SOME CLASS OF ENTIRE DOUBLE SEQUENCE OF INTERVAL NUMBERS

S. Zion Chella Ruth *

\qquad

KEYWORDS:

Banach space;

Abstract

In this paper, the new concept of class of entire sequence space of interval numbers is introduced. The different properties of sequence space like completeness, solidness, $A B$ space, $A K$ property and symmetric are studied.

AB space;
AK property;
Sequence algebra.

Copyright © 2019 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

Dr. S. Zion Chella Ruth

Assistant Professor of Mathematics, Pope's college(Autonomous), Sawyerpuram, Tuticorin, Tamilnadu,India. (Affliated to Manonmaniam Sundaranar University, Tirunelveli)

1. INTRODUCTION

Interval arithmetic was first suggested by Dwyer [5] in 1951. Development of interval arithmetic as a formal system and evidence of its value as a computational device was provided by Moore [10] in 1959 and Moore and Yang [11] 1962. Furthermore, Moore and others [12] have developed applications to differential equations.

Chiao in [8] introduced sequence of interval numbers and defined usual convergence of sequences of interval number. Sengönül and Eryilmax [13] in 2010 introduced and studied bounded and convergent sequence space of interval numbers and
showed that these spaces are complete metric space. Recently Esi [1],[2],[3] and [7] introduced some new type sequence spaces of interval numbers.

A set consisting of a closed interval of real numbers x such that $a \leq x \leq b$ is called an interval number. A real interval can also be considered as a set. Thus we can investigate some properties of interval numbers, for instance arithmetic properties or analysis properties. We denote the set of all real valued closed intervals by $I \Re$. Any elements of $I \Re$ is called closed interval and denoted by \bar{x}. That is $\bar{x}=\{x \in \mathfrak{R}: a \leq x \leq b\}$. An interval number \bar{x} is a closed subset of real numbers. Let x_{l} and x_{r} be be respectively first and last points of the interval number \bar{x}.

For $\bar{x}_{1}, \bar{x}_{2} \in I \Re$, we define $\bar{x}_{1}=\bar{x}_{2}$ if and only if $x_{1 l}=x_{2 l}$ and $x_{1 r}=x_{2 r}$
$\left.\bar{x}_{1}+\bar{x}_{2}=\left\{x \in \mathfrak{R}: x_{1 l}+x_{2 l} \leq x \leq x_{1 r}+x_{2 r}\right)\right\}$
$\bar{x}_{1} \times \bar{x}_{2}=\left\{x \in \mathfrak{R}: \min \left(x_{1 l} x_{2 l}, x_{1 l} x_{2 r}, x_{1 r} x_{2 l}, x_{1 r} x_{2 r}\right) \leq x \leq \max \left(x_{1 l} x_{2 l}, x_{1 l} x_{2 r}, x_{1 r} x_{2 l}, x_{1 r} x_{2 r}\right)\right\}$
The set of all interval numbers $I \mathfrak{R}$ is a complete metric space defined by

$$
d\left(\bar{x}_{1}, \bar{x}_{2}\right)=\max \left\{\left|\bar{x}_{1 l}-\bar{x}_{2 l}\right|,\left|\bar{x}_{1 r}-\bar{x}_{2 r}\right|\right\}
$$

In the special case $\bar{x}_{1}=[a, a]$ and $\bar{x}_{2}=[b, b]$, we obtain usual metric of \mathfrak{R}.
Let us define transformation $f: N \times N \rightarrow \mathfrak{R}, k, l \rightarrow f(k, l)=\bar{x}_{k, l}$, then $\bar{x}=\left(\bar{x}_{k, l}\right)$ is called double sequence of interval numbers. $\bar{x}_{k, l}$ is called $k, l^{\text {th }}$ term of sequence $\bar{x}=\left(\bar{x}_{k, l}\right)$. We denote by $\omega^{2}(I R)$ the set of all double sequence of interval numbers.

A sequence $\bar{x}=\left(\bar{x}_{k, l}\right)$ of double sequence interval numbers is said to be convergent in the Pringsheim's sense or P-convergent to the interval number \bar{x}_{0} if for each $\varepsilon>0$ there exists a positive integer k_{0} such that $d\left(\bar{x}_{k, l}, \bar{x}_{0}\right)<\varepsilon$ for all $k, l \geq k_{0}$.

A sequence $\bar{x}=\left(\bar{x}_{k, l}\right)$ of double sequence of interval numbers is said to be double interval fundamental sequence if for every $\varepsilon>0$ there exists $k_{0} \in \mathrm{~N}$ such that $d\left(\bar{x}_{k, l}, \bar{x}_{m, n}\right)<\varepsilon$ whenever $m, n, k, l>k_{0}$.

Let $p=\left(p_{k, l}\right)$ be a double sequence of positive real numbers.
An interval double sequence space $E^{2}(I R)$ is said to be solid if $\bar{y}=\left(\bar{y}_{k, l}\right) \in E^{2}(I R)$ whenever $\left|\bar{y}_{k, l}\right| \leq\left|\bar{x}_{k, l}\right|$ for all $k, l \in \mathrm{~N}$ and $\quad \bar{x}=\left(\bar{x}_{k, l}\right) \in E^{2}(I R)$.

An interval double sequence space $E^{2}(I R)$ is said to be monotone if $E^{2}(I R)$ contains the canonical pre-image of all its step spaces.

A interval double sequence space $E^{2}(I R)$ is said to be sequence algebra if $\bar{x} \otimes \bar{y}=\left(\bar{x}_{k, l} \otimes \bar{y}_{k, l}\right) \in E^{2}(I R)$, whenever $\quad \bar{x}=\left(\bar{x}_{k, l}\right) \in E^{2}(I R), \quad \bar{y}=\left(\bar{y}_{k, l}\right) \in E^{2}(I R)$.

Let us denote the space of all entire functions of interval numbers by $\Gamma^{2}(I R)$. For each fixed k, l we define the metric

$$
\rho\left(\bar{x}_{k, l}, \bar{y}_{k, l}\right)=\max \left\{\left|x_{k, l}{ }^{f}-y_{k, l}{ }^{f}\right|^{1 / p_{k, l}},\left|x_{k, l}{ }^{r}-y_{k, l}{ }^{r}\right|^{1 / p_{k, l}}\right\}=\left[d\left(\bar{x}_{k, l}, \bar{y}_{k, l}\right)\right]^{1 / p_{k, l}}
$$

We define $\Gamma^{2}(I R)$ by $\Gamma^{2}(I R)=\left\{\bar{x}=\left(\bar{x}_{k, l}\right) \in \omega^{2}(I R): \lim _{k, l \rightarrow \infty} \rho\left(\bar{x}_{k, l}, \overline{0}\right)=0\right\}$
Throughout this paper, let $\lambda=\left(\lambda_{k, l}\right)$ be a fixed double sequence of positive real numbers such that $\frac{\lambda_{k+1, l+1}}{\lambda_{k, l}} \rightarrow 1$ as $k, l \rightarrow \infty$ and $\lambda_{k, l} \neq 1$ for all k, l. The space $G_{\lambda^{2}}^{2}(I R)$ is defined by

$$
G_{\lambda^{2}}^{2}(I R)=\left\{\bar{x}=\left(\bar{x}_{k, l}\right): \sum_{k, l=1}^{\infty} \lambda_{k, l}^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\infty\right\}
$$

Example: Let $\lambda=\left(\lambda_{k, l}\right)=(k l), k, l \in N$ and $\bar{x}=\left(\bar{x}_{k, l}\right)=\left(\left[\frac{1}{(k l)^{4}}, \frac{1}{(k l)^{2}}\right]\right)$
Then $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}=\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2}\left[\max \left(\left|\frac{1}{(k l)^{4}}\right|,\left|\frac{1}{(l k)^{2}}\right|\right)\right]^{2}$

$$
=\sum_{k, l=1}^{\infty}(k l)^{2} \frac{1}{(k l)^{4}}=\sum_{k, l=1}^{\infty} \frac{1}{(k l)^{2}}<\infty . \text { Hence }\left(\bar{x}_{k, l}\right) \text { is in } G_{\lambda^{2}}^{2}(I R)
$$

2. MAIN RESULTS:

Theorem 2.1. The sequence space $G_{\lambda^{2}}^{2}(I R)$ is a complete metric space with respect to the metric defined by $\bar{d}(\bar{x}, \bar{y})=\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \bar{y}_{k, l}\right)^{2}$

Proof: Let $\left(\bar{x}^{n}\right)$ be a Cauchy sequence in $G_{\lambda^{2}}^{2}(I R)$. Then for a given $\varepsilon>0$ there exists n_{0} $\in \mathrm{N}$ such that

$$
\bar{d}\left(\bar{x}^{n}, \bar{x}^{m}\right)<\varepsilon \text { for all } \mathrm{n}, \mathrm{~m} \geq \mathrm{n}_{0}
$$

then $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}{ }^{n}, \bar{x}_{k, l}{ }^{m}\right)^{2}<\varepsilon$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{n}_{0}$
(2.2)

$$
\begin{aligned}
& d\left(\bar{x}_{k, l}{ }^{n}, \bar{x}_{k, l}{ }^{m}\right)^{2} \lambda_{k, l}{ }^{2}<\varepsilon \text { for all } \mathrm{n}, \mathrm{~m} \geq \mathrm{n}_{0} \\
& d\left(\bar{x}_{k, l}{ }^{n}, \bar{x}_{k, l}{ }^{m}\right)^{2}<\varepsilon / \lambda_{k, l}{ }^{2} \text { for all } \mathrm{n}, \mathrm{~m} \geq \mathrm{n}_{0} \text { and for all } k, l \in \mathrm{~N} \\
& d\left(\bar{x}_{k, l}{ }^{n}, \bar{x}_{k, l}{ }^{m}\right)<\left(\frac{\varepsilon}{\lambda_{k, l}{ }^{2}}\right)^{1 / 2}<\varepsilon \text { for all } \mathrm{n}, \mathrm{~m} \geq \mathrm{n}_{0} \text { and for all } k, l \in \mathrm{~N}
\end{aligned}
$$

This means that $\left(\bar{x}_{k, l}{ }^{n}\right)$ is a Cauchy double sequence in $I \mathfrak{R}$. Since $I \mathfrak{R}$ is a Banach space, $\left(\bar{x}_{k, l}{ }^{n}\right)$ is convergent. Now, let $\lim _{n} \bar{x}_{k, l}{ }^{n}=\bar{x}_{k, l}$ for each $k, l \in \mathrm{~N}$

Taking limit as $\mathrm{m} \rightarrow \infty$ in (2.2) we have $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}^{n}, \bar{x}\right)^{2}<\varepsilon$ for all $\mathrm{n} \geq \mathrm{n}_{0}$. $\bar{d}\left(\bar{x}^{n}, \bar{x}\right)<\varepsilon$ for all $\mathrm{n} \geq \mathrm{n}_{0}$. Now for all $\mathrm{n} \geq \mathrm{n}_{0}, \bar{d}(\bar{x}, 0) \leq \bar{d}\left(\bar{x}^{n}, \bar{x}\right)+\bar{d}\left(\bar{x}^{n}, 0\right)<\varepsilon+\infty=\infty$

Thus $\bar{x}=\left(\bar{x}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R)$ and so $G_{\lambda^{2}}^{2}(I R)$ is complete. This completes the proof.
Theorem 2.2. $\quad G_{\lambda^{2}}^{2}(I R)$ is a subset of $\Gamma^{2}(I R)$.
Proof: Let $\bar{x}=\left(\bar{x}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R)$, then $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l} \overline{0}\right)^{2}<\infty$
where $\frac{\lambda_{k+1, l+1}}{\lambda_{k, l}} \rightarrow 1$ as $k, l \rightarrow \infty$ and $\lambda_{k}, l \neq 1$ for all k, l

We claim that $\left[d\left(\bar{x}_{k, l}, \overline{0}\right)\right]^{1 / p_{k, l}}$ converges to zero as $k, l \rightarrow \infty$.
From Equation (2.3)

$$
\begin{aligned}
& \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\varepsilon^{2 p_{k, l}} \text { for all } k \in N \\
& \Rightarrow d\left(\bar{x}_{k, l} \overline{0}\right)^{2}<\varepsilon^{2 p_{k, l}} / \lambda_{k, l}{ }^{2} \\
& \Rightarrow d\left(\bar{x}_{k, l}, \overline{0}\right)<\varepsilon^{p_{k, l}} / \lambda_{k, l} \\
& \Rightarrow\left[d\left(\bar{x}_{k, l}, \overline{0}\right)\right]^{1 / p_{k, l}}<\varepsilon / \lambda_{k, l}^{1 / p_{k, l}}<\varepsilon_{1} \quad \text { from }(2.4)
\end{aligned}
$$

Hence $\left[d\left(\bar{x}_{k, l} \overline{,}\right)\right]^{1 / p_{k, l}} \rightarrow 0$ as $k, l \rightarrow \infty$ and so $\bar{x} \in \Gamma^{2}(I R)$. Consequently, $G_{\lambda^{2}}^{2}(I R)$ is a subset of $\Gamma^{2}(I R)$.

Remark. $G_{\lambda^{2}}^{2}(I R)$ is a Banach space with norm

$$
\|\bar{x}\|_{G_{x^{i}}}=\left\{\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2}\left[d\left(\bar{x}_{k, l} \overline{0}\right)\right]^{2}\right\}^{1 / 2}
$$

Theorem 2.3. If $G_{\lambda^{2}}^{2}(I R)$ and $G_{\mu^{2}}^{2}(I R)$ are two double sequences of interval numbers, then $G_{\lambda^{2}}^{2}(I R)=G_{\mu^{2}}^{2}(I R)$ if and only if $k_{1} \leq \frac{\lambda_{k, l}}{\mu_{k, l}} \leq k_{2}$, where k_{1} and k_{2} are constants.

Proof: The sufficiency of the condition $k_{1} \leq \frac{\lambda_{k, l}}{\mu_{k, l}} \leq k_{2}$

If $\lambda_{k, l} \leq k_{2} \mu_{k, l}$ then $\left.\left.\lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)\right]^{2} \leq k_{2}{ }^{2} \mu_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)\right]^{2}$.
If $\left(\bar{x}_{k, l}\right) \in G_{\mu^{2}}^{2}(I R), \sum_{k, l=1}^{\infty} \mu_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\infty$
Therefore $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2} \leq \sum_{k, l=1}^{\infty} k_{2}{ }^{2} \mu_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\infty$. This implies that
$\left(\bar{x}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R)$
Hence $G_{\mu^{2}}^{2}(I R) \subset G_{\lambda^{2}}^{2}(I R)$
Similarly, if $k_{1} \mu_{k, l} \leq \lambda_{k, l}$ then $G_{\lambda^{2}}^{2}(I R) \subset G_{\mu^{2}}^{2}(I R)$
From (2.6) and (2.7), $G_{\lambda^{2}}^{2}(I R)=G_{\mu^{2}}^{2}(I R)$
To prove the necessity of the condition, let us suppose that the condition is not satisfied. First consider the right hand side inequality of (2.3). Let $\frac{\lambda_{k, l}}{\mu_{k, l}} \rightarrow \infty$ as $k, l \rightarrow \infty$.

Then it has a subsequence $\frac{\lambda_{k_{n}, l_{n}}}{\mu_{k_{n}, l_{n}}} \rightarrow \infty \frac{\lambda_{k_{n}}}{\mu_{k_{n}}} \rightarrow \infty$ as $k_{n}, l_{n} \rightarrow \infty$ in such a manner that
$\frac{\lambda_{k_{n}, l_{n}}}{\mu_{k_{n}, l_{n}}}>n$ for the values $\mathrm{n}=1,2, \ldots \ldots$ and $k_{1}<k_{2}<\ldots . ., l_{1}<l_{2}<\ldots .$.
Now we shall define a sequence $\left(\bar{x}_{k, l}\right)$ as follows

$$
\bar{x}_{k, l}=\left\{\begin{array}{c}
{\left[0, \frac{1}{n \mu_{k, l}}\right] \text { when } k=k_{n}, l=l_{n}} \\
{[0,0] \text { when } k \neq k_{n}, l \neq l_{n}}
\end{array}\right.
$$

Then $\sum_{k, l=1}^{\infty} \mu_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}=\sum_{n=1}^{\infty} \mu_{k_{n}, l_{n}}{ }^{2} d\left(\bar{x}_{k_{n}, l_{n}}, \overline{0}\right)^{2}$

$$
\begin{equation*}
=\sum_{n=1}^{\infty} \frac{\mu_{k_{n}, l_{n}}{ }^{2}}{n^{2} \mu_{k_{n}, l_{n}}{ }^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty \tag{2.8}
\end{equation*}
$$

Therefore $\left(\bar{x}_{k, l}\right) \in G_{\mu^{2}}^{2}(I R)$
But $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}=\sum_{n=1}^{\infty} \lambda_{k_{n}, l_{n}}{ }^{2} d\left(\bar{x}_{k_{n}, l_{n}}, \overline{0}\right)^{2}$

$$
>\sum_{n=1}^{\infty} n^{2} \mu_{k_{n}, l_{n}}{ }^{2} d\left(\bar{x}_{k_{n}, l_{n}}, \overline{0}\right)^{2}=\sum_{n=1}^{\infty} \frac{n^{2} \mu_{k_{n}, l_{n}}}{n^{2} \mu_{k_{n}, l_{n}}}=\infty
$$

Thus $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}>\infty$
Therefore $\left(\bar{x}_{k, l}\right) \notin G_{\lambda^{2}}^{2}(I R)$
From (2.8) and (2.9) contradict (2.6)
Similarly , if the left hand side inequality of (2.5) is not satisfied, then we can contradict (2.7) by constructing a sequence of the above type.

Hence the condition $k_{1} \leq \frac{\lambda_{k, l}}{\mu_{k, l}} \leq k_{2}$ is necessary and sufficient in order that $G_{\lambda^{2}}^{2}(I R)=G_{\mu^{2}}^{2}(I R)$

Theorem 2.4. $G_{\lambda^{2}}^{2}(I R)$ is an AK space.
Proof: For each $\left(\bar{x}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R),\left\|\left(\bar{x}^{[n]}\right)-\bar{x}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence $G_{\lambda^{2}}^{2}(I R)$ has AK .
Theorem 2.5. $G_{\lambda^{2}}^{2}(I R)$ has AB property.
Proof: It is enough to show that $G_{\lambda^{2}}^{2}(I R)$ has monotone norm. Indeed for $\mathrm{n}<\mathrm{m}$ and for every

$$
\left(\bar{x}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R), \quad \text { we have }
$$

$$
\begin{gathered}
\left\|\left(\bar{x}^{[n]}\right)\right\|^{2}=\sum_{k, l=1}^{n} \lambda_{k, l}^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\sum_{k, l=1}^{m} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}=\left\|\left(\bar{x}^{[m]}\right)\right\|^{2} \\
\left\|\left(\bar{x}^{[n]}\right)\right\|<\left\|\left(\bar{x}^{[m]}\right)\right\|
\end{gathered}
$$

Also $\left\{\left\|\left(\bar{x}^{[n]}\right)\right\|, n=1,2, \ldots\right\}$ is a monotonically increasing sequence of interval numbers bounded above by $\|\bar{x}\|_{G_{x^{2}}^{2}(I R)}$. Hence $\|\bar{x}\|_{G_{x^{2}}^{2}(\mathbb{R})}=\lim _{n \rightarrow \infty}\left\|\left(\bar{x}^{[n]}\right)\right\|=\sup _{n}\left\{\left\|\left(\bar{x}^{[n]}\right)\right\|, n=1,2, \ldots\right\}$. Thus $G_{\lambda^{2}}^{2}(I R)$ has monotone norm.

Theorem 2.6. The space $G_{\lambda^{2}}^{2}(I R)$ is solid.
Proof: Let $\left(\bar{x}_{k, l}\right)$ and $\left(\bar{y}_{k, l}\right)$ be two sequences such that $\left(\bar{x}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R)$ and $d\left(\bar{y}_{k, l}, \overline{0}\right) \leq d\left(\bar{x}_{k, l}, \overline{0}\right)$ for all $k, l \in N$

Since $\left(\bar{x}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R)$, we have $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\infty$
Also we have $\lambda_{k, l}{ }^{2} d\left(\bar{y}_{k, l}, \overline{0}\right)^{2} \leq \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}$

$$
\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{y}_{k, l} \overline{0}\right)^{2} \leq \sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\infty
$$

So $\left(\bar{y}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R)$. Therefore $G_{\lambda^{2}}^{2}(I R)$ is solid.
Theorem 2.7. The space $G_{\lambda^{2}}^{2}(I R)$ is symmetric.
Proof: Let $\left(\bar{x}_{k, l}\right)$ be a sequence in $G_{\lambda^{2}}^{2}(I R)$. Then $\sum_{k, l=1}^{\infty} \lambda_{k, l}^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\infty$. For $\varepsilon>0$ there exists $k, l=k_{0}(\varepsilon)$ such that $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}-\sum_{k, l \leq k_{0}}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l}, \overline{0}\right)^{2}<\varepsilon$. Let $\left(\bar{y}_{k, l}\right)$ be a rearrangement of $\left(\bar{x}_{k, l}\right)$ and k_{1} be such that $\left\{\bar{x}_{k, l}: k, l \leq k_{0}\right\} \subseteq\left\{\bar{y}_{k, l}: k, l \leq k_{1}\right\}$

Then $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{y}_{k, l} \overline{0}\right)^{2}-\sum_{k, l \leq k_{1}}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{x}_{k, l} \overline{0}\right)^{2}<\varepsilon$ and so $\sum_{k, l=1}^{\infty} \lambda_{k, l}{ }^{2} d\left(\bar{y}_{k, l} \overline{0}\right)^{2}<\infty$
Hence $\left(\bar{y}_{k, l}\right) \in G_{\lambda^{2}}^{2}(I R)$ and $G_{\lambda^{2}}^{2}(I R)$ is symmetric.
Theorem 2.8. The space $G_{\lambda^{2}}^{2}(I R)$ is sequence algebra.
Proof: We consider the space $G_{\lambda^{2}}^{2}(I R)$. Let $\left(\bar{x}_{k, l}\right)$ and $\left(\bar{y}_{k, l}\right)$ be two sequences in $G_{\lambda^{2}}^{2}(I R)$ and $0<\varepsilon<1$. Then the result follows from the following inclusion relation.

$$
\left\{k, l \in N: \bar{d}\left(\bar{x}_{k}, l \otimes \bar{y}_{k, l}, \overline{0}\right)\right\} \supseteq\left\{k, l \in N: \bar{d}\left(\bar{x}_{k, l}, \overline{0}\right)\right\} \cap\left\{k, l \in N: \bar{d}\left(\bar{y}_{k, l}, \overline{0}\right)\right\}
$$

REFERENCES

1. Ayhan Esi, B.Hazarika, On Interval Valued Generalized Difference Classes Defined by Orlicz Function, Turkish Journal of Analysis and Number Theory, 1(1)(2013),48-53.
2. Ayhan Esi, Double sequences of interval numbers defined by Orlicz functions, Acta Et Commentationes Universitatis Tartuensis De Mathematica,17(1)(2013),57-64.
3. Ayhan Esi, B.Hazarika, Some ideal convergence of double Λ-interval number sequences defined by Orlicz Function, Global Journal of Mathematical Analysis, 1(3)(2013), 110-116.
4. Brown H.I., Entire methods of summation, Compositio Mathematica, tome 21, $n^{0} 1$ (1969), 35-42.
5. Dwyer P.S., Linear Computation, New York, Wiley, (1951).
6. Dwyer P.S., Error of matrix computation, simultaneous equations and eigenvalues, National Bureu of Standarts ,Applied Mathematics Series,29(1953), 49-58.
7. Esi A., A new class of interval numbers, Journal of Qafqaz University, Mathematics and Computer science,31(2011),98-102.
8. Kuo-Ping, Chiao, Fundamental properties of interval vector max-norm, Tamsui Oxford Journal of Mathematics, 18(2)(2002), 219-233.
9. Markov S., Quasilinear spaces and their relation to vector spaces, Electronic Journal on Mathematics of Computation,2(1)(2005).
10. Moore R.E., Automatic Error Analysis in Digital Computation, LSMD-48421, Lockheed Missiles and space Company, (1959).
11. Moore R.E. and Yang C.T., Interval Analysis I, LMSD-285875, Lockheed Missiles and space Company, (1962).
12. Moore R.E. and Yang C.T., Theory of an interval algebra and its application to numeric analysis, RAAG Memories II, Gankutsu Bunken Fukeyu-kai,Tokyo, (1958).
13. Sengönül M. and Eryilmax A., On the sequence space of interval numbers, Thai Journal of Mathematics, 8(3)(2010), 503-510.
