ANTI-MAGIC LABELING FOR BOOLEAN GRAPH OF CYCLE $B G\left(C_{n}\right)(n \geq 4)$

T. Subhramaniyan ${ }^{1}$, K. manikandan ${ }^{2}$ and S. Suruthi ${ }^{3}$
${ }^{1}$ Associate Professor, Department of Mathematics, Guru Nanak College, Chennai, India
${ }^{2}$ Assistant Professor, Department of Mathematics, Guru Nanak College, Chennai, India
${ }^{3}$ Assistant Professor, Department of Mathematics, D. B. Jain College, Chennai, India

Abstract

A graph G is anti-magic if there is a labeling of its edges with $1,2, \ldots,|E|$ such that the sum of the labels assigned to edges incident to distinct vertices are different. A conjecture of Hartsfield and Ringel states that every connected graph different from K_{2} is anti-magic. Our main result validates this conjecture for Boolean graph of cycle $C_{n}(n \geq 4)$ is anti-magic.

Keywords:Boolean graph $B G(G)$, Anti-magic Labeling.
Introduction:Suppose $G=(V, E)$ is a graph. For each vertex v of G denoted by $E_{G}(V)$, the set of edge of G incident to v. We shall write $E(V)$ for $E_{G}(V)$ Let $f: E \rightarrow\{1,2, \ldots,|E|\}$ be a bijective mapping. The vertex-sum $\varphi_{f}(v)$ at v is defined as $\varphi_{f}(v)=\sum_{e \in E(v)} f(e)$. For any two distinct vertices u, v of $\mathrm{G}, \varphi_{f}(v) \neq \varphi_{f}(u)$ gives an anti-magic labeling of G . A graph G is called antimagic if G has an anti-magic labeling. The problem of anti-magic labeling of graphs was introduced by Hartsfield and Ringel [4]. They conjectured that all graphs with no single edge component are anti-magic. Graph Labeling has many applications in coding theory, X-ray crystallography, radar, astronomy, circuit design, communication network addressing, and data base management.

Conjecture 1: [4]Every connected graph different from K_{2} is anti-magic.
This conjecture is still open. Interestingly, the graph K_{2} can be regarded as a tree on two vertices. Thus, if we restrict ourselves to trees, the above conjecture holds. Hartsfield and Ringel proved that paths, cycles and complete graph $K_{n},(n \geq 3)$ are anti-magic. Recently, Alon et al. [1] have proved that the conjecture is true for some classes of dense graphs. They have shown that all dense graphs with ($n \geq 4$) vertices and minimum degree $\Omega(\log n)$ are anti-magic. They also proved that if G is a graph with ($\mathrm{n} \geq 4$) vertices and the maximum degree $\Delta(G) \geq 4 n-2$, then G is anti-magic and all complete bipartite graphs except K_{2} are anti-magic. Anti-magic labeling of the Cartesian product of graphs was studied in [7]; if G is a regular anti-magic graph then for any graph H , the Cartesian product $\mathrm{H} \times G$ is anti-magic. It was proved in [4] that 2-
regular graphs are anti-magic and proved in [6] that 3-regular graphs are anti-magic. As a consequence, ifG is 2-regular or 3-regular then for any graphH, $\mathrm{H} \times G$ is anti-magic. In this paper, we extend anti-magic labeling to Boolean Graph of cycle.

Definition 1:Boolean graphBG(G) is a graph with vertex set $\mathrm{V}(\mathrm{G}) \cup E(G)$ and two vertices in $B G(G)$ are adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and non - incident edge of G.

Theorem 1: The Boolean graph of cycle $B G\left(C_{n}\right),(n \geq 4)$ is anti-magic.

Proof: Let C be a cycle with the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. By the definition of Boolean graph $B G\left(C_{n}\right)$ the vertex set is given by

$$
V\left(B G\left(C_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{j} ; 1 \leq j \leq n\right\}
$$

and the edge set is given by

$$
E\left(B G\left(C_{n}\right)\right)=\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{j} u_{j+1} ; 1 \leq j \leq n-1\right\}
$$

We discuss Boolean graph of cycl in two cases.
Case (a): $\mathrm{n} \equiv 0(\bmod 2)$
Label the vertices of $B G\left(C_{n}\right)$ using the functionf : $\mathrm{E} \rightarrow \mathrm{N}$ as follows:
$f\left(v_{i} v_{i+1}\right)=i ; i=1,2, \ldots, n-1 \& f\left(v_{1}, v_{n}\right)=n$
$f\left(u_{j} u_{j+1}\right)=n+j ; j=1,2, \ldots, n-1 \& f\left(u_{1}, u_{n}\right)=2 n$
$f\left(v_{i} u_{j}\right)=(n-2)(i+1)+j+3$ if $i<j$
and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}\right)=(\mathrm{n}-1)(\mathrm{i}-1)+(\mathrm{n}-2) \mathrm{j}+3 \quad$ if $\mathrm{i}>\mathrm{j}$
The induced function $\mathrm{f}^{*}: \mathrm{V} \rightarrow \mathrm{N}$, such that $f^{*}(v)=\sum_{u \in n b \mathrm{~d}(v)} f\left(v_{i} u_{j}\right)$
We consider the when labels of vertices are distinct.
Subcase (i): when $\mathrm{i}=1$ where $\mathrm{i}<\mathrm{j}$.

$$
\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{n}}\right)+\sum_{j=2}^{n-1} f\left(v_{i} u_{j}\right)
$$

$$
\begin{aligned}
\mathrm{f}^{*}\left(\mathrm{v}_{1}\right) & =\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)+\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)+\sum_{j=2}^{n-1}[(n-2)(i+1)+j+3] \\
\mathrm{f}^{*}\left(\mathrm{v}_{1}\right) & =1+\mathrm{n}+(\mathrm{n}-2)(1+1)(\mathrm{n}-2)+3(\mathrm{n}-2)+\frac{n(n-1)}{2}-1 \\
& =1+\mathrm{n}+2(\mathrm{n}-2)^{2}+3(\mathrm{n}-2)+\frac{n(n-1)}{2}-1 \\
& =\frac{1}{2}\left[2 \mathrm{n}+2\left(2 \mathrm{n}^{2}-\mathrm{n}-4 \mathrm{n}+2\right)+\mathrm{n}^{2}-\mathrm{n}\right] \\
\mathrm{f}^{*}\left(\mathrm{v}_{1}\right) & =\frac{1}{2}\left[5 \mathrm{n}^{2}-9 \mathrm{n}+4\right]
\end{aligned}
$$

Subcase (ii): When $\mathrm{i}=2$ where $\mathrm{i}<\mathrm{j}$

$$
\begin{aligned}
\mathrm{f} *\left(\mathrm{v}_{\mathrm{i}}\right) & =\sum_{i=1}^{2} f\left(v_{i} v_{i+1}\right)+\sum_{j=3}^{n} f\left(v_{i} u_{j}\right) \\
& =\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)+\mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)+\sum_{j=3}^{n}[(n-2)(i+1)+j+3] \\
& =1+2+(\mathrm{n}-2) .(\mathrm{n}-2)(\mathrm{i}+1)+3(\mathrm{n}-2)+\frac{n(n+1)}{2}-3 \\
\mathrm{f}^{*}\left(\mathrm{v}_{2}\right) & =3(\mathrm{n}-2)^{2}+3(\mathrm{n}-2)+\frac{n^{2}+n}{2} \\
& =\frac{1}{2}\left[7 \mathrm{n}^{2}-17 \mathrm{n}+12\right]
\end{aligned}
$$

Sub case (iii): When $\mathrm{i}=3,4, \ldots, \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\sum_{\substack{j=1 \\ j \neq i-1, i}}^{n} f\left(v_{i} u_{j}\right)$

$$
\begin{aligned}
& =(\mathrm{i}-1)+\mathrm{i}+\sum_{\substack{j=1 \\
i>j}}^{i-2} f\left(v_{i} u_{j}\right)+\sum_{\substack{j=i+1 \\
i<j}}^{n} f\left(v_{i} u_{j}\right) \\
& =2 \mathrm{i}-1+\sum_{j=1}^{i-2}[(n-1)(i-1)+(n-2) j+3]+\sum_{j=i+1}^{n}[(n-2)(i+1)+j+3] \\
& =2 \mathrm{i}-1+(\mathrm{n}-1)(\mathrm{i}-1)(\mathrm{i}-2)+3(\mathrm{i}-2)+(\mathrm{n}-2) \frac{(i-2)(i-1)}{2} \\
& \quad+(\mathrm{n}-\mathrm{i})(\mathrm{n}-2)(\mathrm{i}+1)+3(\mathrm{n}-\mathrm{i})+\frac{n(n+1)}{2}-\frac{i(i+1)}{2}
\end{aligned}
$$

$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{1}{2}\left[(\mathrm{n}-1) \mathrm{i}^{2}+\left(2 \mathrm{n}^{2}-15 \mathrm{n}+19\right) \mathrm{i}+\left(3 \mathrm{n}^{2}+9 \mathrm{n}-22\right)\right]$
Sub case (iv): When $\mathrm{i}=\mathrm{n}$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)+\sum_{\substack{j=1 \\
i>j}}^{n-2} f\left(v_{i} u_{j}\right) \\
& =\mathrm{n}+(\mathrm{n}-1)+\sum_{j=1}^{n-2}[(n-1)(i-1)+(n-2) j+3] \\
& \\
& =2 \mathrm{n}-1+(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{i}-1)+3(\mathrm{n}-2)+(\mathrm{n}-2), \frac{(n-2)(n-1)}{2} \\
& \\
& \\
& =\frac{1}{2}\left[\left(2 \mathrm{n}^{2}-6 \mathrm{n}+4\right) \mathrm{i}+\mathrm{n}^{3}-7 \mathrm{n}^{2}+24 \mathrm{n}-22\right]
\end{aligned}
$$

We consider the case when labels of edges are distinct.
Subcase (v):When $\mathrm{j}=1$ where $\mathrm{i}>\mathrm{j}$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{n}}\right)+\sum_{i=j+2}^{n} f\left(v_{i} u_{j}\right) \\
& =(\mathrm{n}+\mathrm{j})+2 \mathrm{n}+\sum_{i=j+2}^{n}[(n-1)(i-1)+(n-2) j+3]
\end{aligned}
$$

$$
\begin{aligned}
& =3 n+j+(n-1)\left[\frac{n(n+1)}{2}-\frac{(j+1)(j+2)}{2}\right]+[(n-2) j-n+4](n-j-1) \\
& =\frac{1}{2}\left[6 n+2 j+(n-1)\left(n^{2}+n-j^{2}-3 j-2\right)+2(n-j-1)(n j-2 j-n+4)\right] \\
& =\frac{1}{2}\left[(5-3 n) j^{2}+\left(2 n^{2}-7 n+1\right) j+n^{3}-2 n^{2}+13 n-6\right]
\end{aligned}
$$

Subcase (vi): When $\mathrm{j}=2,3, \ldots, \mathrm{n}-2$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\sum_{\substack{i=1 \\
i \neq j, j+1}}^{n} f\left(v_{i} u_{j}\right) \\
& =\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\sum_{\substack{i=1 \\
i<j}}^{j-1} f\left(v_{i} u_{j}\right)+\sum_{\substack{i=j+2 \\
i>j}}^{n} f\left(v_{i} u_{j}\right) \\
& \quad=(\mathrm{n}+\mathrm{j}-1)+(\mathrm{n}+\mathrm{j})+\sum_{i=1}^{j-1}[(n-2)(i+1)+j+3]+\sum_{i=j+2}^{n}[(n-1)(i-1)+(n-2) j+3] \\
& =2 \mathrm{n}+2 \mathrm{j}-1+(\mathrm{n}-2) \frac{(j-1) j}{2}+(\mathrm{n}+\mathrm{j}+1)(\mathrm{j}-1)+(\mathrm{n}-1)\left[\frac{n(n+1)}{2}-\frac{(j+1)(j+2)}{2}\right] \\
& +[(\mathrm{n}-2) \mathrm{j}-\mathrm{n}+4](\mathrm{n}-\mathrm{j}-1) \\
& =\frac{1}{2}[(4 \mathrm{n}+4 \mathrm{j}-2)+(\mathrm{n}-2)(\mathrm{j}-1) \mathrm{j}+2(\mathrm{j}-1)(\mathrm{n}+\mathrm{j}+1)+ \\
& (\mathrm{n}-1)[(\mathrm{n}(\mathrm{n}+1)-(\mathrm{j}+1)(\mathrm{j}+2)]+2(\mathrm{n}-\mathrm{j}-1)[(\mathrm{n}-2) \mathrm{j}-\mathrm{n}+4] \\
& =\frac{1}{2}\left[(5-2 \mathrm{n}) \mathrm{j}^{2}+\left(2 \mathrm{n}^{2}-6 \mathrm{n}+5\right) \mathrm{j}+\mathrm{n}^{3}-2 \mathrm{n}^{2}+9 \mathrm{n}-10\right]
\end{aligned}
$$

Subcase (vii): When $\mathrm{j}=\mathrm{n}-1$ where $\mathrm{i}<\mathrm{j}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\sum_{\substack{i=1 \\ i<j}}^{j-1} f\left(v_{i} u_{j}\right)$

$$
\begin{aligned}
& =(2 \mathrm{n}-2)+(2 \mathrm{n}-1)+\sum_{i=1}^{j-1}[(n-2)(i+1)+j+3] \\
& =4 \mathrm{n}-3+(\mathrm{n}-2)+\frac{(j-1) j}{2}+(\mathrm{n}+1+\mathrm{j})(\mathrm{j}-1) \\
& =\frac{1}{2}\left[\mathrm{nj}^{2}+(\mathrm{n}+2) \mathrm{j}+6 \mathrm{n}-8\right]
\end{aligned}
$$

Subcase (viii): When $\mathrm{j}=\mathrm{n}$ where $\mathrm{i}<\mathrm{j}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{j}}\right)+\sum_{\substack{i=2 \\ i<j}}^{j-1} f\left(v_{i} u_{j}\right)$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=(\mathrm{n}+\mathrm{j}-1)+2 \mathrm{n}+\sum_{i=2}^{j-1}[(n-2)(i+1)+j+3]$
$=3 \mathrm{n}+\mathrm{j}-1+(\mathrm{n}-2)\left[\frac{(j-1) j}{2}-1\right]+(\mathrm{n}+1+\mathrm{j})(\mathrm{j}-2)$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\frac{1}{2}\left[\mathrm{nj}^{2}+(\mathrm{n}+2) \mathrm{j}-2\right]$
Case (b): $\mathrm{n} \equiv 1(\bmod 2)$
Let us label the vertices of $B G\left(C_{n}\right)$ using the function $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{N}$ as follows:
$f\left(v_{i} v_{i+1}\right)=2 i-1, i=1,2, \ldots, n-1$
$\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)=2 \mathrm{n}-1$
$f\left(u_{j} u_{j+1}\right)=2 j ; j=1,2, \ldots, n-1$
$\mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}\right)=(\mathrm{n}-2)(\mathrm{i}+1)+\mathrm{j}+3$ if $\mathrm{i}<\mathrm{j}$
and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}\right)=(\mathrm{n}-1)(\mathrm{i}-1)+(\mathrm{n}-2) \mathrm{j}+3$ for $\mathrm{i}>\mathrm{j}$
The induced function $\mathrm{f}^{*}: \mathrm{V} \rightarrow \mathrm{N}$ such that $\mathrm{f}^{*}(\mathrm{v})=\sum_{u \in \operatorname{nbd}(v)} f\left(v_{i} u_{j}\right)$
We consider the when the labels are distinct.

Subcase (i): When $\mathrm{i}=1$ where $\mathrm{i}<\mathrm{j}$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{n}}\right)+\sum_{\substack{j=2 \\
i<j}}^{n-1} f\left(v_{i} u_{j}\right) \\
& =(2 \mathrm{i}-1)+(2 \mathrm{n}-1)+\sum_{j=2}^{n-1}[(n-2)(i+1)+j+3] \\
& \\
& =(2 \mathrm{i}-1)+(2 \mathrm{n}-1)+[(\mathrm{n}-2)(\mathrm{i}+1)+3](\mathrm{n}-2)+\frac{(n-1) \cdot n}{2}-1 \\
& \\
& =\frac{1}{2}\left[\left(2 \mathrm{n}^{2}-8 \mathrm{n}+12\right) \mathrm{i}+3 \mathrm{n}^{2}+\mathrm{n}-10\right]
\end{aligned}
$$

Subcase (ii): When $\mathrm{i}=2$ where $\mathrm{i}<\mathrm{j}$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\sum_{\substack{j=3 \\
i<j}}^{n} f\left(v_{i} u_{j}\right) \\
& \begin{aligned}
&=2(\mathrm{i}-1)-1+2 \mathrm{i}-1+\sum_{j=3}^{n}[(n-2)(i+1)+j+3] \\
&=4 \mathrm{i}-4 \\
&+[(\mathrm{n}-2)(\mathrm{i}+1)+3](\mathrm{n}-2)+\left[\frac{n(n+1)}{2}-1-2\right] \\
&=\frac{1}{2}\left[8 \mathrm{i}-8+(2 \mathrm{n}-4)(\mathrm{ni}+\mathrm{n}-2 \mathrm{i}+1)+\left(\mathrm{n}^{2}+\mathrm{n}\right)-6\right] \\
&=\frac{1}{2}\left[8 \mathrm{i}-8+2 \mathrm{n}^{2} \mathrm{i}+2 \mathrm{n}^{2}-4 \mathrm{ni}+2 \mathrm{n}-4 \mathrm{ni}-4 \mathrm{n}+8 \mathrm{i}-4+\mathrm{n}^{2}+\mathrm{n}-6\right] \\
&=\frac{1}{2}\left[\left(2 \mathrm{n}^{2}-8 \mathrm{n}+16\right) \mathrm{i}+3 \mathrm{n}^{2}-\mathrm{n}-18\right]
\end{aligned}
\end{aligned}
$$

Subcase (iii): When $\mathrm{i}=3,4,5, \ldots, \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\sum_{\substack{j=1 \\ j \neq i-1, i}}^{n} f\left(v_{i} u_{j}\right)$

$$
\begin{aligned}
& =2(\mathrm{i}-1)-1+2 \mathrm{i}-1+\sum_{\substack{j=1 \\
i>j}}^{i-2} f\left(v_{i} u_{j}\right)+\sum_{\substack{j=i+1 \\
i<j}}^{n} f\left(v_{i} u_{j}\right) \\
& =4 \mathrm{i}-4+\sum_{j=1}^{i-2}[(n-1)(i-1)+(n-2) j+3]+\sum_{j=i+1}^{n}[(n-2)(i+1)+j+3] \\
& \quad=4 \mathrm{i}-4+[(\mathrm{n}-1)(\mathrm{i}-1)+3](\mathrm{i}-2)+(\mathrm{n}-2) \frac{(i-2)(i-1)}{2}+[(\mathrm{n}-2)(\mathrm{i}+1)+3](\mathrm{n}-\mathrm{i})+ \\
& {\left[\frac{n(n+1)}{2}-\frac{i(i+1)}{2}\right]} \\
& \quad=\frac{1}{2}\left[8 \mathrm{i}-8+(2 \mathrm{i}-4)(\mathrm{ni}-\mathrm{n}-\mathrm{i}+4)+(\mathrm{n}-2)\left(\mathrm{i}^{2}-3 \mathrm{i}+2\right)+(\mathrm{ni}+\mathrm{n}-2 \mathrm{i}+1)(2 \mathrm{n}-2 \mathrm{i})+\mathrm{n}^{2}\right. \\
& \left.+\mathrm{n}-\mathrm{i}^{2}-\mathrm{i}\right) \\
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{1}{2}\left[(\mathrm{n}-1) \mathrm{i}^{2}+\left(2 \mathrm{n}^{2}-15 \mathrm{n}+23\right) \mathrm{i}+3 \mathrm{n}^{2}+9 \mathrm{n}-28\right] .
\end{aligned}
$$

Subcase (iv): When i $=\mathrm{n}$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right)+\sum_{\substack{j=1 \\
i>j}}^{n-2} f\left(v_{i} u_{j}\right) \\
&=2(\mathrm{i}-1)-1+2 \mathrm{n}-1+\sum_{j=1}^{n-2}[(n-1)(i-1)+(n-2) j+3] \\
&=2 \mathrm{i}-3+2 \mathrm{n}-1+[(\mathrm{n}-1)(\mathrm{i}-1)+3](\mathrm{n}-2)+(\mathrm{n}-2)\left[\frac{(n-2)(n-1)}{2}\right] \\
&=\frac{1}{2}\left[(4 \mathrm{n}+4 \mathrm{i}-8)+(2 \mathrm{n}-4)[\mathrm{ni}-\mathrm{n}-\mathrm{i}+4]+(\mathrm{n}-2)\left(\mathrm{n}^{2}-3 \mathrm{n}+2\right)\right. \\
&=\frac{1}{2}\left[\left(2 \mathrm{n}^{2}-6 \mathrm{n}+8\right) \mathrm{i}+\mathrm{n}^{3}-7 \mathrm{n}^{2}+24 \mathrm{n}-28\right] .
\end{aligned}
$$

We consider the case when the labels of edges are distinct.

8

Sub case (v): When $\mathrm{j}=1$ where $\mathrm{i}>\mathrm{j}$.

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{n}}\right)+\sum_{\substack{i=j+2 \\
i>j}}^{n} f\left(v_{i} u_{j}\right) \\
& =2 \mathrm{j}+2 \mathrm{n}+\sum_{i=j+2}^{n}[(n-1)(i-1)+(n-2) j+3] \\
& \left.=2 \mathrm{j}+2 \mathrm{n}+(\mathrm{n}-1)\left[\frac{n(n+1)}{2}-\frac{(j+1)(j+2)}{2}\right]+[(\mathrm{n}-2) \mathrm{j}-\mathrm{n}+4](\mathrm{n}-\mathrm{j}-1)\right] \\
& =\frac{1}{2}\left[4 \mathrm{j}+4 \mathrm{n}+(\mathrm{n}-1)\left(\mathrm{n}^{2}+\mathrm{n}-\mathrm{j}^{2}-3 \mathrm{j}-2\right)+2(\mathrm{n}-\mathrm{j}-1)(\mathrm{nj}-2 \mathrm{j}-\mathrm{n}+4)\right] \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\frac{1}{2}\left[(5-3 \mathrm{n}) \mathrm{j}^{2}+\left(2 \mathrm{n}^{2}-7 \mathrm{n}+3\right) \mathrm{j}+\mathrm{n}^{3}-2 \mathrm{n}^{2}+11 \mathrm{n}-6\right]
\end{aligned}
$$

Subcase (vi): When $\mathrm{j}=2,3, \ldots, \mathrm{n}-2$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\sum_{\substack{i=1 \\
i \neq j, j+1}}^{n} f\left(v_{i} u_{j}\right) \\
& =\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\sum_{\substack{i=1 \\
i<j}}^{j-1} f\left(v_{i} u_{j}\right)+\sum_{i=j+2}^{n} f\left(v_{i} u_{j}\right) \\
& =2(\mathrm{j}-1)+2 \mathrm{j}+\sum_{i=1}^{j-1}[(n-2)(i+1)+j+3]+\sum_{i=j+2}^{n}[(n-1)(i-1)+(n-2) j+3] \\
& \quad=2 \mathrm{j}-2+2 \mathrm{j}+(\mathrm{n}-2) \frac{(j-1) j}{2}+(\mathrm{n}+\mathrm{j}+1)(\mathrm{j}-1)+(\mathrm{n}-1)\left[\frac{n(n+1)}{2}-\frac{(j+1)(j+2)}{2}\right]+[(\mathrm{n}-2) \mathrm{j}-\mathrm{n}+
\end{aligned}
$$

4] (n-j-1)

$$
\begin{aligned}
& \quad=\frac{1}{2}\left[8 j-4+(n-2)\left(j^{2}-j\right)+2(j-1)(n+j+1)+(n-1)\left(n^{2}+n-j^{2}-3 j-2\right)+2(n-j-1)(n j-2 j\right. \\
& -n+4] \\
& = \\
& \frac{1}{2}\left[(5-2 n) j^{2}+\left(2 n^{2}-6 n+9\right) j+n^{3}-2 n^{2}+5 n-12\right] .
\end{aligned}
$$

Subcase (vii): When $\mathrm{j}=\mathrm{n}-1$ where $\mathrm{i}<\mathrm{j}$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)+\sum_{\substack{i=1 \\
i<j}}^{j-1} f\left(v_{i} u_{j}\right) \\
& =2(\mathrm{j}-1)+2 \mathrm{j}+\sum_{i=1}^{j-1}[(n-2)(i+1)+j+3] \\
& =4 \mathrm{j}-2+(\mathrm{n}-2) \frac{(j-1) j}{2}+(\mathrm{n}+1+\mathrm{j})(\mathrm{j}-1) \\
& =\frac{1}{2}[8 \mathrm{j}-4+(\mathrm{n}-2) \mathrm{j}(\mathrm{j}-1)+2(\mathrm{j}-1)(\mathrm{n}+1+\mathrm{j})] \\
& =\frac{1}{2}\left[\mathrm{nj}^{2}+(\mathrm{n}+10) \mathrm{j}-2 \mathrm{n}-6\right] .
\end{aligned}
$$

Subcase (viii): When $\mathrm{j}=\mathrm{n}$ where $\mathrm{i}<\mathrm{j}$

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1} \mathrm{u}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{j}}\right)+\sum_{\substack{i=2 \\
i<j}}^{j-1} f\left(v_{i} u_{j}\right) \\
& \begin{aligned}
&=2(\mathrm{j}-1)+2 \mathrm{n}+\sum_{i=2}^{j-1}[(n-2)(i+1)+j+3] \\
&=2 \mathrm{n}+2 \mathrm{j}-2+(\mathrm{n}-2) \frac{(j-1) j}{2}-1+(\mathrm{n}+\mathrm{j}+1)(\mathrm{j}-2) \\
&=\frac{1}{2}\left[4 \mathrm{n}+4 \mathrm{j}-4+(\mathrm{n}-2)\left(\mathrm{j}^{2}-\mathrm{j}-2\right)+2(\mathrm{j}-2)(\mathrm{n}+\mathrm{j}+1)\right. \\
&=\frac{1}{2}\left[\mathrm{nj}^{2}+(\mathrm{n}+4) \mathrm{j}-2 \mathrm{n}-4\right]
\end{aligned}
\end{aligned}
$$

As a whole the labeling of all the vertices and the edges of the Boolean graph of cycle is antimagic.
$\therefore B G\left(C_{n}\right)$ is anti-magic.

REFERENCES:

[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty, R. Yuster, Dense graphs are antimagic, Journal of Graph Theory

47 (2004) 297-309.
[2] W. Brown, Antimagiclabelings and the antimagic strength of graphs, manuscript, 2008.
[3] D.W. Cranston, Regular bipartite graphs are antimagic, Journal of Graph Theory 60 (3) (2009) 173-
182.
[4] N. Hartsfield, G. Ringel, Perals in Graph THeory, Academic Press, INC, Boston, 1990, pp. 108-109.

Revised version 1994.
[5] G. Kaplan, A. Lev, Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Mathematics 309
(2009) 2010-2014.
[6] Y. Liang, X. Zhu, Antimagic labeling of regular graphs, manuscript, 2012.
[7] Y. Zhang, X. Sun, The antimagicness of the Cartesian product of graphs, Theoretical Computer

Science 410 (2009) 727-735.
[8] Subramanian Arumugam, Mirka Miller, OudonePhanalasy and Joe Ryan, Antimagic labeling of generalized pyramid graphs, ActaMathematicaSinica, English Series, 30, 2, (283).

