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ABSTRACT. Let 𝔽𝑞  be a field with q elements such that gcd(𝑚𝑝, 𝑞(𝑞 − 1)) = 1 and 

𝑞2 ≡ 1(𝑚𝑜𝑑 𝑚𝑝𝑠), where 𝑚 is prime and 𝑝 > 𝑚 is prime. In this paper, we give all 

primitive idempotents in a ring 𝔽𝑞 [x]∕  𝑥𝑚𝑝𝑠 − 1 . We give the weight distributions of all 

irreducible cyclic codes of length 𝑚𝑝𝑠  over 𝔽𝑞 . 
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1. INTRODUCTION 

 

Let 𝔽𝑞  be a field with 𝑞 elements. Let 𝒞 be an [𝑛, 𝑘] linear code over 𝔽𝑞 , that is , it is a k-

dimensional subspace of n

qF . If for every codeword (𝑐0,  𝑐1, 𝑐2,……… , 𝑐𝑛−1) ∈ 𝒞, 

(𝑐𝑛−1, 𝑐0,  𝑐1, 𝑐2,……… , 𝑐𝑛−2) ∈ 𝒞 then we call 𝒞 as a cyclic code. We identify the 

codeword (𝑐0 ,  𝑐1, 𝑐2,……… , 𝑐𝑛−1) in 𝒞 with the polynomial 𝑐0 +  𝑐1𝑥 + 𝑐2𝑥 2 +

⋯  𝑐𝑛−1𝑥 𝑛−1 in 𝔽𝑞 [x]∕  𝑥𝑛 − 1 . The code 𝒞 of length n over field 𝔽𝑞  corresponds to a 

subset of 𝔽𝑞 [x]∕  𝑥𝑛 − 1 . Then 𝒞 is said to be cyclic code iff the corresponding subset is 

an ideal of 𝔽𝑞 [x]∕  𝑥𝑛 − 1 . Observe that each ideal of 𝔽𝑞 [x]∕  𝑥𝑛 − 1  is the principal 

ideal. Suppose that 𝑔(𝑥) is a monic divisor of 𝑥𝑛 − 1 in the field 𝔽𝑞 . Then code 𝒞 which 

corresponds to  𝑔(𝑥)   is a cyclic code, 𝑔(𝑥) is called a generator polynomial and  𝑥 =

(𝑥𝑛 − 1) /𝑔(𝑥) is referred to the parity-check polynomial of the code 𝒞. If  𝑥  has an 

irreducible factor over 𝔽𝑞 , we refer the cyclic code as irreducible. The Irreducible cyclic 

codes of length 𝑛 over 𝔽𝑞  can be viewed as the ideals of the ring 𝔽𝑞 [x]∕  𝑥𝑛 − 1  

generated by the primitive idempotents.  

Many  papers investigated the primitive idempotents of  𝑅𝑛 = 𝔽𝑞 [x]∕  𝑥𝑛 − 1  which 

are mentioned as follows: 

For n = 2, 4, 𝑙𝑚  and 2𝑙𝑚 , where 𝑙 is an odd prime and q (prime power) is a primitive root                            

modulo n, Arora and Pruthi got primitive idempotents in 𝑅𝑛  in [2, 15]. For 𝑛 = 2𝑚 , 

𝑚 ≥ 3, Pruthi gave all explicit expressions of the m + 1 idempotents in ring 𝑅𝑛 ; Sharma 

et al. has obtained all the primitive idempotents and the irreducible cyclic codes in 𝑅𝑛  in 

[14, 17]. For 𝑛 =  𝑙1
𝑚 𝑙2, where 𝑙1, 𝑙2 ,𝑞 are the distinct odd prime numbers, q is the 

common primitive root modulo 𝑙1
𝑚  and 𝑙2, and 𝑔𝑐𝑑  

𝜙 𝑙1
𝑚  

2
,
𝜙 𝑙2 

2
 = 1, Bakshi and Raka 

obtained all 3𝑚 + 2 primitive idempotents in ring 𝑅𝑛  in [4]. For 𝑛 =  𝑙1
𝑚 𝑙2

𝑚 , 

where 𝑙1, 𝑙2 ,𝑞 are the distinct odd prime numbers, 𝑔𝑐𝑑 𝜙 𝑙1
𝑚  ,𝜙(𝑙2

𝑚 ) = 2, 𝑜𝑟𝑑𝑙1
𝑚1  𝑞 =
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𝜙(𝑙1
𝑚1 )

2
  and 𝑜𝑟𝑑𝑙2

𝑚2 𝑞 =
𝜙(𝑙2

𝑚2 )

2
. Singh and Pruthi presented all explicit expressions for all 

4𝑚1𝑚2 + 2𝑚1 + 2𝑚2 + 1 primitive idempotents in ring 𝑅𝑛  in [18]. For 𝑛 = 𝑙𝑚 , 𝑚 ≥ 1, 

where 𝑙 is an odd prime and 𝑜𝑟𝑑𝑙𝑚  𝑞 =
𝜙(𝑙𝑚 )

2
. Arora et al. had given all explicit 

expressions for all the 2𝑚 + 1 primitive idempotents in 𝑅𝑛  in [1]. For 𝑛 = 2𝑙𝑚 , 𝑚 ≥ 1, 

where 𝑙 is an odd prime number and 𝑜𝑟𝑑2𝑙𝑚  𝑞 =
𝜙(2𝑙𝑚 )

2
. Batra and Arora got all explicit 

expressions for 4𝑚 + 2 primitive idempotents in the ring 𝑅𝑛  in [3]. For 𝑛 = 𝑙𝑚 , 𝑚 ≥ 1, 

where 𝑙 is an odd prime number and 𝑙/(𝑞 − 1), Chen et ' al. recursively gave all the 

primitive idempotents and the minimum Hamming distances of all the codes 

generated by those primitive idempotents in the ring 𝑅𝑛  in [6]. For 𝑛 =  𝑙1
𝑚 𝑙2

𝑚 , 

𝑚1 ≥ 1,𝑚2 ≥ 1 where 𝑙1 , 𝑙2 are the distinct prime numbers and 𝑙1𝑙2/(𝑞 − 1); 𝑛 = 4𝑙𝑚  

and 8𝑙𝑚 , where 𝑙 is an odd prime number and 𝑙/(𝑞 − 1), Li and Yue et al. obtained all the 

primitive idempotents and the minimum Hamming distances of all the codes generated 

by those primitive idempotents in the ring 𝑅𝑛 , respectively in [10, 11]. In [12] Fengwei 

Li and Qin Yue take 𝐹𝑞 , finite field with 𝑞 elements such that 𝑙𝑣||(𝑞𝑡 − 1), 𝑔𝑐𝑑(𝑙, 𝑞(𝑞 −

1))  =  1, where 𝑙, 𝑡 are prime numbers and 𝑣 is the positive integer. They gave all the 

primitive idempotents in the ring 𝐹𝑞 [x]/ 𝑥 𝑙
𝑚
− 𝑎  for a ∈ 𝐹𝑞

∗. Specially for 𝑡 =  2, they 

gave weight distributions of all irreducible constacyclic codes, and their dual codes of 

length 𝑙𝑚  over the field 𝐹𝑞 . In [7], Kumar, Pankaj and Pruthi take 𝐹𝑙 , finite field with 𝑙 

elements and 𝑛 = 2𝑎𝑝1
𝑎1𝑝2

𝑎2 …𝑝𝑒
𝑎𝑒 , where 𝑎,𝑎1 ,𝑎2 ,… , 𝑎𝑒  be positive integers and 

𝑝1 ,𝑝2 ,……… ,𝑝𝑒  are distinct odd prime numbers and 4𝑝1 ,𝑝2 ,……… , 𝑝𝑒/𝑙 − 1. They 

have studied the factorization of 𝑥2𝑎𝑝1
𝑎1𝑝2

𝑎2…𝑝𝑒
𝑎𝑒
− 1 over the field 𝐹𝑙  and all the primitive 

idempotents in ring 𝐹𝑙[𝑥]/  𝑥2𝑎𝑝1
𝑎1𝑝2

𝑎2…𝑝𝑒
𝑎𝑒
− 1 . Moreover, they obtained the dimensions 

and minimum hamming distances of all the irreducible cyclic codes of length 

2𝑎𝑝1
𝑎1𝑝2

𝑎2 …𝑝𝑒
𝑎𝑒  over the field 𝐹𝑙 .  

Suppose  𝐴𝑖  be the number of code words with the Hamming weight ‘𝑖’ in code 𝒞 of 

length 𝑛. The weight enumerator of 𝒞 may be defined as  

𝐴 𝑧 = 1 + 𝐴1𝑧 +  𝐴2𝑧
2 + ⋯+ 𝐴𝑛𝑧

𝑛  

The sequence (1,𝐴1,𝐴2,… ,𝐴𝑛 ) is called weight distribution of the code 𝒞. In coding 

theory, it is generally desirable to know weight distributions of the codes because they can 

be used to estimate error correcting capability and the error probability of the error 

detection and correction with respect to some algorithms.  

              In this paper, we shall always assume that 𝑝 > 𝑚 is a prime number with gcd 

(𝑚𝑝 , 𝑞(𝑞 − 1)) = 1, 𝑞2 ≡ 1(𝑚𝑜𝑑 𝑚𝑝𝑠). We obtain all the primitive idempotents in the 

ring 𝔽𝑞 [x]∕  𝑥𝑚𝑝
𝑠
− 1 . Next, we give all weight distributions of all the irreducible cyclic 

codes and their dual codes of length 𝑚𝑝𝑠over the field 𝔽𝑞 .  

Notation:  𝜉𝑒  denotes the primitive e-th root of unity over the field 𝔽𝑞2 . 

This paper is organized as follows:  

In Section 2, we recall some of the preliminary concepts and basic theorems.  

In section 3, all the primitive idempotents in the ring 𝔽𝑞 [x]∕  𝑥𝑚𝑝
𝑠
− 1  are given.  

In Section 4, the weight distributions are obtained of all the irreducible cyclic codes of 

length 𝑚𝑝𝑠  over the field 𝔽𝑞 . 
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2. PRELIMINARIES 

 

Let 𝒞 be the cyclic code. There is an unique codeword 𝑐(𝑥) which satisfies the relation 

𝑐2 𝑥 =  𝑐(𝑥) and  𝒞 =  𝑐(𝑥) , then the codeword 𝑐(𝑥)  is called the idempotent. The 

idempotent of an irreducible cyclic code is called primitive idempotent.  

 

Lemma 2.1. Assume that 𝑡 ≥ 2. For any 𝑎 ∈  𝔽𝑞
∗
 with 𝑜(𝑎)  =  𝑙, then the binomial 

(𝑥𝑡 − a) is irreducible over the field 𝔽𝑞  iff both the following two conditions are 

satisfied:  

(i) Every prime divisor of t divides k, but does not divide  
𝑞− 1

𝑙
 ; 

(ii) If 4/𝑡, then 4/(𝑞 − 1).  

Lemma 2.2 Let 𝜉 ∈  𝔽𝑞  be the root of 𝑥𝑡 − 1, where gcd 𝑞, 𝑡 = 1. Then  

 𝜉𝑗
t− 1

𝑗=0

=   
0  if 𝜉 ≠ 1
t  if 𝜉 = 1

  

 

3. PRIMITIVE IDEMPOTENTS IN 𝔽𝑞 [x]∕  𝑥𝑚𝑝
𝑠
− 1  

 

Let 𝔽𝑞  be finite field having q elements. Fengwei Li and Qin Yue et al. gave all the 

primitive idempotents in the ring 𝔽𝑞 [x]∕  𝑥 𝑙
𝑚
− 1 , where 𝑙𝑣||(𝑞𝑡 − 1) and 𝑔𝑐𝑑(𝑙, 𝑞(𝑞 −

1)) = 1, where 𝑙, 𝑡 are prime numbers and 𝑣 is the positive integer. Let 𝔽𝑞  and 𝔽𝑞2  be the 

finite fields having 𝑞 and 𝑞2 elements, respectively. Chen et al. [5] gave all the irreducible 

factorization of (𝑥 𝑙
𝑠𝑞𝑚 − a) over the field 𝔽𝑞 , where 𝑎 ∈  𝔽𝑞

∗
, s be a non-negative integer, 

𝑙 > 3 is the prime number,  gcd 𝑙,𝑞 = 1 and 𝑙/(𝑞 − 1). In this section, we always assume 

that 𝑝 > 𝑚 is a prime number having  gcd 𝑚𝑝, 𝑞(𝑞 − 1) = 1, 𝑞2 ≡ 1(𝑚𝑜𝑑 𝑚𝑝𝑠). We 

shall explicitly determine all the irreducible factors of  𝑥𝑚𝑝
𝑠
− 1 in the polynomial ring 

𝔽𝑞[𝑥]. 

𝑥𝑚𝑝
𝑠
− 1 =  (𝑥 − 𝜉𝑚𝑝 𝑠

𝑗
)

𝑚𝑝 𝑠

𝑗=1

, 

where 𝜉𝑚𝑝 𝑠  is the 𝑚𝑝𝑠-th root of unity in the field  𝔽𝑞2 . 

Definition 3.1 Let 𝑇 =    𝑗 ∶  1 ≤ 𝑗 < 𝑚𝑝𝑠 , 𝑇𝑚𝑝 𝑠 =  𝑚𝑝𝑠 , 

 𝑇0 =  𝑝𝑠 , 2𝑝𝑠 , 3𝑝𝑠 , 4𝑝𝑠 , 5𝑝𝑠 ,………  , (𝑚− 1)𝑝𝑠 , 𝑇∗ = 𝑇 − 𝑇0, 𝑇𝑟
∗ =   𝑡 = 𝑙𝑠−𝑟𝑣 ∈

𝑇 ∶ gcd 𝑣,𝑝 = 1, 1 ≤ 𝑡 < 𝑚𝑝𝑠  for 1 ≤ 𝑟 ≤ 𝑠. 

Define  

Ψr
∗ x =    𝑥 − 𝜉𝑚𝑝 𝑠

𝑡    

𝑡∈𝑇𝑟
∗

, 𝑟 = 1,2,……… , 𝑠 

Note that 𝑇𝑚𝑝 𝑠 =  𝑚𝑝𝑠 ,  𝑇0 =  𝑝𝑠 , 2𝑝𝑠 , 3𝑝𝑠 , 4𝑝𝑠 , 5𝑝𝑠 ,………  , (𝑚− 1)𝑝𝑠  it is very clear 

that 𝑇 =  𝑇0 ∪ 𝑇1
∗ ∪ 𝑇2

∗…… .∪ 𝑇𝑠−1
∗ ∪ 𝑇𝑠

∗
 and  𝑇𝑟

∗ =  𝑚𝜙 𝑝𝑟  for 1 ≤ 𝑟 ≤ 𝑠.  

where 𝜙 1 = 1 , 𝜙 𝑝𝑟 =  𝑝𝑟−1(𝑝 − 1), 𝑟 ≥ 1 (Euler 𝑝𝑖 −function) 
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      𝑥𝑚𝑝𝑠 − 1 = (x − 1)     (𝑥 − 𝜉𝑚𝑝 𝑠
𝑡 )𝑡∈𝑆𝑟

𝑠
r=0 = (x − 1)Ψ0

∗(x)Ψ1
∗(x)… . .Ψs

∗(x).        

(3.1)             

Where Ψ0
∗(x) =  (x − 𝜉𝑚𝑝𝑠

𝑖 )𝑖∈𝑇0
 

 For each 𝑡 = 𝑝𝑠−𝑟𝑣 ∈  𝑇𝑟
∗
, 1 ≤ 𝑟 ≤ 𝑠, there is a 𝑞 −coset Ω𝑟 ,𝑣 =  𝑡, 𝑡𝑞 ⊂  𝑇𝑟

∗
 and let 

Ω𝑝𝑠 ,0 =  𝑡, 𝑡𝑞 ⊂  𝑝𝑠 , 2𝑝𝑠 , 3𝑝𝑠 , 4𝑝𝑠 , 5𝑝𝑠 ,………  , (𝑚− 1)𝑝𝑠 . Hence there is disjoint 

union  

𝑇𝑟
∗ =   Ω𝑟 ,𝑣  ,

𝑚𝛷 (𝑝𝑟 )

2

𝑘=1

  Ω𝑟 ,𝑣 = 2,𝑤𝑒𝑟𝑒 𝑣 ∈ 𝑇 = {𝑦 ∶ gcd 𝑦,𝑝 = 1 𝑎𝑛𝑑 1 ≤ 𝑦

< 𝑚𝑝𝑠  𝑎𝑛𝑑 𝑦 𝑖𝑠 𝑜𝑑𝑑} 

Thus each 𝑞 −coset Ω𝑟 ,𝑣  corresponds to an irreducible polynomial over the field 𝔽𝑞 .  

𝑓𝑟 ,𝑣 𝑥 =    (𝑥 − 𝜉𝑚𝑝 𝑠
𝑝𝑠−𝑟𝑣𝑞𝜇

 ) 

1

𝜇=0

=     𝑥 − 𝜉𝑚𝑝 𝑟
𝑣𝑞𝜇

  .

1

𝜇=0

  

 

And 𝑇𝑚𝑝 𝑠  corresponds to the irreducible polynomial (𝑥 − 1) over the field 𝔽𝑞 .  

Ω𝑝𝑠 ,0 =  𝑡, 𝑡𝑞 ⊂

  𝑝𝑠 , 2𝑝𝑠 , 3𝑝𝑠 , 4𝑝𝑠 , 5𝑝𝑠 ,………  , (𝑚−

1)𝑝𝑠  𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑎𝑛  𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙, 𝑓𝑝𝑠 ,0 𝑥 =  (𝑥 − 𝜉𝑚
𝑣𝑘𝑞

𝜇

)1
𝜇=0 . So 

the number of irreducible factors of 𝑥𝑚𝑝
𝑠
− 1 over the field 𝔽𝑞  is: 

1 +  
𝑚−1

2
+

𝑚 (𝑝𝑠−1)

2
=   1 +

(𝑚𝑝𝑠− 1)

2
. 

Lemma 3.2 There are 1 +
(𝑚𝑝𝑠− 1)

2
 irreducible factors of the polynomial 𝑥𝑚𝑝

𝑠
− 1 over the 

field 𝔽𝑞  as follows: 𝑥 − 1 for 𝑇𝑚𝑝 𝑠  ; for elements of 𝑇0 , 𝑓𝑝𝑠 ,0 𝑥 =  (𝑥 − 𝜉𝑚
𝑣𝑘𝑞

𝜇

)1
𝜇=0 , 

𝑘 = 1, 2, 3,………  ,
𝑚−1

2
  and for elements of 𝑇𝑟

∗
, 1 ≤ 𝑟 ≤ 𝑠  

𝑓𝑟 ,𝑣𝑘
 𝑥 =      𝑥 − 𝜉

𝑚𝑝 𝑟
𝑣𝑘𝑞

𝜇

  , 𝑘 = 1,2,……… ,1
𝜇=0

𝑚𝜙 (𝑝𝑟)

2
                                 (3.2) 

Recall that the number of primitive idempotents in ring 𝔽𝑞[x]∕  𝑥𝑚𝑝
𝑠
− 1  are same as the 

number of irreducible factors of 𝑥𝑚𝑝
𝑠
− 1 over 𝔽𝑞 . 

 

Theorem 3.3 There are 1 +
(𝑚𝑝 𝑠− 1)

2
 primitive idempotents in the ring 𝔽𝑞 𝑥 / 𝑥

𝑚𝑝 𝑠 − 1  . 

These primitive idempotents are given as: 

(i) The primitive idempotent  

𝜃𝑠,𝑚𝑝 𝑠 𝑥 =  
1

𝑚𝑝𝑠
   𝑥 𝑖

𝑚𝑝 𝑠− 1

𝑖=0

 

corresponds to the irreducible polynomial 𝑥 − 1 over 𝔽𝑞 . 

(ii) For elements of  𝑇0, the primitive idempotents, 

𝜃𝑝𝑠 ,0 𝑥 =  
1

𝑚𝑝𝑠
  𝑇𝑟(𝜉𝑚

−𝑣𝑘 𝑖) 𝑥 𝑖

𝑚𝑝 𝑠− 1

𝑖=0

, where 𝑘 = 1, 2, 3,………  ,
𝑚− 1

2
 

corresponds to the irreducible polynomial 𝑓𝑝𝑠 ,0 𝑥 =  (𝑥 − 𝜉𝑚
𝑣𝑘𝑞

𝜇

)1
𝜇=0  over 

𝔽𝑞 . 
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(iii) For 1 ≤  𝑟 ≤ 𝑠 ,  𝑝𝑠−𝑟𝑣𝑘  ∈  𝑇𝑟
∗
  

𝜃𝑠,𝑣𝑘
 𝑥 =  

1

𝑚𝑝𝑠
.
𝑥𝑚𝑝𝑠−1

𝑥𝑚𝑝
𝑟
−1 

  𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘 𝑖) 𝑥 𝑖

𝑚𝑝 𝑟− 1
𝑖=0                                    (3.3) 

corresponds to the irreducible polynomial 𝑓𝑟 ,𝑣𝑘
 𝑥  over 𝔽𝑞  , 

𝑘 = 1, 2,3,……… ,
mΦ(𝑝𝑟 )

2
 , respectively. 

Proof:  By Equation (3.1), we have 𝔽𝑞2  −  algebra isomorphism:  

𝜑 ∶ 𝔽𝑞2 𝑥 / 𝑥𝑚𝑝𝑠 − 1 ⟶   𝔽𝑞2 𝑥 /  (𝑥 − 𝜉𝑚𝑝𝑠
𝑗

) 
𝑚𝑝𝑠− 1
𝑗=0 ,               (3.4) 

 

 𝑎𝑖

𝑚𝑝𝑠− 1

𝑖=0

𝑥 𝑖  ⟼   𝑎𝑖

𝑚𝑝𝑠− 1

𝑖=0

,  𝑎𝑖 𝜉𝑚𝑝𝑠
1  

𝑖

𝑚𝑝𝑠− 1

𝑖=0

,……… . ,  𝑎𝑖  𝜉𝑚𝑝𝑠
𝑚𝑝𝑠−1

 
𝑖

𝑚𝑝𝑠− 1

𝑖=0

  

 

 

 

Let M  be the 𝑚𝑝𝑠 × 𝑚𝑝𝑠  character matrix as follows: 

𝑀 =

 

  
 

(𝜉𝑚𝑝𝑠
0 )0

(𝜉𝑚𝑝𝑠
0 )1

⋮
(𝜉𝑚𝑝𝑠

0 )𝑚𝑝𝑠−1

 𝜉𝑚𝑝𝑠
1  

0

 𝜉𝑚𝑝𝑠
1  

1

⋮

 𝜉𝑚𝑝𝑠
1  

𝑚𝑝𝑠−1

. . .

. . .
  

. . .

(𝜉𝑚𝑝𝑠
𝑚𝑝𝑠−1

)0

(𝜉𝑚𝑝𝑠
𝑚𝑝𝑠−1

)1

⋮

(𝜉𝑚𝑝𝑠
𝑚𝑝𝑠−1

)𝑚𝑝𝑠−1
 

  
 

 

Then we have  

φ   𝑎𝑖
𝑚𝑝𝑠− 1
𝑖=0 𝑥 𝑖 =  𝑎0, 𝑎1, 𝑎2,……… ,𝑎𝑚𝑝𝑠−1 𝑀 =  𝑏0 ,𝑏1 , 𝑏2,……… ,𝑏𝑚𝑝𝑠−1 .          

(3.5) 

By Lemma 2.2 

𝑀−1 =
1

𝑚𝑝𝑠

 

  
 

(𝜉𝑚𝑝𝑠
0 )−0

 𝜉𝑚𝑝𝑠
1  

−0

⋮

 𝜉
𝑚𝑝𝑠
(𝑚𝑝𝑠−1)

 
−0

(𝜉𝑚𝑝𝑠
0 )−1

 𝜉𝑚𝑝𝑠
1  

−1

⋮

 𝜉
𝑚𝑝𝑠
(𝑚𝑝𝑠−1)

 
−1

. . .

. . .
  

. . .

(𝜉𝑚𝑝𝑠
0 )−(𝑚𝑝𝑠−1)

 𝜉𝑚𝑝𝑠
1  

−(𝑚𝑝𝑠−1)

⋮

 𝜉
𝑚𝑝𝑠
(𝑚𝑝𝑠−1)

 
−(𝑚𝑝𝑠−1)

 

  
 

 

It is obvious that  𝑏0 ,𝑏1 , 𝑏2 ,……… ,𝑏𝑚𝑝𝑠−1 =  1,0,……… ,0 =  𝑒 is the primitive 

idempotent of   𝔽𝑞2 𝑥 /  (𝑥 − 𝜉𝑚𝑝𝑠
𝑗

) 
𝑚𝑝𝑠− 1
𝑡=0  . According to the inverse Fourier transform, 

we get the primitive idempotents θ𝑠,𝑚𝑝𝑠(𝑥) =   𝑎𝑖
𝑚𝑝𝑠− 1
𝑖=0 𝑥 𝑖  in the ring 𝔽𝑞2 𝑥 / 𝑥𝑚𝑝𝑠 −

1 , which just corresponds to the irreducible polynomial 𝑥 − 1 over the field 𝔽𝑞 . 

Namely 

φ θ𝑠,𝑚𝑝𝑠 𝑥  =   𝑎0, 𝑎1, 𝑎2,……… , 𝑎𝑚𝑝𝑠−1 𝑇 = 𝑒, 

 𝑎0 , 𝑎1,  𝑎2,……… ,𝑎𝑚𝑝𝑠−1 = 𝑒𝑇−1 =  
1

𝑚𝑝𝑠
(1−0 , 1−1, 1−2,… . . , 1−(𝑚𝑝𝑠− 1)), 

θ𝑠,𝑚𝑝𝑠 𝑥 =  
1

𝑚𝑝𝑠
  𝑥 𝑖

𝑚𝑝𝑠− 1

𝑖=0

.  

(𝑖𝑖) In equation 3.4, take  𝑏0 ,𝑏1 , 𝑏2 ,……… , 𝑏𝑚𝑝𝑠−1 , where 𝑏𝑤 = 1 if 𝑤 ∈ Ω𝑝𝑠 ,0, 

otherwise 𝑏𝑤 = 0. Hence,  
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  𝑎0 ,𝑎1 ,  𝑎2 ,… , 𝑎𝑚𝑝𝑠−1 =  𝑏0, 𝑏1 ,𝑏2 ,… ,𝑏𝑚𝑝𝑠−1 𝑀
−1 

                =
1

𝑚𝑝𝑠
 𝑇𝑟 𝜉𝑚

−0.𝑣𝑘 ,𝑇𝑟 𝜉𝑚
−1.𝑣𝑘  ,…… ,𝑇𝑟  𝜉𝑚

−𝑣𝑘(𝑚𝑝𝑠−1)
   

∴             θ𝑝𝑠 ,0 𝑥 =  
1

𝑚𝑝𝑠
  𝑇𝑟(𝜉𝑚

−𝑣𝑘𝑡) 𝑥 𝑡
𝑚𝑝𝑠− 1
𝑡=0  

corresponds to the polynomial 𝑓𝑝𝑠 ,0 𝑥 =  (𝑥 − 𝜉𝑚
𝑣𝑘𝑞

𝜇

)1
𝜇=0 . 

(iii)If 1 ≤ 𝑟 ≤ 𝑠, then we divide into two sub cases. 

Sub case (i): If 𝑟 = 𝑠 and each 𝑡 = 𝑣 ∈  𝑇𝑠
∗
 with 𝑔𝑐𝑑 𝑣,𝑝 =  1. By Lemma 3.2, there is 

an irreducible polynomial 𝑓𝑠 ,𝑣 𝑥  =  (𝑥 − 𝜉𝑚𝑝 𝑟
𝑣𝑞𝜇1

𝜇=0 ) over the field 𝔽𝑞 .  It is well-known 

that there is a natural 𝔽𝑞2 −algebra isomorphism-  

𝜑1 ∶ 𝔽𝑞2 𝑥 / 𝑓𝑠,𝑣 𝑥  ⟶   𝔽𝑞2 𝑥 /  𝑥 − 𝜉𝑚𝑝𝑠
𝑣𝑞𝜇  

 1

𝜇=0

, 

𝑐 𝑥 =  𝑐𝜇

1

𝜇=0

𝑥𝜇  ⟼   𝑐𝜇  𝜉𝑚𝑝𝑠
𝑣  

𝜇
1

𝜇=0

,  𝑐𝜇  𝜉𝑚𝑝𝑠
𝑣𝑞

 
𝜇

1

𝜇=0

 . 

Note that the identity of the ring 𝔽𝑞2 𝑥 / 𝑓𝑠,𝑣 𝑥   is equal to identity of the ring 𝔽𝑞 𝑥 /

 𝑓𝑠 ,𝑣 𝑥  . 

Let P be the 2 × 2 character matrix as follows: 

P =  
 𝜉𝑚𝑝𝑠

𝑣  
0

 𝜉𝑚𝑝𝑠
𝑣𝑞

 
0

 𝜉𝑚𝑝𝑠
𝑣  

1
 𝜉𝑚𝑝𝑠

𝑣𝑞
 

1 

 

 

𝜑1 𝑐 𝑥  =  𝑐0, 𝑐1 𝑃. 

Take 𝑐 𝑥 = 1, then we have 𝜑1 1 =  1,0 𝑃 =  1,1 . 

In equation 3.4, take  𝑏0, 𝑏1 ,𝑏2 ,……… ,𝑏𝑚𝑝𝑠−1 , where 𝑏𝑗 = 1 if 𝑡 ∈ {𝑣, 𝑣𝑞}, otherwise 

𝑏𝑗 = 0 . Hence 

 𝑎0, 𝑎1,  𝑎2,… ,𝑎𝑚𝑝𝑠−1 =  𝑏0 , 𝑏1, 𝑏2 ,… , 𝑏𝑚𝑝𝑠−1 𝑀
−1 

  

=
1

𝑚𝑝𝑠
 𝑇𝑟   𝜉𝑚𝑝𝑠

𝑣  
−0
 ,𝑇𝑟   𝜉𝑚𝑝𝑠

𝑣  
−1
 ,…… ,𝑇𝑟   𝜉𝑚𝑝𝑠

𝑣  
−(𝑚𝑝𝑠−1)

   

(i)  

Therefore  there is a primitive idempotent  

𝜃𝑠,𝑣 𝑥 =  
1

𝑚𝑝𝑠
 𝑇𝑟 𝜉𝑚𝑝𝑠

−𝑣𝑖   𝑥 𝑖

𝑚𝑝𝑠− 1

𝑖=0

 

in the ring 𝔽𝑞 𝑥 / 𝑥
𝑚𝑝𝑠 − 1   which corresponds to the irreducible polynomial 𝑓𝑠 ,𝑣 𝑥  over 

the field 𝔽𝑞 . 

 

Sub case (ii): If  1 ≤ 𝑟 < 𝑠 and for each 𝑡 =  𝑝𝑠−𝑟𝑣 ∈  𝑇𝑟
∗
  𝑔𝑐𝑑(𝑣, 𝑝) = 1. By Lemma 

3.2, there is an irreducible polynomial  𝑓𝑟 ,𝑣 =   (𝑥 − 𝜉𝑚𝑝 𝑟
𝑣𝑞𝜇

) 1
𝜇=0  over 𝔽𝑞 . Replacing s by r 

in above discussion, we can get the primitive idempotent 
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𝜃𝑟 ,𝑣 𝑥 =  
1

𝑚𝑝𝑟
 (𝑇𝑟 𝜉𝑚𝑝 𝑟

−𝑢𝑖   𝑥 𝑖

𝑚𝑝 𝑟− 1

𝑖=0

 

In the ring 𝔽𝑞 𝑥 / 𝑥
𝑚𝑝 𝑟 − 1  which corresponds to an irreducible polynomial 𝑓𝑟 ,𝑣(𝑥). 

By (3.1), there is the natural 𝔽𝑞 −algebraic isomorphism:  

𝜑2:
𝔽𝑞 𝑥 

 𝑥𝑚𝑝𝑠 − 1 
→

𝔽𝑞 𝑥 

 𝑥𝑚𝑝
𝑟
− 1 

 ×     
𝔽𝑞 𝑥 

 𝛹𝑖 𝑥  

𝑠

𝑖=𝑟+1

  

θ𝑠−𝑟 𝑥 =
1

𝑝𝑠−𝑟
 .
𝑥𝑚𝑝𝑠−1

𝑥𝑚𝑝
𝑟
−1

 ⟼ (1,0,0,……… ,0)  

Hence θ𝑠,𝑣𝑘
 𝑥 =  θ𝑠−𝑟 𝑥 θ𝑟 ,𝑣𝑘

 𝑥  are the primitive idempotents in the ring 𝔽𝑞 𝑥 /

 𝑥𝑚𝑝𝑠 − 1 , which corresponds to the irreducible polynomials 𝑓𝑟 ,𝑣 𝑥  over the field 𝔽𝑞  for 

𝑘 = 1,2,……… ,
mΦ(𝑝𝑟 )

2
. 

∎ 

 

4. THE WEIGHT DISTRIBUTIONS OF IRREDUCIBLE CYCLIC CODES OF LENGTH 

𝑚𝑝𝑠  

In this section, we suppose that 𝑞2 ≡ 1(𝑚𝑜𝑑 𝑚𝑝𝑠) and 𝑔𝑐𝑑 𝑚𝑝,𝑞 𝑞 − 1  = 1, 

where 𝑝 > 𝑚 be a prime number. In the following part, we give all the weight distributions 

of irreducible cyclic codes over the field 𝔽𝑞  by primitive idempotents in the ring 𝔽𝑞 𝑥 /

 𝑥𝑚𝑝𝑠 − 1 . 

Let 𝒞 denotes the irreducible cyclic code of length 𝑚𝑝𝑠  generated by a primitive 

idempotent 𝜃(𝑥) whose parity-check polynomial is the irreducible divisor of 𝑥𝑚𝑝𝑠 − 1. 

Further, it is clear that 𝒞 =   𝜃(𝑥)  =   𝑔(𝑥)  , where 𝑔 𝑥 = gcd(𝜃 𝑥 ,𝑥𝑚𝑝𝑠 − 1) is 

called generator polynomial of the irreducible cyclic code 𝒞. 

Lemma 4.1. [8] Let 𝒞 be the [n, k’]  code over the field 𝔽𝑞  with enumerator A(z) and let B(z) 

be weight enumerator of 𝒞⊥ . Then  

B(z) = 𝑞−𝑘′(1 +  𝑞 − 1 𝑧)𝑛𝐴 
1−𝑧

1+ 𝑞−1 𝑧
 . 

Lemma 4.2. Suppose that 1 ≤ 𝑟 ≤ 𝑠 and 𝑔𝑐𝑑 𝑝, 𝑣𝑘 = 1. Then all the two distinct 

columns of the following 2 × 𝑚𝑝𝑟  matrix 

 
𝑇𝑟(𝜉

𝑚𝑝 𝑟
−𝑣𝑘0

) 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘1

)…… 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘(𝑚𝑝 𝑟−1)

)

𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘(𝑚𝑝 𝑟−1)

) 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘0

)…… 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘(𝑚𝑝 𝑟−2)

)
  

are linear independent over the field  𝔽𝑞 . 

Proof:  Without loss of generality, we can suppose that 𝑢 = 1. For 0 ≤ 𝑖 < 𝑗 ≤ 𝑚𝑝𝑟 − 1,           

𝑇𝑟(𝜉𝑚𝑝 𝑟
−𝑖 ) =  𝑇𝑟(𝜉𝑚𝑝 𝑟

𝑖 ) =  𝜉𝑚𝑝 𝑟
𝑖 +   𝜉𝑚𝑝 𝑟

−𝑖   by  𝑞 = −1(𝑚𝑜𝑑 𝑚𝑝𝑠) and the determinant   

 
𝑇𝑟(𝜉𝑚𝑝 𝑟

−𝑖 ) 𝑇𝑟(𝜉𝑚𝑝 𝑟
−𝑗

)

𝑇𝑟(𝜉
𝑚𝑝 𝑟
−(𝑖−1)

) 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−(𝑗−1)

)
 = 𝑇𝑟(𝜉𝑚𝑝 𝑟

𝑗−𝑖+1
) −  𝑇𝑟(𝜉𝑚𝑝 𝑟

𝑗 −𝑖−1
)  ≠ 0 

∎ 

Theorem 4.3. From theorem 3.3, the weight distributions of all irreducible cyclic codes of 

length 𝑚𝑝𝑠  as follows:- 
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(i) 𝒞0 =    𝜃𝑠,𝑚𝑝 𝑠 𝑥    is an [𝑚𝑝𝑠, 1, 𝑚𝑝𝑠] cyclic code with parity-check 

polynomial 𝑥 − 1. 

(ii) For the elements of 𝑇0, 𝒞𝑝𝑠 ,0 =  𝜃𝑝𝑠 ,0 𝑥   is a [𝑚𝑝𝑠 , 2, (𝑚 − 1)𝑝𝑠] cyclic code 

with parity check polynomial 𝑓𝑝𝑠 ,0 𝑥 = 𝑥2 −  𝑇𝑟(𝜉𝑚
𝑣𝑘 )𝑥 + 1 and its Hamming 

weight enumerator polynomial is given by 

1 + 𝑚(𝑞𝑘′ − 1)𝑧(𝑚−1)𝑝𝑠 +  𝑞2𝑘′ − 1 −𝑚(𝑞𝑘′ − 1) 𝑧𝑚𝑝
𝑠
. 

(iii) If 1 ≤ 𝑟 ≤ 𝑠 𝑎𝑛𝑑 𝑚𝑝𝑠−𝑟𝑣𝑘  ∈  𝑇𝑟
∗
, 𝑘 = 1, 2,……… ,

𝑚𝜙 (𝑝𝑟 )

2
, then each 

𝒞𝑠,𝑣𝑘
=    𝜃𝑠,𝑣𝑘

 𝑥    is a [𝑚𝑝𝑠 , 2, 𝑚𝑝𝑠 − 𝑝𝑠−𝑟 ]  cyclic code with parity-check 

polynomial 

𝑓𝑟 ,𝑣𝑘
 𝑥 = 𝑥2 −  𝑇𝑟(𝜉

𝑚𝑝 𝑟
𝑣𝑘 )𝑥 + 1 and its Hamming weight enumerator 

polynomial is given by 

1 + 𝑚𝑝𝑟(𝑞𝑘′ − 1)𝑧(𝑚𝑝 𝑠−𝑝𝑠−𝑟) +  𝑞2𝑘′ − 1 −𝑚𝑝𝑟(𝑞𝑘′ − 1) 𝑧𝑚𝑝𝑠 . 

Proof: We only need to prove the case (iii). Suppose that 1 ≤ 𝑟 ≤ 𝑠 𝑎𝑛𝑑 𝑚𝑝𝑠−𝑟𝑣𝑘  ∈

 𝑇𝑟
∗
. Then, we have 𝜉

𝑝r
𝑞𝑣𝑘 =  𝜉

𝑝r
−𝑣𝑘  by  𝑝s  (𝑞 + 1). Let 𝑅𝑠 =  𝔽𝑞 𝑥 / 𝑥

𝑚𝑝𝑠 − 1  then by the 

construction of the primitive idempotent 𝜃𝑠,𝑣𝑘
 𝑥  we get  

𝒞𝑠,𝑣𝑘
=   𝜃𝑠 ,𝑣𝑘

 𝑥   =  𝑅𝑠𝜃𝑠,𝑣𝑘
 𝑥  ≅  𝔽𝑞 𝑥 / 𝑓𝑟 ,𝑣𝑘

 𝑥   , 

Where  

𝑓𝑟 ,𝑣𝑘
 𝑥 =  𝑥 − 𝜉

𝑚𝑝 𝑟
𝑣𝑘   𝑥 − 𝜉

𝑚𝑝 𝑟
−𝑣𝑘  =  𝑥2 −  𝑇𝑟(𝜉

𝑚𝑝 r
𝑣𝑘 )𝑥 + 1 is the parity check polynomial 

of 𝒞𝑠,𝑚𝑝𝑠−𝑟𝑣𝑘
.  

Hence    𝒞𝑠,𝑣𝑘
=  𝑟 𝑥 𝜃𝑠,𝑣𝑘

 𝑥 :𝑟 𝑥 =  𝑎0 + 𝑎1 𝑥 ; 𝑎0 ,𝑎1  ∈ 𝔽𝑞 .  

 

Further it is clear that    

 
𝑥𝑚𝑝

𝑠
− 1

𝑥𝑚𝑝
𝑟
− 1 

  𝑥 𝑚𝑝
𝑟
≡  

𝑥𝑚𝑝
𝑠
− 1

𝑥𝑚𝑝
𝑟
− 1 

𝑚𝑜𝑑(𝑥𝑚𝑝
𝑠
− 1). 

 

Let 𝑓 𝑥 ∈ 𝑅𝑠 =  𝔽𝑞 𝑥 / 𝑥
𝑚𝑝 𝑠 − 1  then the number of non-zero coefficients of 𝑓 𝑥  of 

degree atmost 𝑚𝑝𝑠 −  1 is called the Hamming weight, which is denoted by 𝑊(𝑓 𝑥 ).  

For 𝑟 𝑥  𝜃𝑠,𝑣𝑘
 𝑥  ∈  𝒞𝑠,𝑣𝑘

  and 𝑔𝑐𝑑 𝑣𝑘 ,𝑝𝑟 =  1, 

𝑊 𝑟 𝑥 𝜃𝑠,𝑣𝑘
 𝑥  =  𝑝𝑠−𝑟𝑊 𝑟 𝑥 𝜃𝑟 ,𝑣𝑘

 𝑥  , 

Where  

𝑟 𝑥  𝜃𝑠,𝑣𝑘
 𝑥  ∈  𝑅𝑟 =  𝔽𝑞 𝑥 / 𝑥

𝑚𝑝 𝑟 − 1   and  𝑥 𝑚𝑝
𝑟
≡ 1 𝑚𝑜𝑑(𝑥𝑚𝑝

𝑟
− 1). 

Assume that 𝑝𝑟𝑟 𝑥  𝜃𝑟 ,𝑣𝑘
 𝑥 ≡  [𝑏0+ 𝑏1𝑥 +  ……… , 𝑏𝑚𝑝 𝑟−1 𝑥 

𝑚𝑝 𝑟−1]𝑚𝑜𝑑 𝑥𝑚𝑝
𝑟
− 1 ,  

Then, we have 

(𝑏0 , 𝑏1,……… ,𝑏𝑚𝑝 𝑟−1)

=
1

𝑚
 𝑎0,𝑎1  

𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘0

)                 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘1

) ……… 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘 (𝑚𝑝 𝑟−1)

)

𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘(𝑚𝑝 𝑟−1)

)          𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘0

) …  …… 𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘(𝑚𝑝 𝑟−2)

)
  

We shall divide ∧= { 𝑎0 ,𝑎1  ∈  𝔽𝑞  ×  𝔽𝑞} into three subsets: 
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∧1=   𝑎0, 𝑎1 ∈ ∧ : −
𝑎0

𝑎1
 ∈  

𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘(𝑚𝑝 𝑟−1)

)

𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘 .0

)
 ,……… ,  

𝑇𝑟(𝜉
𝑚𝑝 𝑟
−𝑣𝑘 .(𝑚𝑝 𝑟−2)

)

𝑇𝑟(𝜉
𝑚𝑙 h

−𝑣𝑘(𝑚𝑝 𝑟−1)
)
   

∧0= { 0,0 },   ∧2=∧∖  ∧0∪∧1 . 

If  𝑎0, 𝑎1 ∈∧0, then (𝑏0 , 𝑏1,……… ,𝑏𝑚𝑝 𝑟−1) = 0 and 𝑊 𝑟 𝑥 𝜃𝑠,𝑣𝑘
 𝑥  = 0. 

If  𝑎0, 𝑎1 ∈∧1, then only one of 𝑏0 , 𝑏1 ,……… , 𝑏𝑚𝑝 𝑟−1 is equal to 0 and 

𝑊 𝑟 𝑥 𝜃𝑠,𝑣𝑘
 𝑥  = 𝑝𝑠−𝑟 𝑚𝑝𝑟 − 1 . 

If  𝑎0, 𝑎1 ∈∧2, then all 𝑏0 ,𝑏1 ,……… , 𝑏𝑚𝑝 𝑟−1 are not equal to 0 and 𝑊 𝑟 𝑥 𝜃𝑠,𝑣𝑘
 𝑥  =

𝑚𝑝𝑠 . 

On the other hand,  ∧0 = 1,   ∧1 = 𝑚𝑝𝑟(𝑞𝑘′ − 1) by Lemma 4.2, and  ∧2 = (𝑞2𝑘′ −

 1 −𝑚𝑝𝑟(𝑞𝑘′ − 1)), which provides the frequency of the weights. Hence the Hamming 

weight enumerator polynomial of each 𝒞𝑠,𝑣𝑘
  is 1 +    𝑚𝑝𝑟 𝑞𝑘′ − 1 𝑧(𝑚𝑝 𝑠−𝑝𝑠−𝑟) + (𝑞2𝑘′ −

 1 −𝑚𝑝𝑟(𝑞𝑘′ − 1))𝑧𝑚𝑝
𝑠
. 

∎ 

By Lemma 4.1, we have the following conclusion: 

Corollary 4.4. In Theorem 4.3, if 1 ≤ 𝑟 ≤ 𝑠, 𝑚𝑝𝑠−𝑟𝑣𝑘  ∈ 𝑇𝑟
∗, 𝑘 =

1,2,……… ,
𝑚 .𝜙(𝑝𝑟 )

2
, then the Hamming weight enumerator polynomial of 𝒞𝑠,𝑣𝑘

⊥   is  

𝑞−2( 1 +  𝑞 − 1 𝑧 𝑚𝑝
𝑠

+ 𝑚𝑝𝑟 𝑞 − 1  𝑧 − 1 (𝑚𝑝 𝑠−𝑝𝑠−𝑟) 1 +  𝑞 − 1 𝑧 𝑚𝑝
𝑠−𝑟

−  (𝑞2 −

 1 −𝑚𝑝𝑟 𝑞 − 1 )(𝑧 − 1)𝑚𝑝
𝑠
). 

5. EXAMPLE 

               In this section, we give a example in support of our results.  
 We assume that 𝑝 > 5 is a prime number with gcd(5𝑝, 𝑞(𝑞 − 1)) = 1, 𝑞 ≡ −1(𝑚𝑜𝑑 5𝑝𝑠), m is a positive 

integer. 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 5.1: 𝐿𝑒𝑡 𝑝 = 7,𝑞 = 3919, 𝑠 = 2.  Then 5𝑝𝑠 = 245, then we have 𝑇 = {1,2,3,… ,244},  
𝑇245 = {245} and  𝑇0 = {49,98,147,196}.  

𝑇1
∗ = {7,14,21,28,35,42,56,63,… ,238}, 𝑇2

∗ = {1,2,3,4,5,6,8,9,… ,244}. 

Since 𝑞 ≡ −1(𝑚𝑜𝑑 245) the distinct q cosets are given by  

Ω1,1 = {7 , 238},  Ω1,3 = {21 , 224}, Ω1,5 = {35 , 210}, Ω1,9 =  63 , 182 ,Ω1,11 =  77 , 168 ,  

Ω1,13 =  91 , 154 , Ω1,15 = {105 , 140},  Ω1,17 = {119 , 126}, Ω1,19 = {133 , 112}, Ω1,23 =

 161 , 84 ,Ω1,25 =  175 , 70 , Ω1,27 = {189 , 56}, Ω1,29 = {203 , 42}, Ω1,31 = {217 , 28}, 

Ω1,33 = {231 , 14}. 

Ω2,1 = {1 , 244}, Ω2,3 = {3 , 242}, Ω2,5 = {5 , 240}, Ω2,9 = {9 , 236}, Ω2,11 = {11 , 234},  

Ω2,13 = {13 , 232}, Ω2,15 = {15 , 230}, Ω2,17 = {17 , 228}, Ω2,19 = {19 , 226}, Ω2,23 =

{23 , 222},  Ω2,25 = {25 , 220}, Ω2,27 = {27 , 218},  Ω2,29 = {29 , 216}, Ω2,31 = {31 , 214}, 

Ω2,33 = {33 , 212},  Ω2,37 = {37 , 208}, Ω2,39 = {39 , 206}, Ω2,41 = {41 , 204},  Ω2,43 =

{43 , 202}, Ω2,45 = {45 , 200},  Ω2,47 = {47 , 198}, Ω2,51 = {51 , 194}, Ω2,53 = {53 , 192}, 

Ω2,55 = {55 , 190}, Ω2,57 = {57 , 188},  Ω2,59 = {59 , 186}, Ω2,61 = {61 , 184}, Ω2,65 =

{65 , 180}, Ω2,67 = {67 , 178}, Ω2,68 = {68 , 177}, Ω2,69 = {69 , 176}, Ω2,71 = {71 , 174}, 

Ω2,73 = {73 , 172}, Ω2,75 = {75 , 170}, Ω2,79 = {79 , 166}, Ω2,81 = {81 , 164}, Ω2,83 =

{83 , 162}, Ω2,85 = {85 , 160}, Ω2,87 = {87 , 158}, Ω2,89 = {89 , 156}, Ω2,93 = {93 , 152}, 

Ω2,95 = {95 , 150}, Ω2,97 = {97 , 148}, Ω2,99 = {99 , 146}, Ω2,101 = {101 , 144}, Ω2,103 =

{103 , 142}, Ω2,107 = {107 , 138}, Ω2,109 = {109 , 136}, Ω2,111 = {111 , 134}, Ω2,113 =

{113 , 132}, Ω2,115 = {115 , 130}, Ω2,117 = {117 , 128}, Ω2,121 = {121 , 124}, Ω2,123 =
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{123 , 122}, Ω2,125 = {125 , 120}, Ω2,127 = {127 , 118}, Ω2,129 = {129 , 116}, Ω2,131 =

{131 , 114}, Ω2,135 = {135 , 110}, Ω2,137 = {137 , 108}, Ω2,139 = {139 , 106}, Ω2,141 =

{141 , 104}, Ω2,143 = {143 , 102}, Ω2,145 = {145 , 100}, Ω2,149 = {149 , 96}, Ω2,151 =

{151 , 94}, Ω2,153 = {153 , 92}, Ω2,155 = {155 , 90}, Ω2,157 = {157 , 88}, Ω2,159 = {159 , 86}, 

Ω2,163 = {163 , 82}, Ω2,165 = {165 , 80}, Ω2,167 = {167 , 78}, Ω2,169 = {169 , 76}, Ω2,171 =

{171 , 74}, Ω2,173 = {173 , 72}, Ω2,177 = {177 , 68}, Ω2,179 = {179 , 66}, Ω2,181 = {181 , 64}, 

Ω2,183 = {183 , 62}, Ω2,185 = {185 , 60}, Ω2,187 = {187 , 58}, Ω2,191 = {191 , 54}, Ω2,193 =

{193 , 52}, Ω2,195 = {195 , 50}, Ω2,197 = {197 , 48}, Ω2,199 = {199 , 46}, Ω2,201 = {201 , 44}, 

Ω2,205 = {205 , 40}, Ω2,207 = {207 , 38}, Ω2,209 = {209 , 36}, Ω2,211 = {211 , 34}, Ω2,213 =

{213 , 32}, Ω2,215 = {215 , 30}, Ω2,219 = {219 , 26}, Ω2,221 = {221 , 24}, Ω2,223 = {223 , 22}, 

Ω2,225 = {225 , 20}, Ω2,227 = {227 , 18}, Ω2,229 = {229 , 16}, Ω2,233 = {233 , 12}, Ω2,235 =

{235 , 10}, Ω2,237 = {237 , 8}, Ω2,239 = {239 , 6}, Ω2,241 = {241 , 4}, Ω2,243 = {243 , 2}, The 

three classes of irreducible cyclic codes of length 245 in  𝔽𝑞 [x]∕  𝑥5𝑙𝑚 − 1  are the following: 

(1)  There is 𝑜𝑛𝑒 [245,1,245] irreducible cyclic code with parity check polynomial 𝑥 − 1. 

(2) There are 𝑡𝑤𝑜 [245,2,196] irreducible cyclic codes with parity check polynomial 𝑥2 −

 𝑇𝑟(𝜉5)𝑥 + 1 and its hamming weight enumerator polynomial is 1 + 5(3919𝑘′ −

1)𝑧196 +  39192𝑘′ − 1 − 5(3919𝑘′ − 1) 𝑧245 . 

(3) There are 𝑓𝑖𝑓𝑡𝑒𝑒𝑛 [245,2,238] irreducible cyclic codes with parity check polynomial 

𝑥2 −  𝑇𝑟(𝜉35 )𝑥 + 1 and its hamming weight enumerator polynomial is 1 + 35(3919𝑘′ −

1)𝑧238 +  39192𝑘′ − 1 − 35(3919𝑘′ − 1) 𝑧245 . 

(4) There are 𝑜𝑛𝑒 𝑢𝑛𝑑𝑟𝑒𝑑 𝑓𝑖𝑣𝑒 [245,2,244] irreducible cyclic codes with parity check 

polynomial 𝑥2 −  𝑇𝑟(𝜉245 )𝑥 + 1 and its hamming weight enumerator polynomial is 

1 + 245(3919𝑘′ − 1)𝑧244 +  39192𝑘′ − 1 − 245(3919𝑘′ − 1) 𝑧245 . 

 REFERENCES 

 

[1] Arora, S. K., Batra, S., Cohen, S. D., and Pruthi, M., The primitive idempotents of a   

      cyclic group algebra, Southeast Asian Bull. Math. 26, (2002) pp. 197-208. 

[2] Arora, S. K., and Pruthi, M., Minimal cyclic codes of length 2𝑝𝑛 , Finite Fields Appl. 5, 

      (1999) pp.177-187. 

[3] Batra, S., and Arora, S. K., Some cyclic codes of length 2𝑝𝑛 , Des. Codes Cryptogr. 61, 

      (2011) pp.41-69. 

[4] Bakshi, G. K., and Raka, M., Minimal cyclic codes of length 𝑝𝑛q, Finite Fields Appl. 9,         

      (2003) pp.432-448. 

[5] Chen, B., Fan, Y., Lin, L., and Liu, H., Constacyclic codes over finite  fields, Finite 

Fields 

      Appl. 18, (2012) pp.1217-1231. 

[6] Chen, B., Liu, H., and Zhang, G., A class of minimal cyclic codes over finite fields, 

Des. 

      Codes Cryptogr. 74, (2015) pp.285-300.  

[7] Kumar, S., Pankaj., Pruthi, M., The Minimum Hamming Distances of the irreducible 

      cyclic codes of length 2𝑎𝑝1
𝑎1𝑝2

𝑎2 …𝑝𝑒
𝑎𝑒 , Int. Journal of Mathematics and Statistics 

 Invention vol.4, (2016) pp.44-70.  

[8] Lidl, R., and Niederreiter, H., Finite Fields, Cambridge University Press, Cambridge  

      (2008). 

[9] Lint, J.H.van., Introduction to Coding Theory, Springer-Verlag, Berlin (2003). 

[10] Li, F., Yue, Q., and Li, C., The minimum Hamming distances of irreducible cyclic 

        codes, Finite Field Appl. 29, (2014) pp.225-242. 



 ISSN: 2320-0294Impact Factor: 6.765  

50 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

[11] Li, F., Yue, Q., and Li, C., The irreducible cyclic codes of length 4𝑝𝑛  and 8𝑝𝑛 , Finite 

        Field Appl. 34, (2015) pp.208-234. 

[12] Li, F., Yue, Q., The primitive idempotents and weight distributions of irreducible 

        constacyclic codes, Des. Codes Cryptogr. 3  DOI: 10.1007/s10623-017-0356 -

2(2017). 

[13] MacWilliams, F.J., and Sloane, N.J.A., The Theory of Error Correcting Codes, North 

        Holland, Amsterdam (1977). 

[14] Pruthi, M., Cyclic codes of length 2𝑚 , Proc. Indian Acad. Sci. Math. Sci. 111, (2001) 

        pp.371-379.  

[15] Pruthi, M., and Arora, S. K., Minimal cyclic codes of prime power length, Finite 

Fields 

        Appl. 3, (1997) pp.99-113. 

[16] Sharma, A., Bakshi, G. K., Dumir, V. C., and Raka, M., Irreducible cyclic codes of 

        length 2𝑛 , Ars Combin. 86, (2008) pp.133-146. 

[17] Singh, R., and Pruthi, M., Primitive idempotents of irreducible quadratic residue 

cyclic 

        codes of length 𝑝𝑛𝑞𝑚 , Int. J. Algebra 5, (2011) pp.285-294. 

[18] Wan, Z., Lectures on Finite Fields and Galois Rings, World Scientific Publishing, 

        Singapore (2003). 

 
 


