.

Certainly, if PQ = G, then $G = P \times Q$ or G = Q: P is Frobenius group and

Hence the intersection graph of G is the empty graph on two or q+1 vertices.

Next, we consider the case of $C_G(a) \neq G$ and $C_G(b) \neq G$.

If $C_G(a) \cap N \neq \{1\}$, then $P \sim C_G(a) \sim N \sim Q$.

Hence, we have ρ (P, Q) ≤ 3 .

If $C_G(a) \cap N = \{1\}$, then P acts as a group N of fixed point free automorphism.

Thus $G = N : \langle a \rangle$ is a Frobenius group.

Similarity to the case (a), we have that N is a minimal normal subgroup of G.

Hence G satisfies the requirement (3).

Similarity, if QN = G, then we have the same results.

Case 2 :

 $PN \neq G$ and $QN \neq G$.

P and Q can be joined by the same $P \sim PN \sim QN \sim Q$.

Thus ρ (P, Q) \leq 3.

Assertion I.

If n > 4, then the alternating group A_n is connected and $\delta(A_n) \le 4$.

Proof.

By lemma, it suffices to prove that $\rho(P, Q) \le 4$ for any subgroups P and Q of

prime order.

Now, we can assume that P and Q are contained in maximal subgroups M_1 and M_2 respectively.

If $M_1 \cap M_2 \neq 1$, then $P \sim M_1 \sim M_2 \sim Q$, so that $\rho(P, Q) \leq 3$.

Next we will prove that the order of every maximal subgroup of A_n with $n \ge 5$ is more than n.

For the cases of n = 5 and 6, this is true by inspection

Now, suppose that $n \ge 7$.

Consider A_n in its natural degree n action.

If a maximal subgroup M is intransitive, say has an orbit of length k, then

 $|\mathbf{M}| \ge k! (n-k)! / 2 > n.$

So M is transitive.

If $|\mathbf{M}| = \mathbf{n}$, then M is regular.

Each automorphism of M is induced by conjugation with some element from S_n.

This if M is maximal in A_n , then the automorphism group of M has order atmost 2.

Consider inner automorphisms, so the order of M / Z(M) is less than or equal to 2,

hence M is abelian.

From $|Aut (M)| \le 2$, we get $M = Z_n$ with n = 2,3 or 6, which is impossible.

Now return to our question.

If $M_1 \cap M_2 = 1$, we choose a largest maximal subgroup M of A_n , then it follows that

 $M \cap M_1 \neq 1$ and $M \cap M_2 \neq 1$.

Indeed , otherwise , if $M \cap M_1 = 1,$ then $|MM_1| = |\cancel{M}|M_1| / |M \cap M_1| = |\cancel{M}|M_1| > n.A_{n-1} = n.A_{n-1}$

 $|A_n|$,

a contradiction.

Hence $P \sim M_1 \sim M_2 \sim Q$, and consequently $\rho(P,Q) \leq 4$.

Assertion II.

If G is a simple group of lie type or a sporadic simple group, then its intersection graph is connected.

Proof.

Suppose that G has a disconnected intersection graphs.

Let the order of G be $p_1^{e_1}p_2^{e_2}...,p_n^{e_n}$ and let $B_1, B_2..., B_k$ be blocks of G.

Now we choose a series of numbers b_1, b_2, \dots, b_k such that p_1^{el} llb_i if and only if there is an

element of order p_l in B for $l = 1, 2, \dots n$ and $i = 1, 2, \dots k$.

By Lemma , if some B_i is a subgroup, then B_i is a maximal subgroup and $B_i{}^g$ is also a block of

G for every $g \in G$.

On the other hand, $N_G(B_i) = B_i$ since B_i is maximal and B_i is not a maximal subgroup.

If follows that $N_G(B_i^g) = N_G(B_i)^g = B_i^g$, and hence $B_i \cap B_i^g = 1$ for all $g \in G \setminus B_i$.

Thus G has a non-trivial normal subgroup by the well known Frobenius theorem,

which contradicts the fact that G is a simple group.

So every B_i is a normal subset of G be Lemma.

Next we will prove, $(b_i, b_j) = 1$ for $i \neq j$.

If for some $1 \le l \le n$ and $1 \le i$, $j \le k$ there exists p_l such that p_l divides $(b_i, b_j) = 1$, then there are $a \in B_i$, $b \in B_j$ satisfying $o(a) = o(b) = p_l$.

Obviously, there exit sylow p_1 subgroups P_1, P_2 of G containing a and b respectively.

Since P_1 and P_2 are conjugate, we set $P_1^h = P_2$, then P_2 is contained in B_i by Lemma,

and hence B_i, B_j are connected, a contradiction.

Therefore, $|\mathcal{G}| = b_1, b_2 \dots b_k$ and a $\in B_i$ if and only if o(a) divides b_i for any a $\in G$.

Choose M_i to be a maximal subgroup of G in the block B_i for i = 1, 2, ..., k.

By the above arguments we have $(|M_1|, |M_2|) = 1$ for $i \neq j$.

Hence for every prime pairs p_i , p_j , where p_i divides b_i and p_j divides b_j for $i \neq j$,

we have that G has no element of order p_i , p_j .

Now we define another graph A (G) of G called the prime graph G, whose vertices set is

 π (G) = {p:p is a divisor of |G|},vertices p and q in π (G) are joined by an edge if and only

if there exists an element of order pq.

The classification of disconnected prime graphs of non – abelian simple groups.

Now let π (b_i) = {p:p is a prime divisor of b_i},then π (b_i) is a prime graph component of G for i = 1, 2, ... k.

Assume that 2 is contained in π (b₁).

If G is a simple group of Lie type except $A_1(q)$, then M_i is a maximal torus of G for $i \ge 1$

2.

And hence $N_G(M_i) \cap B_1 \neq 1$, hence M_i is connected to M_1 , a contradiction.

If G is $A_1(q)$ with q odd, set $\pi(b_2) = \pi(q) = p$, then M_2 is a elementary abelian p-group And M_2 is a sylow p subgroup of G, and we have $N_G(M_2) \neq M_2$ by the well-known Burnside theorem which states that a finite group G satisfying $N_G(P) = C_G(P)$ for some abelian sylow p group P is p-nilpotent.

Thus M₂ is not a maximal subgroup of G, a contradiction.

For the remaining cases when M_i of A_1 (q) for $i \ge 2$ is a maximal torus, we will get similar

results.

If G is a sporadic simple group or $F_4(2)'$, the prime graph components vertices π (b_i) with

 $i \ge 2$ form a single point set {p} and M_i is a cycle Sylow –p subgroup of G.

Clearly, M_i is not a maximal subgroup by the well-known Thomson theorem which asserts

that a finite group having an odd order nilpotent maximal subgroup must be solvable.

BIBLIOGRAPHY

[1] B.Csakany and G.Pollak,

The graph of subgroups of a finite group . (Russian) ,Czechoslovak math.J.19(1969) 241-247.

[2] Chakrabarty, S. Ghosh., T.K. Mukherjee and M.Sen,

Intersection graph of ideals of rings Discrete Math. 309(2009) 5381-5392

[3] W.Feit and J.G.Thompson,

Solvabity of groups of odd order, pacific j. Math. 13(1963) 775-1029.

- [4] P.Hall, A note on soluble groups, J. London Math.soc. 3(1928) 98-105W.R. scott, Group Theory (Prentice- Hall, 1964).
- [5] R.Shen, Intersection graphs of subgroups of finite groups.Czech Math. J .60(2010) 945-950.
- [6] B. Zelinka, Intersection graphs of finite abelian groupsCzech Math. J .25(1975)171-174.
- [7] S.Akbari.H.A.Tavallace and S.Khalashi Ghezelahind,
 Intersection graph of submodules of a module.J. Algebra Appl. 11(2012)
 Article No.1250019
- [8] J. Bosak, The graphs of semigroups, in theory of Graphs and Application (Academic Press, New York, 1964), pp, 119-125.
- [9]S. Akbari, R.Nikandish and M.J. Nikmehr, Some results on the intersection Graphs of ideals of rings, J.Algebra Appl.12(2013)

Article No. 1250200.