Bernstein L^{ρ} Type Inequality of Some Class of Polynomials

Jahangeer Habibullah Ganai ${ }^{1}$ and Anjna Singh ${ }^{2}$
${ }^{1,2}$ Department of Mathematical Sciences A.P.S. University, Rewa (M.P.) 486003 India, Govt. Girls P.G. College Rewa,(M.P)

Abstract. In the present paper we will discuss Bernstein's classical theorem for a polynomial F of degree m , $\max _{|z|=1}\left|F^{\prime}(t)\right| \leq m \max _{|z|=1}|F(t)|$. We will give some related results for a polynomial F holds the conditions
$F^{\prime}(0)=F^{\prime \prime}(0)=\ldots=F^{(m-1)}(0)=0$ and $F(t) \neq 0$ for $|t|<l$, where $l \geq 1$. We will give L^{P}
inequalities valid for $0 \leq r \leq \infty$.
Keywords. Minkowski's Inequality, Erdos Conjectured, Malik Generalized Theorem

Introduction

Let F_{m} be the linear space of polynomials over the complex field of degree less than or equal to m.
For $\mathrm{F} \in \mathrm{F}_{\mathrm{m}}$, define

$$
\begin{align*}
& \|F\|_{0}=\exp \left(\frac{1}{2} \int_{0}^{2 \pi} \log \left|F\left(e^{i \psi}\right)\right| d \psi\right) \tag{1}\\
& \|F\|_{f}=\left(\frac{1}{2} \int_{0}^{2 \pi}\left|F\left(e^{i \psi}\right)\right|^{r} d \psi\right)^{1 / r} \text { for } \quad 0<r<\infty
\end{align*}
$$

(2)

$$
\|F\|_{\infty}=\max _{|t|=1}|F(t)|
$$

(3)

Notice that $\|F\|_{0}=\lim _{f \rightarrow 0^{+}}\|F\|_{f}$ and $\|F\|_{\infty}=\lim _{f \rightarrow \infty}\|F\|_{f}$. For $1 \leq r \leq \infty$.
$\|\cdot\|$ is a norm and therefore \mathcal{F}_{m} is a normed linear space under $\|\cdot\|_{f}$. However, for $\mathrm{O} \leq r \leq 1,\|\cdot\|_{f}$ does not satisfy the triangle inequality and is therefore not a norm this follows from Minkowski's inequality see [3].

Bernstein's well knowing result relating the supremum norm of a polynomial and its derivative states that if $\mathrm{F} \in \mathscr{F}_{m}$ then $\left\|F^{\prime}\right\|_{\infty}$ then $\left\|F^{\prime}\right\|_{\infty} \leq m\|F\|_{\infty}$ [9]. This inequality reduces to equality if and only if $F(t)=\beta t^{m}$ for some complex constant β.Erdos conjectured and Lax proved [7].

$$
\left\|F^{\prime}\right\|_{\infty} \leq \frac{m}{2}\|F\|_{\infty}
$$

(4)

Malik generalized Theorem 1 and proved [4]

Theorem 2. If ${ }^{\mathrm{F} \in \mathcal{F}_{m}}$ and $F(t) \neq 0$ for $|t|<l$ where $l \geq 1$, then

$$
\left\|F^{\prime}\right\|_{\infty} \leq \frac{m}{1+l}\|F\|_{\infty}
$$

(5)

Of course. Theorem 1 follows from Theroem 2 when $1=1$. Chan and Malik [3] introduced the class of polynomials of the form $F(t)=b_{0}+\sum_{v=m}^{n} b_{v} t^{v}$. We denote the linear space of all such polynomials as $F_{n, m}$. we Notice that ${ }^{F_{n, 1}}={ }_{F_{n}}$ Chan and Malik presented the following result [3].
Theorem 3. If $\mathrm{F} \in \mathscr{F} m$ and $F(t) \neq 0$ for $|t|<l$ where $l \geq 1$, then
$\left\|F^{\prime}\right\|_{\infty} \leq \frac{m}{1+l^{m}}\|F\|_{\infty}$
Qazi, independently of Chan and Malik, presented the following result which includes Theorem3 [8]
Theorem 4. If $F(t)=b_{0}+\sum_{v=m}^{n} b_{v} t^{v} \in F_{n, m}$ and $\quad F(t) \neq 0$ for $|t|<l \quad$ wherel ≥ 1, then
$\left\|F^{\prime}\right\|_{\infty} \leq \frac{m}{1+J_{0}}\|F\|_{\infty}$
Where

$$
\begin{equation*}
J_{0}=l^{m+1}\left|\frac{m\left|b_{m}\right| l^{m-1}+m\left|b_{0}\right|}{m\left|b_{0}\right|+m\left|b_{m}\right| l^{m+1}}\right| \tag{7}
\end{equation*}
$$

Since $m\left|b_{m}\right|^{m} \leq m\left|b_{0}\right|$. Theorem 4 Implies Theorem 3.

Zygmund [11] extended Bernstein's result to L^{P} norms. DeBruijin [6] extended theorem 1 to L^{P} norms by showing.
Theorem 5. If $\mathrm{F} \in F_{m}$ and $F(t) \neq 0$ for $|t|<1$, then for $1 \leq r \leq \infty$
$\left\|F^{\prime}\right\|_{f} \leq \frac{m}{\|1+t\|_{f}}\|F\|_{f}$
Of course theoem 5 reduces to theorem 1 with $r=\infty$. Rahman and schmeisser [8] proved that theorem5 in fact holds for $0 \leq r \leq \infty$. The purpose of this paper is to show that theorem3 and theorem4 can be extended to L^{P} inequalities where $0 \leq r \leq \infty$.

STATEMENT

Theorem 6. If $F(t)=b_{0}+\sum_{v=m}^{n} b_{v} t^{v} \in F_{n, m} \quad$ and $\quad F(t) \neq 0$ for $\quad|t|<l$ where $\quad l \geq 1$, then for $0 \leq r \leq \infty$
$\left\|F^{\prime}\right\|_{f} \leq \frac{m}{\left\|J_{0}+t\right\|_{f}}\|F\|_{f}$

Where J_{0} is as given in Theorem4. With $r=\infty$, theorem 2 reduces to theorem 4. As mentioned.
Corollary 1. If $\mathrm{F} \in \mathcal{F}_{m}$ and $F(t) \neq 0 \underset{\text { for }}{ }|t|<l_{\text {where }} l \geq 1$, then for $0 \leq r \leq \infty$
$\left\|F^{\prime}\right\|_{f} \leq \frac{m}{\left\|l^{m}+t\right\|_{f}}\|F\|_{f \text { with }} r=\infty$, Corollary 1 reduces to theorem 3 of special interest is the fact theorem 2 and corollary 1 holds for L^{P} norms for all $1 \leq r \leq \infty$. In Particular, we have
Corollary 2. If $\mathrm{F} \in \mathscr{F}_{n, m}$ and $F(t) \neq 0 \quad|t|<l$ where $l \geq 1$, then for $1 \leq r \leq \infty$

$$
\begin{equation*}
\left\|F^{\prime}\right\|_{f} \leq \frac{m}{\left\|l^{m}+t\right\|_{f}}\|F\|_{f} \tag{11}
\end{equation*}
$$

With $\mathrm{m}=1$, Corollary 2 yields an L^{P} version of theorem 2 with $r=\infty$, Corollary 2 reduces to theorem 3 with $\mathrm{m}=1$ and $r=\infty$ Corollary 2 reduces to theorem 2. Finally with $\mathrm{m}=1, r=\infty$ and $\mathrm{l}=1$, Corollary 2 reduces to Theorem1.

LEEMAS

We need the following leemas for the proof of our theorem.
Leema1. If the polynomial $\mathrm{F}(\mathrm{t})$ of degree m has no roots in the circular domain C and if $\sigma \in D_{\text {then }}$ $(\sigma-t) F(t)+m F(t) \neq 0 \quad$ for $\quad t \in D$

Leema 1 is due to Laguerre [5].
Definition for $\beta=\left(\beta_{0}, \ldots, \beta_{m}\right) \subset D^{m+1}$ and $F(t)=\sum_{v=0}^{m} D_{v} t^{v}$
$\wedge_{\beta} F(t)=\sum_{v=0}^{m} \beta_{v} D_{v} t^{v}$
The Operator ${ }^{\wedge} \beta$ is said to be admissiable it if preserves one of the following properties.
(1) $\mathrm{F}(\mathrm{t})$ has all it zeros in $\{t \in D:|t| \leq 1\}$
(2) $\mathrm{F}(\mathrm{t})$ has all it zeros in $\{t \in D:|t| \geq 1\}$

The proof of leema 3 was given by Arestov [1]
Leema 2. Let $\phi(t)=\psi(\log t){ }_{\text {where }} \psi_{\text {is a convex non decreasing function on R Then for all }} F(t) \in F_{n}$ and each admissible operator \wedge_{β}

$$
\int_{0}^{2 \pi} \phi\left(\mid \wedge_{\beta} F\left(e^{i \theta} \mid\right) d \theta \leq \int_{0}^{2 \pi} \phi\left(D(\beta, m)\left|F\left(e^{i \theta}\right)\right| d \theta\right.\right.
$$

$$
\begin{equation*}
\text { Where } D(\beta, m)=\max \left(\left|\beta_{0}\right|,\left|\beta_{m}\right|\right) \text { Qazi proved [5] } \tag{12}
\end{equation*}
$$

Leema3. If $F(t)=D_{0}+\sum_{v=m}^{n} D_{v} t^{v}$ has no zeros in $|t|<l, l \geq 1$ then for $|t|=1$

$$
L_{m}\left|F^{\prime}(t)\right| \leq J_{0}\left|F^{\prime}(t)\right| \leq\left|R^{\prime}(t)\right|
$$

Where $R(t)=t^{n} F\left(\overline{1 / \bar{z})}\right.$ and J_{0} is as defined in theorem4.
By lemma3 we have $m F(t)-(t-\sigma) F^{\prime}(t) \neq 0_{\text {for }} \quad|t| \leq 1, \sigma \leq 1$ Therefore setting $\sigma=-t e^{-i \beta}, \quad \beta \in R$ the operator ${ }^{\wedge}$ defined by
$\wedge F(t)=\left(e^{i \beta}+1\right) t F^{\prime}(t)-m e^{i \beta} F(t)$
Is admissible and so by Lemma 3 with $\psi(x)=e^{f x}$
$\int_{0}^{2 \pi}\left|\left(e^{i \beta}+1\right) \frac{d F\left(e^{i \theta}\right)}{d \theta}-i m e^{i \beta} F\left(e^{i \beta}\right)\right|^{f} d \theta \leq m^{f} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{f} d \theta$
For $r>0$
$\int_{0}^{2 \pi} \left\lvert\,\left(\frac{d F\left(e^{i \theta}\right)}{d \theta}+\left.e^{i \beta}\left[\frac{d F\left(e^{i \theta}\right)}{d \theta}-i m F\left(e^{i \theta}\right)\right]\right|^{f} d \theta \leq m^{f} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{f} d \theta\right.\right.$
This gives

$$
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\frac{d F\left(e^{i \theta}\right)}{d \theta}+e^{i \beta}\left[\frac{d F\left(e^{i \theta}\right)}{d \theta}-i m F\left(e^{i \theta}\right)\right]\right|^{f} d \theta d \beta \leq 2 \pi m^{F} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{f} d \theta
$$

(13)

$$
\begin{equation*}
\left|e^{i \beta}+r\right| \quad r \geq 1 \tag{14}
\end{equation*}
$$

By the fact that is an increasing function of r for Thus combining (13) and(14) we get

$$
\left(\left.\int_{0}^{2 \pi}\left|\left(\left.\frac{d F\left(e^{i \theta}\right)}{d \theta}\right|^{f} d \theta\right)\left(\int_{0}^{2 \pi}\left|e^{i \beta}+J_{0}\right| d \beta\right) \leq 2 \pi m^{F} \int_{0}^{2 \pi}\right| F\left(e^{i \theta}\right)\right|^{f} d \theta\right.
$$

(15)

$$
0 \leq r \leq \infty
$$

$$
r=\infty
$$

From which the theorem follows for
. This results holds good for $r=0$ and by

$$
r \rightarrow 0^{+} \text {and } r \rightarrow \infty
$$

letting

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi} \left\lvert\,\left(\frac{d F\left(e^{i \theta}\right)}{d \theta}+\left.e^{i \beta}\left[\frac{d F\left(e^{i \theta}\right)}{d \theta}-i m F\left(e^{i \theta}\right)\right]\right|^{f} d \theta d \beta\right.\right. \\
& =\int_{0}^{2 \pi}\left|\frac{d F\left(e^{i \theta}\right)}{d \theta}\right|^{f} \int_{0}^{2 \pi}\left|1+e^{i \beta}\left(\frac{d F\left(e^{i \theta}\right) / d \theta-i m F\left(e^{i \theta}\right)}{d F\left(e^{i \theta}\right) / d \theta}\right)\right|^{f} d \beta d \theta \\
& =\int_{0}^{2 \pi}\left|\frac{d F\left(e^{i \theta}\right)}{d \theta}\right|_{0}^{f} \int_{0}^{2 \pi}\left|e^{i \beta}+\left(\frac{d F\left(e^{i \theta}\right) / d \theta-i m F\left(e^{i \theta}\right)}{d F\left(e^{i \theta}\right) / d \theta}\right)\right|^{f} d \beta d \theta \\
& =\left.\int_{0}^{2 \pi}\left|\frac{d F\left(e^{i \theta}\right)}{d \theta}\right| \int_{0}^{f}\right|^{2 \pi}\left|e^{i \beta}+\left|\frac{Q^{\prime}\left(e^{i \theta}\right)}{F^{\prime}\left(e^{i \theta}\right)}\right|\right|^{f} d \beta d \theta \\
& \geq \int_{0}^{2 \pi}\left|\frac{d F\left(e^{i \theta}\right)}{d \theta}\right|_{0}^{f} \int_{0}^{f}\left|e^{i \beta}+J_{0}\right|^{f} d \beta d \theta
\end{aligned}
$$

REFERENCES

1. A. Zygmund, 'Trigonometric Series,'’ 2 nd rev. ed., Vols. I, II, Cambridge Univ. Press, Cambridge, UK, 1959.
2. E. Laguerre, "Oeuvres,'" Vol. 1; Noúaelles Ann. Math. 17, No. 2 1878..
3. H. Royden, "Real Analysis," 3rd ed., Macmillan Co., New York, 1988.
4. M. Malik, On the derivative of a polynomial, J. London Math. Soc. 1, No. 2 1969., 57]60.
5. M. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 1992., 337]343.
6. N. DeBruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. 50, 1947., 1265]1272.
7. P. Lax, Proof of a conjecture of P.Erdos on the derivative of a polynomial, Bull,Amer.math.Soc. 50 (1994),509-513
8. Q. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory 53 1988., 26]32.
9. S. Bernstein, "Lec, ons sur les proprietes" extremales' et la meilleure approximation des
10. T. Chan and M. Malik, On Erdos" JLax theorem, Proc. Indian Acad. Sci. 92 1983., 191]193.
11. V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Math. USSR-Iza. 18 (1982), 1-17.
