MAGIC LABLING ON HUMAN CHAIN GRAPH

${ }^{1}$ K.Anitha , ${ }^{2}$ B. Selvam
${ }^{1}$ Department of Mathematics, Sri Sairam Engineering College, Chennai - 600 044, India
${ }^{2}$ Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai - 600073 , India

Abstract

In this paper, we investigate $\mathrm{Z}_{3}-$ vertex magic total labeling, Z_{3} - edge magic total labeling, Z_{4}-bi magic labeling, total magic cordial labeling and n -edge magic labeling for human chain graph.

AMS Subject classification: 05C78
Key words: Human chain, Magic, Total magic, Z_{3} - vertex, Z_{4}-bi magic

1. Introduction

Let $\mathrm{G}=\mathrm{HC}_{\mathrm{n}, \mathrm{m}}(\mathrm{p}, \mathrm{q}), \mathrm{n} \in \mathrm{N}, \mathrm{m} \geq 3$ be a Human chain graph and it is a simple, finite and undirected graph with $p=2 m n+n+1$ vertices and $q=2 m n+2 n$ edges. For a summary on various labeling see the Dynamic survey of graph labeling by Gallian [1]. Magic labeling was introduced by Sedlacek in 1963 [3,4]. The original concept of total edge magic graph is due to Kotzig and Rosa [2]. We have referred Z_{3} - vertex magic total labeling and $\mathrm{Z}_{3^{-}}$edge magic total labeling which has been extracted from various articles [5,7]. The concept of Human chain graph was introduced by K.Anitha and B.Selvam[6]. In this paper, we investigate Z_{3} - vertex magic total, Z_{3} - edge magic total, Z_{4}-bi magic, total magic cordial labeling and n-edge magic labeling of Human chain graph.

2. Preliminaries

In this section, we provide some basic definitions which needed to this paper.
Definition 2.1 Z_{3}-Vertex magic total labeling : A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to admit $\mathrm{Z}_{3^{-}}$ vertex magic total labeling if $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow \mathrm{A}^{*}$ where $\mathrm{A}^{*}=\mathrm{Z}_{3}$-[0] such that the induced map f^{*} on V defined by $\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\sum \mathrm{f}(\mathrm{e})\right\}(\bmod 3)=\mathrm{k}$, a constant where e is the edge incident at v_{i}. A graph which admits Z_{3} - vertex magic total labeling is called Z_{3} - vertex magic total graph.
Definition $2.2 Z_{3}$-edge magic total labeling : A graph $G(V, E)$ is said to admit Z_{3} - edge magic total labeling if $f: V \cup E \rightarrow A^{*}$ where $A^{*}=Z_{3}-[0]$ such that the induced map f^{*} on E defined by $f^{*}\left(v_{i} v_{j}\right)=\left\{f\left(v_{i}\right)+f\left(v_{j}\right)+f\left(v_{i} v_{j}\right)\right\}(\bmod 3)=k$, a constant for all edges $v_{i} v_{j} \in E . A$ graph which admits Z_{3} - edge magic total labeling is called Z_{3} - edge magic total graph.
Definition 2.3 \mathbf{Z}_{4}-bi magic labeling : A graph $G(V, E)$ is said to admit Z_{4} - bi magic labeling if there exists a function $\mathrm{f}: \mathrm{E} \rightarrow\{1,2,3\}$ such that the induced map f^{*} on V defined by $f^{*}\left(v_{i}\right)=\sum f(e)(\bmod 4)=k_{1}$ or k_{2}, a constant $e=v_{i} v_{j} \in E$.
Definition 2.4 Total magic cordial labeling : A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to admit total magic cordial labeling if $\mathrm{f}: \mathrm{VUE} \rightarrow\{0,1\}$ such that $($ i) $\{\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+\mathrm{f}(\mathrm{xy})\}(\bmod 2)$ is constant for all edges $\mathrm{xy} \in \mathrm{E}$. (ii) for all $\mathrm{i}, \mathrm{j} \in\{0,1\},\left|\left\{m_{i}(f)+n_{i}(f)\right\}-\left\{m_{j}(f)+n_{j}(f)\right\}\right| \leq 1,(i \neq j)$, where $m_{i}(f)=\{\mathrm{e} \in E / \mathrm{f}(\mathrm{e})=\mathrm{i}\}$ and $n_{i}(f)=\{\mathrm{v} \in V / \mathrm{f}(\mathrm{v})=\mathrm{i}\}$. A graph which admits total magic cordial labeling is called total magic cordial.
Definition 2.5 n-edge magic labeling : Let $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be a graph. Let $\mathrm{f}: \mathrm{V} \rightarrow\{-1, n+1\}$ and $\mathrm{f}^{*}: \mathrm{E} \rightarrow\{\mathrm{n}\}$ such that for all $\mathrm{uv} \in E, \mathrm{f}^{*}(\mathrm{uv})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})=\mathrm{n}$, then the labeling is called n -edge magic labeling.

Definition 2.6 Human chain graph:

A human chain graph $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}(\mathrm{p}, \mathrm{q})$ is obtained a path $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{n} \in \mathrm{N}$ by joining a cycle of length $m\left(C_{m}\right)$ and Y-tree $Y_{m+1}, m \geq 3$ to each $u_{2 i}$ for $1 \leq i \leq n$. The vertices of C_{m} and Y -tree $\mathrm{Y}_{\mathrm{m}+1}$ are $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}$ and $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}$ respectively.

Structural properties of $\mathbf{H C}_{\mathbf{n}, \mathbf{m}}$

1. The vertex set of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}=\left\{u_{i}, v_{j}, w_{k} / 1 \leq \mathrm{i} \leq 2 \mathrm{n}+1,1 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{mn}\right\}$.
2. The total number of vertices of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}=|V|=2 \mathrm{mn}+\mathrm{n}+1$.
3.The edge of set of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}=|E|\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq 2 \mathrm{n}\right\} \cup$
$\left\{\mathrm{u}_{2 \mathrm{i}} \mathrm{W}_{\mathrm{m}(\mathrm{i}-1)+1} ; \mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}} ; \mathrm{u}_{2 \mathrm{i}} \mathrm{V}_{(\mathrm{m}-1)(\mathrm{i}-1)+1} ; \mathrm{w}_{\mathrm{mi}} \mathrm{W}_{\mathrm{mi}-2} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{w}_{\mathrm{mi}+\mathrm{j}} \mathrm{W}_{\mathrm{mi}+\mathrm{j}+1} ;\right.$ $\left.\mathrm{v}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}} \mathrm{v}_{(\mathrm{m}-\mathrm{i})+\mathrm{j}+1} / 0 \leq \mathrm{i} \leq \mathrm{n}-1,1 \leq \mathrm{j} \leq \mathrm{m}-2\right\}$.
4.The total number of edges of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}=|E|=2 \mathrm{mn}+2 \mathrm{n}$.
3. The maximum degree of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}=\Delta=5$.
4. The minimum degree of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}=\delta=1$.
5. MAIN RESULTS

Algorithm 3.1

Procedure: (Z_{3}-Vertex magic total labeling of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}$)
Input: $\mathrm{V} \leftarrow\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}\right\}$ $\mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{2 m n+2 n}\right\}$
if $\mathrm{n} \geq 1$

$$
\begin{aligned}
& \mathrm{u}_{1}, \mathrm{u}_{2 \mathrm{n}+1} \leftarrow 2 \\
& \text { for } \mathrm{i}= 1 \text { to }(\mathrm{m}-1) \mathrm{n} \text { do } \\
& \mathrm{v}_{\mathrm{i}} \leftarrow 1
\end{aligned}
$$

end for
for $\mathrm{i}=1$ to mn do
$\mathrm{w}_{\mathrm{i}} \leftarrow 1$
end for
for $\mathrm{i}=1$ to $(2 \mathrm{n}-1)$ do
$\mathrm{u}_{\mathrm{i}+1} \leftarrow 1$
end for
for $\mathrm{i}=1$ to 2 n do

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} \leftarrow 1 \\
& \text { end for } \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}} \leftarrow 1 \\
& \mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1)(\mathrm{i}-1)+1} \leftarrow 1 \\
& \mathrm{u}_{2 \mathrm{i}} \mathrm{~W}_{\mathrm{m}(\mathrm{i}-1)+1} \leftarrow 1 \\
& \mathrm{w}_{\mathrm{mi}} \mathrm{~W}_{\mathrm{mi}-2} \leftarrow 2 \\
& \text { end for } \\
& \text { for } \mathrm{i}=0 \text { to }(\mathrm{n}-1) \text { do } \\
& \quad \mathrm{j}=1 \text { to }(\mathrm{m}-2) \text { do } \\
& \quad \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}} \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}+1} \leftarrow 1 \\
& \quad \mathrm{w}_{(\mathrm{mi}+\mathrm{j})} \mathrm{W}_{(\mathrm{mi}+\mathrm{j}+1)} \leftarrow 2
\end{aligned}
$$

end if
end procedure
Theorem 3.1: For $m \geq 3$ and $n \geq 1$, the human chain graph admits Z_{3} - vertex magic total labeling.
Proof: Let $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}(\mathrm{p}, \mathrm{q})$ be a human chain graph with $\mathrm{p}=2 \mathrm{mn}+\mathrm{n}+1$ vertices and $\mathrm{q}=2 \mathrm{mn}+2 \mathrm{n}$ edges. Using algorithm 3.1, the $2 m n+n+1$ vertices and $2 m n+2 n$ edges are labeled by defining a function $\mathrm{f}: \mathrm{VU} E \rightarrow\{1,2\}$. The induced function is defined by $\mathrm{f}^{*}: \mathrm{V} \rightarrow \mathrm{N} \cup\{0\}$, such that $\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\sum \mathrm{f}(\mathrm{e})\right\}(\bmod 3)=\mathrm{k}$, a constant for all edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}} \in \mathrm{E}$. The total weight of each vertex is $\quad f^{*}(v)=\left\{f(v)+\sum f(u v)\right\}(\bmod 3)=3$ or $6(\bmod 3)=0$, a constant for all edges $u v \in E$. Thus the induced function yields the weight ' 0 ' to all the vertices. Therefore, for $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 1$, the human chain graph admits Z_{3} - vertex magic total labeling.
Example 2 : Z_{3} - vertex magic total labeling for $\mathrm{HC}_{4,3}$
Algorithm 3.2

Procedure: ($\mathbf{Z}_{\mathbf{3}}$-edge magic total labeling of $\mathbf{H C}_{\mathbf{n}, \mathrm{m}}$)
Input: $\mathrm{V} \leftarrow\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1)}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}\right\}$
$\mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{2 m n+2 n}\right\}$
if $\mathrm{n} \geq 1, \mathrm{~m} \geq 3$

$$
\text { for } i=1 \text { to }(2 n+1) \text { do }
$$

$$
\mathrm{u}_{\mathrm{i}} \leftarrow 1
$$

end for

$$
\text { for } i=1 \text { to }(m-1) \mathrm{n} \text { do }
$$

$$
\mathrm{v}_{\mathrm{i}} \leftarrow 1
$$

end for

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{mn} \text { do }
$$

$$
\mathrm{w}_{\mathrm{i}} \leftarrow 1
$$

end for
for $\mathrm{i}=1$ to n do

$$
\begin{aligned}
& \mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}} \leftarrow 2 \\
& \mathrm{u}_{2 \mathrm{i}} \mathrm{~V}_{(\mathrm{m}-1)(\mathrm{i}-1)+1} \leftarrow 2 \\
& \mathrm{u}_{2 \mathrm{i}} \mathrm{~W}_{\mathrm{m}(\mathrm{i}-1)+1} \leftarrow 2 \\
& \mathrm{w}_{\mathrm{mi}} \mathrm{~W}_{\mathrm{mi}-2} \leftarrow 2
\end{aligned}
$$

end for
for $i=1$ to $2 n$ do
$\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} \leftarrow 2$
end for
for $\mathrm{i}=0$ to $(\mathrm{n}-1)$ do
$j=1$ to (m-2) do
$\mathrm{V}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}} \mathrm{V}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}+1} \leftarrow 2$
$\mathrm{W}_{(\mathrm{mi}+\mathrm{j})} \mathrm{W}_{(\mathrm{mi}+\mathrm{j}+1)} \leftarrow 2$
end for
end if
end procedure
Theorem 3.2: For $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 1$, the human chain graph admits Z_{3} - edge magic total labeling.
Proof: Let $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}(\mathrm{p}, \mathrm{q})$ be a human chain graph with $\mathrm{p}=2 \mathrm{mn}+\mathrm{n}+1$ vertices and $\mathrm{q}=2 \mathrm{mn}+2 \mathrm{n}$ edges. Using algorithm 3.2 , the $2 \mathrm{mn}+\mathrm{n}+1$ vertices and $2 \mathrm{mn}+2 \mathrm{n}$ edges are labeled by defining a function $\mathrm{f}: \mathrm{V} \cup E \rightarrow\{1,2\}$. The induced function is defined by $\mathrm{f} *: \mathrm{E} \rightarrow \mathrm{N} \cup\{0\}$, such that $\mathrm{f}^{*}(\mathrm{uv})=\{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+\mathrm{f}(\mathrm{uv})\}(\bmod 3)=\mathrm{k}$. The induced function yields the labels for as follows. $\mathrm{f}^{*}(\mathrm{uv})=\{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+\mathrm{f}(\mathrm{uv})\}=1+1+2=4(\bmod 3)=1$. Therefore, for $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 1$, the human chain graph admits Z_{3} - edge magic total labeling.

Vol.7,Issue 11, November2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Example 3 : Z_{3} - edge magic total labeling for $\mathrm{HC}_{3,6}$

Algorithm 3.3

Procedure: ($\mathbf{Z}_{\mathbf{4}}$-bi magic lebeling of $\mathbf{H C}_{\mathbf{n}, \mathrm{m}}$)

Input: $\mathrm{V} \leftarrow\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}\right\}$
$\mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{2 m n+2 n}\right\}$
if $n \geq 1, m \geq 3$
$\mathrm{u}_{1} \mathrm{u}_{2} \leftarrow 3$
$\mathrm{u}_{2} \mathrm{v}_{1} \leftarrow 2$
$\mathrm{u}_{2} \mathrm{v}_{\mathrm{m}-1} \leftarrow 2$
for $\mathrm{i}=1$ to n do
$\mathrm{w}_{\mathrm{mi}} \mathrm{W}_{\mathrm{mi}-2} \leftarrow 3$
$\mathrm{w}_{\text {mi-2 }} \mathrm{W}_{\text {mi- }} \leftarrow 3$
$\mathrm{u}_{2 \mathrm{i}} \mathrm{u}_{2 \mathrm{i}+1} \leftarrow 3$
$\mathrm{u}_{2 \mathrm{i}} \mathrm{w}_{\mathrm{m}(\mathrm{i}-1)+1} \leftarrow 2$
end for
for $\mathrm{i}=0$ to $(\mathrm{n}-1)$ do $\mathrm{j}=1$ to $\mathrm{m}-2$ do

$$
\mathrm{v}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}} \mathrm{v}_{(\mathrm{m}-\mathrm{i})+\mathrm{j}+1} \leftarrow 2
$$

end for
end if
if $\mathbf{n}>\mathbf{1}, \mathbf{m} \geq \mathbf{3}$
for $\mathrm{i}=2$ to n do

$$
\begin{aligned}
& \mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}} \leftarrow 1 \\
& \mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}-1)+1} \leftarrow 1
\end{aligned}
$$

end for
for $\mathrm{i}=1$ to ($\mathrm{n}-1$) do
$\mathrm{u}_{2 \mathrm{i}+1} \mathrm{u}_{2 \mathrm{i}+2} \leftarrow 1$
end for

end if

if $\mathbf{n}>\mathbf{1}, \mathbf{m}>\mathbf{3}$

$$
\text { for } \mathrm{i}=0 \text { to }(\mathrm{n}-1)
$$

$$
\begin{aligned}
& \mathrm{j}=1 \text { to }\left\lfloor\frac{m-2}{2}\right\rfloor \text { do } \\
& \quad \mathrm{W}_{\mathrm{mi}+2 \mathrm{j}} \mathrm{~W}_{\mathrm{mi}+2 \mathrm{j}-1} \leftarrow 1
\end{aligned}
$$

end for
end if
if $\mathbf{n}>1, m>4$
for $\mathrm{i}=0$ to $(\mathrm{n}-1)$
$\mathrm{j}=1$ to $\left[\frac{m-3}{2}\right]$ do
$\mathrm{W}_{\mathrm{mi}+2 \mathrm{j}+1} \mathrm{~W}_{\mathrm{mi}+2 \mathrm{j}} \leftarrow 2$
end for
end if
if $\mathbf{n}=\mathbf{1}, \mathbf{m}>3$

$$
\begin{gathered}
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{m-2}{2}\right\rfloor \text { do } \\
\qquad \mathrm{W}_{2 \mathrm{i}-1} \mathrm{~W}_{2 \mathrm{i}} \leftarrow 1
\end{gathered}
$$

end for

end if

if $\mathbf{n}=\mathbf{1}, \mathrm{m}>4$

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{m}{3}\right\rfloor \text { do } \\
& \mathrm{W}_{2 \mathrm{i}+1} \mathrm{~W}_{2 \mathrm{i}} \leftarrow 2
\end{aligned}
$$

end for

end if

end procedure

Theorem 3.3: For $m \geq 3$ and $n \geq 1$, the human chain graph admits Z_{4} - bi magic labeling.
Proof: Let $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}(\mathrm{p}, \mathrm{q})$ be a human chain graph with $\mathrm{p}=2 \mathrm{mn}+\mathrm{n}+1$ vertices and $\mathrm{q}=2 \mathrm{mn}+2 \mathrm{n}$ edges. Using algorithm 3.3, the $2 \mathrm{mn}+2 \mathrm{n}$ edges are labeled by defining a function $\mathrm{f}: E \rightarrow$ $\{1,2,3\}$ such that the induced function is defined by $\mathrm{f}^{*}: \mathrm{V} \rightarrow\{0,1,2,3\}$ defined by $\mathrm{f}^{*}(\mathrm{v})=$ $\left.\left\{\sum f(u v)(\bmod 4) / u \in N(v)\right\}\right)=\mathrm{k}_{1}$ or k_{2}, constants. Thus all the weight of the vertices are either 0 or 3 . Therefore, for $m \geq 3$ and $n \geq 1$, the human chain graph admits Z_{4} - bi magic labeling.
Example 4 : Z_{4} - bi magic labeling for $\mathrm{HC}_{1,3}$

Algorithm 3.4

Procedure: (Total Magic Cordial labeling of $\mathbf{H C}_{\mathrm{n}, \mathrm{m}}$)
Input: $\mathrm{V} \leftarrow\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1)}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}\right\}$
$\mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{2 m n+2 n}\right\}$

if $\mathrm{n} \geq 1, \mathrm{~m} \geq 3$

for $\mathrm{i}=1$ to $\left\lfloor\frac{n+2}{2}\right\rfloor$ do

$$
\mathrm{u}_{4 \mathrm{i}-3} \leftarrow 1
$$

end for

$$
\begin{gathered}
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do } \\
\quad \mathrm{u}_{4 \mathrm{i}-1} \leftarrow 0 \\
\mathrm{u}_{4 \mathrm{i}-2} \mathrm{u}_{4 \mathrm{i}-1} \leftarrow 1 \\
\\
\mathrm{u}_{4 \mathrm{i}-3} \mathrm{u}_{4 \mathrm{i}-2} \leftarrow 1
\end{gathered}
$$

end for
for $\mathrm{i}=1$ to n do
$\mathrm{u}_{2 \mathrm{i}} \leftarrow 0$
$\mathrm{w}_{\mathrm{mi}} \leftarrow 0$
$\mathrm{w}_{\text {mi }-1} \leftarrow 1$
$\mathrm{u}_{2 \mathrm{i}} \mathrm{W}_{\mathrm{m}(\mathrm{i}-1)+1} \leftarrow 0$
$\mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1)(\mathrm{i}-1)+1} \leftarrow 1$
end for
end if
if \mathbf{m} is odd

> for $\mathrm{i}=1$ to n do
> $\mathrm{w}_{\mathrm{mi}} \mathrm{w}_{\mathrm{mi}-2} \leftarrow 0$
> $\mathrm{w}_{\mathrm{m}-1} \mathrm{w}_{\mathrm{mi}-2} \leftarrow 1$
end for
end if
if \mathbf{m} is even
for $\mathrm{i}=1$ to n do
$\mathrm{w}_{\text {mi }} \mathrm{W}_{\text {mi- }} \leftarrow 1$
$\mathrm{w}_{\text {mi-1 }} \mathrm{w}_{\text {mi- } 2} \leftarrow 0$
end for
for $\mathrm{i}=1$ to $\left\lfloor\frac{n}{2}\right\rfloor$ do
$\mathrm{u}_{4 \mathrm{i}-1} \mathrm{u}_{4 \mathrm{i}} \leftarrow 0$
$\mathrm{u}_{4 \mathrm{i}} \mathrm{u}_{4 \mathrm{i}+1} \leftarrow 1$
end for
for $\mathrm{i}=1$ to n do

Vol.7,Issue 11, November2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{gathered}
\mathrm{j}=1 \text { to }\left\lfloor\frac{m-1}{2}\right\rfloor \text { do } \\
\quad \mathrm{W}_{\mathrm{mi}-\mathrm{m}+2 \mathrm{j}-1} \leftarrow 0 \\
\quad \mathrm{~W}_{\mathrm{mi}+2 \mathrm{j}-\mathrm{m}} \leftarrow 1
\end{gathered}
$$

end for
for $\mathrm{i}=0$ to ($\mathrm{n}-1$) do

$$
\begin{aligned}
& \mathrm{j}=1 \text { to }\left\lfloor\frac{m-1}{2}\right\rfloor \text { do } \\
& \mathrm{V}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}} \mathrm{~V}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}+1} \leftarrow 0
\end{aligned}
$$

end for
for $\mathrm{i}=1$ to n do

$$
\begin{aligned}
& \mathrm{j}=1 \text { to }\left\lfloor\frac{m+1}{2}\right\rfloor \text { do } \\
& \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}-\mathrm{m}+1} \leftarrow 1
\end{aligned}
$$

end for
end if
if $\mathbf{m}>3$
for $\mathrm{i}=1$ to n do

$$
\begin{aligned}
& \mathrm{j}=1 \text { to }\left\lfloor\frac{m-2}{2}\right\rfloor \text { do } \\
& \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}-\mathrm{j}+1} \leftarrow 0
\end{aligned}
$$

end for
for $i=0$ to ($n-1$) do

$$
\begin{aligned}
& \mathrm{j}=1 \text { to }(\mathrm{m}-3) \text { do } \\
& \mathrm{w}_{\mathrm{mi}+\mathrm{j}} \mathrm{~W}_{\mathrm{mi}+\mathrm{j}=1} \leftarrow 1
\end{aligned}
$$

end for
for $\mathrm{i}=1$ to n do

$$
\begin{aligned}
& \mathrm{u}_{2 \mathrm{i}} \mathrm{~V}_{(\mathrm{m}-1) \mathrm{i}} \leftarrow 0 \\
& \quad \mathrm{~V}_{(\mathrm{m}-1) \mathrm{i}-}\left\lfloor\frac{m}{2}\right\rfloor+1 \mathrm{~V}_{(\mathrm{m}-1) \mathrm{i}-\left\lfloor\frac{m}{2}\right\rfloor+2} \leftarrow 1
\end{aligned}
$$

end for
end if
if $\mathbf{m}=\mathbf{3}$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { do }
$$

$$
\mathrm{u}_{2 \mathrm{i}} \mathrm{v}_{(\mathrm{m}-1) \mathrm{i}} \leftarrow 1
$$

end for
end if
if $\mathbf{m}>5$
for $\mathrm{i}=1$ to n do
$\mathrm{j}=1$ to $\left\lfloor\frac{m-4}{2}\right\rfloor$ do
$\mathrm{V}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}+1} \mathrm{~V}_{(\mathrm{m}-1) \mathrm{i}+\mathrm{j}+2} \leftarrow 0$

```
    end for
end if
end procedure
```

Theorem 3.4 : For $m \geq 3$ and $n \geq 1$, the human chain graph admits total magic cordial labeling.
Proof: Let $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}(\mathrm{p}, \mathrm{q})$ be a human chain graph with $\mathrm{p}=2 \mathrm{mn}+\mathrm{n}+1$ vertices and $\mathrm{q}=2 \mathrm{mn}+2 \mathrm{n}$ edges. Using algorithm 3.4 , the $2 m n+n+1$ vertices and $2 m n+2 n$ edges are labeled by defining a function $\mathrm{f}: \mathrm{V} \cup E \rightarrow\{0,1\}$
Case (i) If n is odd, the number of vertices labeled with ' 0 ' and ' 1 ' is $\mathrm{mn}+(\mathrm{n}+1) / 2$ respectively and the number of edges labeled with ' 0 ' and ' 1 ' is mn+n respectively. From this we conclude that, the number of vertices and edges labeled with ' 0 ' and with ' 1 ' is $m n+(n+1) / 2+m n+n=2 m n+(3 n / 2)+(1 / 2)$ which differ by at most one.
Case (ii) If n is even, the number of vertices labeled with ' 0 ' is $\mathrm{mn}+(\mathrm{n} / 2)+1$ and labeled with ' 1 ' is $\mathrm{mn}+(\mathrm{n} / 2)$ and the number of edges labeled with ' 0 ' and ' 1 ' is $\mathrm{mn}+\mathrm{n}$ respectively. From this we conclude that, the number of vertices and edges labeled with ' 0 ' is $m n+(n / 2)+1+m n+n=2 m n+(3 n / 2)+1$ and with ' 1 ' is $m n+(n / 2)+m n+n=2 m n+(3 n / 2)$ which differ by at most one.
Thus the $2 m n+n+1$ vertices and $2 m n+2 n$ edges are labeled such that the number of vertices labeled with ' 0 ' and ' 1 ' differ by atmost one. The induced function is defined by $\mathrm{f}^{*}: \mathrm{E} \rightarrow \mathrm{N} \cup\{0\}$, such that $\mathrm{f}^{*}(\mathrm{uv})=\{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+\mathrm{f}(\mathrm{uv})\}(\bmod 2)=\mathrm{k}$. Thus we have $\mathrm{f}^{*}(\mathrm{uv})=$ $\{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+\mathrm{f}(\mathrm{uv})\}(\bmod 2)=0+0+0(\mathrm{or}) 1+1+0(\bmod 2)=0$, which is a constant.
Hence for $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 1$, the human chain graph admits total magic cordial labeling.

Example 5: Total magic cordial labeling for $\mathrm{HC}_{4,3}$

Algorithm 3.5

```
Procedure: ( \(n\)-edge magic labeling of \(\mathbf{H C}_{\mathrm{n}, \mathrm{m}}, \mathbf{m}=\mathbf{2 n + 2}, \mathrm{n} \geq 1\) )
Input: \(\mathrm{V} \leftarrow\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}\right\}\)
    \(\mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{2 m n+2 n}\right\}\)
if \(n \geq 1, m \geq 4\)
    for \(\mathrm{i}=1\) to \((\mathrm{n}+1)\) do
        \(\mathrm{u}_{2 \mathrm{i}-1} \leftarrow-1\)
    end for
        for \(\mathrm{i}=1\) to n do
        \(\mathrm{u}_{2 \mathrm{i}} \leftarrow n+1\)
    end for
        for \(\mathrm{i}=0\) to ( \(\mathrm{n}-1\) ) do
            \(\mathrm{j}=1\) to \((\mathrm{m} / 2)\) do
            \(\mathrm{w}_{\mathrm{mi}+2 \mathrm{j}-1} \leftarrow-1\)
    end for
        for \(\mathrm{i}=0\) to \((\mathrm{n}-1)\) do
            \(\mathrm{j}=1\) to \((\mathrm{m}-2) / 2 \mathrm{do}\)
            \(\mathrm{w}_{\mathrm{mi}+2 \mathrm{j}} \leftarrow n+1\)
    end for
    for \(\mathrm{i}=1\) to n
        \(\mathrm{w}_{\mathrm{mi}} \leftarrow-1\)
    end for
    for \(\mathrm{i}=1\) to n do
        \(\mathrm{j}=1\) to \((\mathrm{m} / 2)\) do
        \(\mathrm{v}_{(\mathrm{m}-1) \mathrm{i}-\mathrm{m}+2 \mathrm{j}} \leftarrow-1\)
    end for
    for \(\mathrm{i}=1\) to n do
        \(\mathrm{j}=1\) to \((\mathrm{m}-2) / 2\) do
        \(\mathrm{v}_{(\mathrm{m}-1) \mathrm{i}-\mathrm{m}+2 \mathrm{j}+1} \leftarrow n+1\)
    end for
end if
end procedure
```

Theorem 3.5 : For $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 1$, the human chain graph admits n - edge magic labeling. Proof: Let $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}(\mathrm{p}, \mathrm{q})$ be a human chain graph with $\mathrm{p}=2 \mathrm{mn}+\mathrm{n}+1$ vertices and $\mathrm{q}=2 \mathrm{mn}+2 \mathrm{n}$ edges. Using algorithm 3.5 , the $2 \mathrm{mn}+\mathrm{n}+1$ vertices are labeled by defining a function f : $\mathrm{V} \rightarrow\{-1, \mathrm{n}+1 / \mathrm{n} \in \mathrm{N}\}$ and $2 \mathrm{mn}+2 \mathrm{n}$ edges are labeled by defining a function $\mathrm{f}^{*}: \mathrm{E} \rightarrow \mathrm{N}$, such that $f^{*}(u v)=\{f(u)+f(v)\}=-1+n-1=n$, a constant for all $u v \in E$. Therefore, for $m \geq 3$ and $n \geq 1$, the human chain graph admits n - edge magic labeling.
4. Conclusion: In this paper, we have constructed algorithms for labeling the vertices and edges and also proved the existence of Z_{3} - vertex magic total, Z_{3}-edge magic total, Z_{4} bi magic, total magic cordial and n - edge magic labeling for human chain graph.

5. References

1. Gallian J.A, "A Dynamic Survey of graph labeling", the Electronic Journal of combinatories, 19, \# DS6 (2012).

2 . A.Kotzig and A.Rosa (1970), Magic valuations of finite graphs, Canad.math.Bull
13, 451-461.
3. J.Sedlacek, On magic graphs, math. Slov, 26(1976), 329-335.
4. J.Sedlacek, Some properties of magic graphs, In Graphs, Hypergraph and Bloc syst.proc.symp.comb.Anal, Zielona Gora,(1976), 247-253.
5. B.Selvam, K.Thirusangu and P.P.Ulaganathan, " Z_{3} - vertex magic total labeling and Z_{3} - edge magic total labeling in extended duplicate graph of twig T_{m} " 2012.
6. K.Anitha, B.Selvam, Human chain graph, International journal of Engineering, Science and Mathematics, Vol. 7 Issue 8, August 2018.
7. K.Sudha, K.Thirusangu and S.Bala "Magicness in Extended Duplicate Graphs" International Research journal of Engineering and Technology", 2017, Volume 4 issue 3.

