$(1,2)^{*}-\delta g p$ Continuous Function in Bitopological Spaces

B. Meera Devi *
P. Subbulakshmi ${ }^{* *}$
D.K. Nathan **

Keywords:

$(1,2) *$ - δ gp closed sets, $(1,2)^{*}-\delta \mathrm{gp}$ open sets, $(1,2)^{*}-\delta \mathrm{gp} \quad$ Continuous and $(1,2)^{*}-\delta \mathrm{gp}$ irresolute.

Abstract

The aim of this paper is to introduce a new class of functions called $(1,2)^{*}-\delta g p$ continuous functions. We obtain several characterization and some theirproperties. Also we investigate its relationship with other types of functions in bitopological spaces. Further we introduce and study a new class of functions namely $(1,2)^{*}-\delta g p$ irresolute functions.

Copyright © 2018 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

* Assistant Professor,

Department of Mathematics,
Sri S.R.N.M.College
Sattur-626 203, Tamil Nadu, India.

1. Introduction

In 1963, Kelley [3] initiated the study of bitopological spaces. A nonempty set X equipped with two topological spaces τ_{1} and τ_{2} is called a bitopological spaces and is denoted by $\left(X, \tau_{1}, \tau_{2}\right)$. M. Lellis Thivagar and O.Ravi [6] introduced a new type of generalized sets called $(1,2)^{*}$-semi generalized closed sets and a new class of generalized functions called (1,2$)^{*}$ - semi generalized continuous maps in 2006. S.S. Benchalli and J.B.Toranagatti [1] introduced delta generalized preclosed sets in topological space. The purpose of this present paper is to define a new class of generalized continuous function called $(1,2)^{*}-\delta$ gp continuous and investigate their relationships to other generalized continuous functions. We further study a new class of functions namely $(1,2)^{*}$ - $\delta \mathrm{gp}$ irresolute.

2. Preliminaries

Throughout this paper (X, τ_{1}, τ_{2}) (or briefly X) represent bitopological spaces on which no separation axioms are assumed unless otherwise mentioned.
Definition 2.1. [8] A subset B of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called $\tau_{1} \tau_{2}$-open if $\mathrm{B}=\mathrm{U}_{1} \cup \mathrm{U}_{2}$ where $\mathrm{U}_{1} \in \tau_{1}$ and $\mathrm{U}_{2} \in \tau_{2}$. The complement of $\tau_{1} \tau_{2}$ - open is called $\tau_{1} \tau_{2}-$ closed.
Remark 2.2. [8] $\tau_{1} \tau_{2}$ - open subset of X need not necessarily from a topology.
Definition 2.3. [8] A subset A of a bitopological space (X, τ_{1}, τ_{2}) is called
(i) The $\tau_{1} \tau_{2}$-closure of A , denoted by $\tau_{1} \tau_{2}-\mathrm{cl}(\mathrm{A})$ is defined by $\tau_{1} \tau_{2}$-closure $(\mathrm{A})=\cap\left\{\mathrm{F} / \mathrm{A} \subseteq \mathrm{F}\right.$ and F is $\tau_{1} \tau_{2}$ - closed $\}$.
(ii) The $\tau_{1} \tau_{2}$-interior of A , denoted by $\tau_{1} \tau_{2}-\operatorname{int}(\mathrm{A})$ is defined by $\tau_{1} \tau_{2}$-interior $(\mathrm{A})=\cup\left\{\mathrm{F} / \mathrm{A} \subseteq \mathrm{F}\right.$ and F is $\tau_{1} \tau_{2}$ - open $\}$.
Definition 2.4. A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called
(i) $(1,2)^{*}$-pre-open [8] if $\mathrm{A} \subseteq \tau_{1} \tau_{2}-\operatorname{int}\left(\tau_{1} \tau_{2}-\operatorname{cl}(\mathrm{A})\right)$ and $(1,2)^{*}$-pre-closed if $\tau_{1} \tau_{2}-\operatorname{cl}\left(\tau_{1} \tau_{2}-\operatorname{int}(\mathrm{A})\right) \subseteq \mathrm{A}$.
(ii) $\quad(1,2)^{*}-\operatorname{bopen} \quad[4] \quad$ if $\mathrm{A} \subseteq\left(\tau_{1} \tau_{2}-\operatorname{cl}\left(\tau_{1} \tau_{2}-\operatorname{int}(\mathrm{A})\right)\right) \cup\left(\tau_{1} \tau_{2}-\operatorname{int}\left(\tau_{1} \tau_{2}-\operatorname{cl}(\mathrm{A})\right)\right) \quad$ and $(1,2) *-\mathrm{b}$ closed if $\left(\tau_{1} \tau_{2}-\operatorname{cl}\left(\tau_{1} \tau_{2}-\operatorname{int}(\mathrm{A})\right)\right) \cap\left(\tau_{1} \tau_{2}-\operatorname{int}\left(\tau_{1} \tau_{2}-\operatorname{cl}(\mathrm{A})\right)\right) \subseteq \mathrm{A}$.
(iii) $(1,2)^{*}$ - regular-open [12] if $\mathrm{A}=\tau_{1} \tau_{2}-\operatorname{int}\left(\tau_{1} \tau_{2}-\mathrm{cl}(\mathrm{A})\right)$ and $(1,2)^{*}$ - regular closed if $\mathrm{A}=\tau_{1} \tau_{2}-\operatorname{cl}\left(\tau_{1} \tau_{2}-\operatorname{int}(\mathrm{A})\right)$.
The $(1,2)^{*}$ - pre-closure of a subset A of X , denoted by $(1,2)^{*}-\operatorname{pcl}(\mathrm{A})$ is the intersection of all $(1,2)^{*}$ - pre-closed sets containing A. The $(1,2)^{*}$ - pre-interior of a subset A of X, denoted by $(1,2)^{*}-\operatorname{pint}(\mathrm{A})$ is the union of $(1,2)^{*}$ - pre-open sets contained in A .
Definition 2.5. [9] The $(1,2)^{*}-\delta$ interior of a subset A of X is the union of all $(1,2)^{*}$ - regular open set of X contained in A and is denoted by $(1,2)^{*}-\delta \operatorname{int}(\mathrm{A})$. The subset A is called $(1,2)^{*}-\delta$ open if $\mathrm{A}=(1,2)^{*}-\delta \operatorname{int}(\mathrm{A})$, ie.a set is $(1,2)^{*}-\delta$ open if it is the union of $(1,2)^{*}-$ regular open sets. The complement of a $(1,2)^{*}-\delta$ open is called $(1,2)^{*}-\delta$ closed. Alternatively, a set $\mathrm{A} \subseteq\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ is called $(1,2)^{*}-\delta$ closed if $\mathrm{A}=(1,2)^{*}-\delta \operatorname{cl}(\mathrm{A})$, where $(1,2) *-\delta \mathrm{cl}(\mathrm{A})=\left\{\mathrm{x} \in \mathrm{X}: \tau_{1} \tau_{2}-\operatorname{int}\left(\tau_{1} \tau_{2}-\mathrm{cl}(\mathrm{A})\right) \cap \mathrm{A}=\phi, \mathrm{U} \in \tau_{1} \tau_{2}\right.$ and $\left.\mathrm{x} \in \mathrm{U}\right\}$.
Definition 2.6. A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called
(i) $(1,2)^{*}$ - generalized closed set (briefly $(1,2)^{*}-\mathrm{g}$ closed) [11] if $\tau_{1} \tau_{2}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1} \tau_{2}$ - open in X .
(ii) $(1,2)^{*_{-}}$generalized b-closed set (briefly $(1,2)^{*_{-}}$gb closed) [13] if $\tau_{1} \tau_{2}-\operatorname{bcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1} \tau_{2}$ - open in X .
(iii) $(1,2)^{*}$ - generalized pre-closed set (briefly $(1,2)^{*}-\mathrm{gp}$ closed) [14] if $\tau_{1} \tau_{2}-\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1} \tau_{2}$ - open in X .
(iv) $(1,2)^{*}$ - generalized pre regular closed set (briefly $(1,2)^{*}$-gpr closed) [10] if $\tau_{1} \tau_{2}-\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}$ - regular open in X.
(v) $(1,2)^{*}-\delta$ generalized closed set (briefly $(1,2)^{*}-\delta$ g closed) [9] if $\tau_{1} \tau_{2}-\delta \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}$ - open in X .
(vi) $(1,2)^{*}$ - delta generalized pre-closed (briefly, $(1,2)^{*}-\delta \mathrm{gp}$ closed) [9] if $\tau_{1} \tau_{2}-\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}-\delta$ open in X.
The complement of the above mentioned closed sets are their respective open sets.
Definition 2.7. Recall that function $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is called
(i) $(1,2)^{*}$ - continuous [7] if $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}$ - closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ for every closed V of ($\mathrm{Y}, \sigma_{1}, \sigma_{2}$).
(ii) $(1,2)^{*}$ - generalized continuous (briefly $(1,2)^{*}$ - g continuous) [6] if $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\mathrm{g}$ closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ for every closed V of $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$.
(iii) $(1,2)^{*}$ - generalized b continuous (briefly $(1,2)^{*}$ - gb continuous) [13] if $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\mathrm{g}$ closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ for every closed V of $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$.
(iii) $(1,2)^{*}-\mathrm{b}$ continuous (briefly $(1,2)^{*}$ - b continuous) [2] if $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}$ - bclosed in ($\mathrm{X}, \tau_{1}, \tau_{2}$) for every closed V of $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$.
(iv) $(1,2)^{*}$ - generalized pre continuous (briefly $(1,2)^{*}$ - gp continuous) [5] if $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\mathrm{gp}$ closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ for every closed V of $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$.
(v) $(1,2)^{*}$ - generalized pre regular continuous (briefly $(1,2)^{*}$ - gpr continuous) [11] if $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}$ - gpr closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ for every closed V of $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$.

3. $(1,2)^{*}-\delta \mathrm{gp}$ Continuous function

We introduce the following definitions.
Definition 3.1. A function $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is said to be $(1,2)^{*}-\delta \mathrm{g} \mathrm{p}$ continuous, if $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\delta \mathrm{g} p$ closed set in X for every $\sigma_{1} \sigma_{2}-$ closed set V in Y .
Example 3.2. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad \tau_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}, \tau_{2}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{b}\}, \mathrm{Y}\}$ and $\sigma_{2}=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is $(1,2)^{*}-\delta \mathrm{g} \mathrm{p}$ continuous.
Theorem 3.3. Every $(1,2)^{*}$ - continuous map is $(1,2)^{*}-\delta \mathrm{gp}$ continuous.
Proof. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be $(1,2)^{*}$ - continuous. Let V be $\sigma_{1} \sigma_{2}$ - closed set in Y .
Since f is $(1,2)^{*}$ - continuous, $\mathrm{f}^{-1}(V)$ is $\tau_{1} \tau_{2}$ - closed. But every $\tau_{1} \tau_{2}$-closed set is $(1,2)^{*}-\delta \mathrm{gp}$ closed. Therefore $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\delta \mathrm{gp}$ closed. Hence f is $(1,2)^{*}-\delta \mathrm{gp}$ continuous.
Remark 3.4. The converse of the above theorem is not true in general as shown in the following example.
Example 3.5. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}, \tau_{2}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$ and $\sigma_{2}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Clearly f is $(1,2)^{*}-\delta \mathrm{gp}$ continuous but not $(1,2)^{*}$ continuous because $\mathrm{f}^{-1}(\{\mathrm{~b}\})=\{\mathrm{c}\}$ is not $\tau_{1} \tau_{2}$ closed.

Theorem 3.6. Every $(1,2)^{*}$ - pre continuous map is $(1,2)^{*}-\delta \mathrm{gp}$ continuous.
Proof. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be $(1,2)^{*}$ - pre continuous. Let V be $\sigma_{1} \sigma_{2}-$ closed set in Y. Since f is $(1,2)^{*}$-pre continuous, $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}$-pre closed. But every $(1,2)^{*}$ - pre closed set is $(1,2)^{*}-\delta \mathrm{gp}$ closed. Therefore $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\delta \mathrm{gp}$ closed. Hence f is $(1,2)^{*}-\delta \mathrm{gp}$ continuous.
Remark 3.7. The converse of the above theorem is not true in general as shown in the following example.
Example 3.8. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau_{1}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}, \tau_{2}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\} \quad$ and $\quad \sigma_{2}=\{\phi,\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{d}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$ and $\mathrm{f}(\mathrm{d})=\mathrm{b}$. Clearly f is $(1,2)^{*}-\delta g \mathrm{p}$ continuous but not $(1,2)^{*}$-pre continuous because $\mathrm{f}^{-1}(\{\mathrm{~b}, \mathrm{c}\})=\{\mathrm{b}, \mathrm{d}\}$ is not $(1,2) *$ - pre closed.
Theorem 3.9. Every $(1,2)^{*}$ - gp continuous map is $(1,2)^{*}-\delta \mathrm{gp}$ continuous.
Proof. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be $(1,2)^{*}$ - gp continuous. Let V be $\sigma_{1} \sigma_{2}$-closed set in Y . Since f is $(1,2)^{*}$ - gp continuous, $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}$ - gp closed. But every $(1,2)^{*}$ - gp closed set is $(1,2)^{*}-\delta g p$ closed. Therefore $f^{-1}(V)$ is $(1,2)^{*}-\delta g p$ closed. Hence f is $(1,2)^{*}-\delta \mathrm{gp}$ continuous.
Remark 3.10. The converse of the above theorem is not true in general as shown in the following example.
Example 3.11. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \tau_{2}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ and $\sigma_{2}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $f(a)=b, f(b)=c, f(c)=a$. Clearly f is $(1,2)^{*}-\delta g$ pontinuous but not $(1,2)^{*}$ - gp continuous because $\mathrm{f}^{-1}(\{b\})=\{\mathrm{a}\}$ is not $(1,2)^{*}$ - gp closed.
Theorem 3.12. Every $(1,2)^{*}-\delta g \mathrm{p}$ continuous is $(1,2)^{*}$ - gpr continuous.
Proof. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be $(1,2)^{*}-\delta \mathrm{gp}$ continuous. Let V be $\sigma_{1} \sigma_{2}-$ closed set in Y . Since f is $(1,2)^{*}-\delta \mathrm{g} \mathrm{p}$ continuous, $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\delta \mathrm{g} p$ closed. But every $(1,2)^{*}-\delta \mathrm{gp}$ closed set is $(1,2)^{*}$-gpr closed. Therefore $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}$-gpr closed. Hence f is $(1,2) *$ - gpr continuous.
Remark 3.13. The converse of the above theorem is not true in general as shown in the following example.
Example3.14. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, $\tau_{2}=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}, \quad \sigma_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$ and $\sigma_{2}=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Clearly f is $(1,2)^{*}$ - gpr continuous but not $(1,2)^{*}$ - δ gp continuous because $\mathrm{f}^{-1}(\{\mathrm{~b}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{b}\}$ is not $(1,2)^{*}-\delta$ gp closed.
Remark 3.15. The following example shows that $(1,2)^{*}$ - $\delta \mathrm{gp}$ continuous function is independent of $(1,2) *-\mathrm{b}$ continuous function and $(1,2)^{*}-\mathrm{gb}$ continuous function.

Example 3.16. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau_{1}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \tau_{2}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\} \quad$ and $\sigma_{2}=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{d}, \mathrm{f}(\mathrm{d})=\mathrm{b}$. Clearly f is $(1,2)^{*}-\delta \mathrm{gp}$ continuous but not $(1,2)^{*}$ - gb continuous and also it is not $(1,2)^{*}$ - b continuous because $\mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{b}, \mathrm{d}\})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ is $\operatorname{not}(1,2)^{*}-\mathrm{gb}$ closed and also it is not $(1,2)^{*}$ - b closed.
Example3.17. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}, \tau_{2}=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ and $\sigma_{2}=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Clearly f is $(1,2)^{*}-\mathrm{gb}$ and $(1,2)^{*}$ - b continuous but not $(1,2)^{*}-\delta \mathrm{gp}$ continuous because $\mathrm{f}^{-1}(\{\mathrm{c}\})=\{\mathrm{a}\}$ is not $(1,2)^{*}-\delta$ gp closed.
Remark 3.18. If $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \quad$ is $(1,2)^{*}-\delta \mathrm{gp}$ continuous and $\mathrm{g}:\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ is $(1,2)^{*}-\delta \mathrm{gp}$ continuous, then $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ need not be $(1,2)^{*}-\delta \mathrm{gp}$ continuous. The following example supports our claim.
Example 3.19. Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}, \quad \tau_{2}=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}, \sigma_{2}=\{\phi,\{\mathrm{c}\}, \mathrm{Y}\}, \eta_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{Z}\}$ and $\eta_{2}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Z}\}$. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ and $\mathrm{g}:\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ be the identity maps. Then f and g are $(1,2)^{*}-\delta \mathrm{gp}$ continuous functions, but $\mathrm{g} \circ \mathrm{f}$ is not $(1,2)^{*}-\delta \mathrm{gp}$ continuous because $(\mathrm{g} \circ \mathrm{f})^{-1}(\{\mathrm{a}, \mathrm{c}\})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\{\mathrm{a}, \mathrm{c}\})=\mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}\right.$ is not $(1,2)^{*}-\delta \mathrm{gp}$ closed.
Proposition 3.20. A map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)^{*}-\delta \mathrm{gp}$ continuous if and only if $\mathrm{f}^{-1}(\mathrm{U})$ is $(1,2)^{*}-\delta$ gp open in X for every $\sigma_{1} \sigma_{2}-$ open set U in Y .
Proof. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be $(1,2)^{*}-\delta \mathrm{gp}$ continuous and $\sigma 1 \sigma 2$-open set U in Y . Then U^{c} is $\sigma_{1} \sigma_{2}$-closed in Y and since f is $(1,2)^{*}$ - $\delta \mathrm{g} p$ continuous, $\mathrm{f}^{-1}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $(1,2)^{*}-\delta \mathrm{g} \mathrm{p}$ closed in X . But $\mathrm{f}^{-1}\left(\mathrm{U}^{\mathrm{c}}\right)=\left[\mathrm{f}^{-1}(\mathrm{U})\right]^{\mathrm{c}}$ and so $\mathrm{f}^{-1}(\mathrm{U})$ is $(1,2)^{*}$ - $\delta \mathrm{gp}$ open in X .
Conversely, assume that $\mathrm{f}^{-1}(\mathrm{U})$ is is $(1,2)^{*}-\delta \mathrm{gp}$ open in X for every $\sigma_{1} \sigma_{2}$ - open set U in Y . Let F be a $\sigma_{1} \sigma_{2}$-closed set in Y . Then F^{c} is $\sigma_{1} \sigma_{2}$-open in Y and by assumption $\mathrm{f}^{-1}\left(\mathrm{~F}^{\mathrm{c}}\right)$ is $(1,2)^{*}-\delta \mathrm{gp}$ open in X . Since $\mathrm{f}^{-1}\left(\mathrm{~F}^{\mathrm{c}}\right)=\left[\mathrm{f}^{-1}(\mathrm{~F})\right]^{\mathrm{c}}, \mathrm{f}^{-1}(\mathrm{~F})$ is $(1,2)^{*}-\delta \mathrm{gp}$ closed in X and so f is $(1,2)^{*}-\delta g p$ continuous.
Definition 3.21. A function $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is called $(1,2)^{*}$ - $\delta \mathrm{gp}$ irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}-\delta \mathrm{gp}$ closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ for each $(1,2)^{*}-\delta \mathrm{gp}$ closed set V in $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$.
Example 3.22. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad \tau_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}, \quad \tau_{2}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, $\sigma_{1}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$ and $\sigma_{2}=\{\phi,\{\mathrm{c}\}, \mathrm{Y}\}$. Let a mapf $:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Hence f is $(1,2)^{*}-\delta \mathrm{gp}$ irresolute.
Theorem 3.23. If a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ called $(1,2)^{*}$ - $\delta \mathrm{gp}$ irresolute then it is $(1,2)^{*}-\delta$ gp continuous.
Proof. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be $(1,2)^{*}$ - $\delta \mathrm{gp}$ irresolute. Let V be $\sigma_{1} \sigma_{2}$-closed set in $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$. Since every $\sigma_{1} \sigma_{2}$-closed set is $(1,2)^{*}-\delta$ gp closed, V is $(1,2)^{*}-\delta \mathrm{gp}$ closed in Y .

Since f is $(1,2)^{*}-\delta \mathrm{gp}$ irresolute, $\mathrm{f}^{-1}(V)$ is $(1,2)^{*}-\delta \mathrm{g} p$ closed in X. Hence f is $(1,2)^{*}-\delta \mathrm{gp}$ continuous.

Remark 3.24. The converse of the above theorem is not true in general as shown in the following example.
Example 3.25. Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}, \tau_{2}=\{\phi,\{\mathrm{c}\}, \mathrm{X}\}, \sigma_{1}=\{\phi,\{\mathrm{c}\}, \mathrm{Y}\}$ and $\sigma_{2}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$. Let a map $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ be the identity map. Then f is $(1,2)^{*}-\delta \mathrm{gp}$ continuous but it is not $(1,2)^{*}-\delta \mathrm{gp}$ irresolute because $\mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is not $(1,2)^{*}-\delta \mathrm{gp}$ closed in X .
Theorem 3.26. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ and $\mathrm{g}:\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$ be two functions. Then
(i) $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)^{*}-\delta \mathrm{g}$ continuous, if g is $(1,2)^{*}$ - continuous and f is $(1,2)^{*}-\delta \mathrm{g} p$ continuous.
(ii) $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)^{*}-\delta \mathrm{gp}$ irresolute, if g is $(1,2)^{*}-\delta \mathrm{gp}$ irresolute and f is $(1,2)^{*}-\delta \mathrm{gp}$ irresolute.
(i) $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Z}, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)^{*}-\delta \mathrm{gp}$ continuous, if g is $(1,2)^{*}-\delta \mathrm{gp}$ continuous and f is $(1,2)^{*}$ - $\delta \mathrm{gp}$ irresolute.
Proof. (i) Let A be any $\eta_{1} \eta_{2}$ closed set in ($\mathrm{Z}, \eta_{1}, \eta_{2}$). Since g is $(1,2)^{*}$-continuous, $\mathrm{g}^{-1}(\mathrm{~A})$ is closed in $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$. Also f is $(1,2)^{*}-\delta$ gp continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~A})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~A})$ is $(1,2)^{*}-\delta \mathrm{gp}$ closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$. Hence $\mathrm{g} \circ \mathrm{f}$ is $(1,2)^{*}-\delta \mathrm{gp}$ continuous function.
(ii) Let A be any $\eta_{1} \eta_{2}$ closed set in $\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$. Then A is $(1,2)^{*}-\delta$ gp closed in $\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$. Since g is $(1,2)^{*}$-irresolute, $\mathrm{g}^{-1}(\mathrm{~A})$ is $(1,2)^{*}-\delta \mathrm{g} p$ closedin $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$. Also f is $(1,2)^{*}-\delta \mathrm{g} p$ irresolute, $\quad \mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~A})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~A})$ is $(1,2)^{*}-\delta \mathrm{gp}$ closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$. Hence $\mathrm{g} \circ \mathrm{f}$ is $(1,2)^{*}-\delta \mathrm{g} p$ irresolute function.
(iii) Let A be any $\eta_{1} \eta_{2}$ closed set in $\left(\mathrm{Z}, \eta_{1}, \eta_{2}\right)$. Since g is $(1,2)^{*}$-continuous, $\mathrm{g}^{-1}(\mathrm{~A})$ is $(1,2)^{*}-\delta \mathrm{g} p$ closed in $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$. Also f is $(1,2)^{*}-\delta \mathrm{gp}$ irresolute, $\left.\mathrm{f}^{-1}(\mathrm{~g}-1 \mathrm{~A})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~A})$ is $(1,2)^{*}-\delta \mathrm{gp}$ closed in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$. Hence $\mathrm{g} \circ \mathrm{f}$ is $(1,2)^{*}-\delta \mathrm{gp}$ irresolute function.

4. Conclusion

In this paper we define a new class of generalized continuous function called $(1,2)^{*}-\delta g p$ continuous and investigate their relationships to other generalized continuous functions. We further study a new class of functions namely $(1,2)^{*}-\delta \mathrm{gp}$ irresolute. Also discussed some of their properties.

References

[1] Benchalli.S and Toranagatti.B, "Delta Generalized Pre-Closed Sets in Topological Spaces", International Journal of contemporary and Mathematical Sciences, Vol. 11, no. 6, 281-292.
[2] Ekici.E and caldas.M, "Slightly continuous functions", Bol. Soc. Parana. Mat.(3) 22(2004), no.2, 63-74.
[3] Kelley.J.C, "Bitopological Spaces", Proc. London math. Soc., 13(1963), 71-89.
[4] Lellis Thivagar.M, Meera Devi.B, "Bitopological B -Open sets", International Journal of Algorithms, Computing and Mathematics, Volume 3, Number 3, August 2010.
[5] Lellis Thivagar.M and Nirmala Mariappan M, "A note on $(1,2)^{*}$ - strongly generalized semi pre closed sets", Proceeding of International Conference on Mathematics and Computer sciences, 2010, 422-425.
[6] Lellis Thivagar.M and Ravi.O, "A Bitopological (1,2)*Semi generalized Continuous Maps ", Bull. Malays. Math. Sci. Soc., (2) 29(1)(2006), 7988.
[7] Lellis Thivagar.M and Ravi.O and Hatir.E, "Decomposition of $(1,2)^{*}$ - continuity and $(1,2) *-\alpha$ continuity", Miskolc Mathematical notes, 2009, 10(2):163-171.
[8] Long.E. P and Herington.L. L., "Basic Properties of Regular Closed Maps", Rend. Cir. Mat. Palermo, 27(1978), 20-28.
[9] Meera devi.B and Subbulakshmi.P, " $(1,2)^{*}$ - δ gp Closed Sets in Bitopological Spaces", Indian Journal of Research, Volume 06, Issue 07, July 2017, 27-32.
[10] Raja Rajeshwari.R, Lellis Thivagar.M, Margaret nirmala.M and Ekici.E, " A note on $(1,2)^{*}$ - gpr - closed set", Math . Maced,vol. 4 ,2006, 33-42.
[11] Ravi.O and Lellis Thivagar.M and Jin, "Remarks on extensions of $(1,2)^{*}-\mathrm{g}$ - closed mapping in Bitopological spaces", Archimedes J.Math.1(2), pp.177-187, 2011.
[12] Ravi.O and Lellis Thivagar.M, Kayathiri.K and Jopseph Isreal.M, "Decompositions of $(1,2)^{*}$ - rg-continuous maps in bitopological spaces", Antarctica Journal Math.6(1)(2009), 1323.
[13] Sreeja.D and Janaki,C, "ON $(1,2)^{*}-\pi \mathrm{gb}-$ closed sets", International Journal of Computer Applications Volume 42- No.5, March ,pp0975 8887, 2012.
[14] TantawayEl.A.O and Abu.DoniaM.H, "Generalized Separation Axioms in Bitopological spaces", The Arab J.Sci.Eng., 30(1A), 117-129, 2005.

