A STUDY ON CLIQUE NUMBER OF POPPED FIBONACCI-SUM SETGRAPHS

${ }^{1}$ Jerlin Seles M, ${ }^{\mathbf{2}}$ Mary U
${ }^{1}$ Research Scholar, ${ }^{2}$ Associate Professor
Department of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India.

Abstract

In this paper we study the Popped Fibonacci-sum set-graphs, its clique number and the chromatic number. The aforesaid graphs are an extension of the notion of Fibonacci-sum set-graphs to the notion of setgraphs. This paper is an attempt to solve the problem stated in [8].

Keywords- Clique number, Chromatic number, Fibonacci-Sum, FibonacciSum Set-graphs, Popped Fibonacci-Sum Set-graphs, Set-Graphs.

I. Introduction

For general notation and concepts in graphs and digraphs see [2, 4, 7]. Unless stated otherwise, all graphs will be finite connected simple graphs.

Recall that the sequence of Fibonacci numbers $F=\left\{f_{n}\right\}_{n=0}, n \in \mathrm{~N}_{0}$ is defined recursively as $f_{o}=0, f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$. As defined in [3], a Fibonacci-sum graph is defined for a finite set of the first n consecutive positive integers $\{1,2,3, \ldots, n\}$ as G_{n}^{F} with $v\left(G_{n}^{F}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(G_{n}^{F}\right)=\left\{v_{i} v_{j}: i \neq j, i+j \in F\right\}$

In this paper, we study the notion of a new class of graph, namely the Popped Fibonacci-sum set-graphs its Clique number and the chromatic number. Popped Fibonacci-sum set-graphs are an extension of the notion of Fibonacci-sum Set-graphs to the notion of set-graphs.

II. Derivative Set-Graphs

The notion of Set-graph was introduced in [5] as explained below.
Let $A^{(n)}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}, n \in \mathrm{~N}$ be a non-empty set and the i-th s-element subset of $A^{(n)}$ be denoted by $A_{s, i}^{(n)}$. Now, consider $S=\left\{A_{s, i}^{(n)}: A_{s, i}^{(n)} \subseteq A^{(n)}, A_{s, i}^{(n)} \neq \phi\right\}$. The set-graph corresponding to set $A^{(n)}$, denoted $G_{A^{(n)}}$, is defined to be the graph with $V\left(G_{A^{(n)}}\right)=\left\{v_{s, i}: A_{s, i}^{(n)} \in S\right\}$ and $E\left(G_{A^{(n)}}\right)=\left\{v_{s, i} v_{t, j}: A_{s, i}^{(n)} \cap A_{t, j}^{(n)} \neq \phi\right\}$, where $s \neq t$ or $i \neq j$.

Note that the definition of vertices implies, $v_{s, i} \mapsto A_{s, i}^{(n)} \in S$.
The notion of Fibonacci-Sum set-graphs was introduced in [1] as explained below.

Vol. 7 Issue 4, April 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Let $A^{(n)}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}, n \in \mathrm{~N}$ be a non-empty set and the i-th s-element subset of $A^{(n)}$ be denoted by $A_{s, i}^{(n)}$. Now, consider $S=\left\{A_{s, i}^{(n)}: A_{s i}^{(n)} \subseteq A^{(n)}, A_{s, i}^{(n)} \neq \phi\right\}$. The Fibonacci-Sum Set-graph corresponding to set $A^{(n)}$, denoted $G_{A^{(n)}}^{F}$, is defined to be the graph with $V\left(G_{A^{(n)}}^{F}\right)=\left\{v_{s, i}: A_{s i}^{(n)} \in S\right\}$ and $E\left(G_{A^{(n)}}^{F}\right)=\left\{v_{s, i} v_{t, j}: \forall\left(i^{\prime}, j^{\prime}\right), i^{\prime} \in A_{s, i}^{n}, j^{\prime} \in A_{t, j}^{n}, i^{\prime} \neq j^{\prime}\right.$ and the sum $\left.i^{\prime}+j^{\prime} \in F\right\}$. Since $A_{s, i}^{(n)}$ and $A_{t, j}^{(n)}$ are not necessarily distinct, loops are permitted.
Note that the Fibonacci-Sum Set-graphs are finite connected graphs with multiple edges and loops.

iII.Clique Number of Popped Fibonacci-Sum Set-Graph

The notion of Popped Fibonacci-Sum set-graphs was introduced in [1] is as follows.

The Popped Fibonacci-Sum Set-graph denoted by $G_{A^{(n)}}^{P^{(n)}}$ is obtained by deleting all loops and all multiple edges except one edge (to retain adjacency) from $G_{A^{(n)}}^{F}$.

The following Simple Graph represents Popped Fibonacci-Sum SetGraph $G_{A^{(4)}}^{F^{3}}$ corresponding to set $A^{(4)}=\{1,2,3,4\}$ with $F=\{0,1,1,2,3,5,8,13,21,34,55,89,144,233,377\}$
$V\left(G_{A^{(4)}}^{F^{P}}\right)=\{v 11, v 12, v 13, v 14, v 21, v 22, v 23, v 24, v 25, v 26, v 31, v 32, v 33, v 34, v 41\}$
$E\left(G_{\left.A^{4}\right)}^{P^{j}}\right)=\left\{v_{s, i}, v_{t, j}: a \in v_{s, i}\right.$ and $\left.b \in v_{t, j} ; a+b \in F\right\}$. Here the multiple edges except one (to retain adjacency) are deleted.

For understanding, Consider the vertices $v 11$ with element $\{1\}$ and $v 12$ with element $\{2\}$, here there exist an edge between them, since the sum of the elements $\{1\}$ and $\{2\}$ belongs to Fibonacci sequence, F.
Consider the vertices $v 11$ with element $\{1\}$ and $v 13$ with element $\{3\}$, there exist an no edge between them, since the sum of the elements $\{1\}$ and $\{3\}$ does not belong to Fibonacci sequence, F and so on.
Similarly, Consider the vertices $v 11$ with element $\{1\}$ and $v 14$ with element $\{1,2,3,4\}$, there exist three edges between them, since the sum of the element of v11 (i.e)., $\{1\}$ with elements of $v 14$: $\{1\},\{2\},\{4\}$ belongs to Fibonacci sequence, F. As we do not consider multiple edges here for adjacency we retain one edge and delete remaining two edges.
On repeating this process the following figure was obtained.

Vol. 7 Issue 4, April 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Figure 1: Popped Fibonacci-Sum Set-Graph $G_{A^{(4)}}^{P^{2}}$.
Note: The subsets of the set (i.e)., the elements in each vertex of the graph was obtained by using the MATLAB software.

Proposition-1

The Clique number and the Chromatic number of the Popped Fibonacci-Sum Set-Graphs $G_{A^{(n)}}^{F^{3}}$ are as follows:
(i) For $n=2, \omega=\chi=1$.
(ii) For $n=3, \omega=\chi=6$
(iii) For $n=4, \omega=\chi=13$

Proof:

The results are obvious by the definition popped Fibonacci-Sum setgraphs.

Vol. 7 Issue 4, April 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proposition-2

The Clique number of the Popped Fibonacci-Sum Set-Graphs $G_{A^{(n)}}^{F^{j}}$ are as follows:
(i) For $n=5, \omega\left(G_{A^{(5)}}^{P^{3}}\right)=23$
(ii) For $n=6, \omega\left(G_{A^{(6)}}^{F^{(6)}}\right)=51$
(iii) For $n=7, \omega\left(G_{A^{(7)}}^{F^{3}}\right)=104$

Proof:

For $n=5$
$A^{(5)}=\{1,2,3,4,5\}$ with $f_{n}=f_{n-1}+f_{n-2}, n=31$
(i.e.)., $F=\{0,1,1,2,3,5,8,13,21,34,55,89,144,233,377, \ldots$.
$V\left(G_{A^{(5)}}^{F^{\prime}}\right)=\{v 11, v 12, v 13, v 14, v 15, v 21, v 22, v 23, v 24, v 25, v 26, v 27, v 28, v 29, v 210$,

$$
v 31, v 32, v 33, v 34, v 35, v 36, v 37, v 38, v 39, v 310, v 41, v 42, v 43, v 44, v 45, v 51\}
$$

$E\left(G_{A^{(5)}}^{F^{j}}\right)=\left\{v_{s, i}, v_{t, j}: a \in v_{s, i}\right.$ and $\left.b \in v_{t, j} ; a+b \in F\right\}$. Here the multiple edges except one (to retain adjacency) are deleted.

Now, Consider the vertices $v 11$ with element $\{1\}$ and $v 12$ with element $\{2\}$, there exist an edge between them, since the sum of the elements $\{1\}$ and $\{2\}$ belongs to Fibonacci sequence, F. Consider the vertices $v 11$ with element $\{1\}$ and $v 13$ with element $\{3\}$, there exist an no edge between them, since the sum of the elements $\{1\}$ and $\{3\}$ does not belong to Fibonacci sequence, F and so on. Similarly, Consider the vertices $v 11$ with element $\{1\}$ and $v 15$ with element $\{1,2,3,4,5\}$, there exist three edges between them, since the sum of the element of $v 11$ (i.e)., $\{1\}$ with elements of $v 15:\{1\}$, $\{2\},\{4\}$ belongs to Fibonacci sequence, F. As we do not consider multiple edges here for adjacency we retain one edge and delete remaining two edges. (i.e)., there exists an edge between $v 11$ and $v 15$.

On repeating this for remaining edges we obtain the graph $G_{A^{(5)}}^{F^{3}}$. And then by the definition of Popped Fibonacci sum set graph and clique number the result was obtained.
Similarly, the result was obtained for $n=6,7$.

IV.CONCLUSION

In this paper the clique number of popped Fibonacci- Sum set-graphs corresponding to $A^{(n)}$, for $1 \leq n \leq 7$ was obtained. The further work can be done by finding the clique number for any n.

Problem-1. If possible, determine the clique number of the popped FibonacciSum set-graph $G_{A^{(n)}}^{F P}$ for any $n \geq 7$.
Problem-2. If possible, determine the chromatic number of the popped Fibonacci-Sum set-graph $G_{A^{(n)}}^{p^{p}}$ for any $n \geq 5$.

Vol. 7 Issue 4, April 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

References

[1] A. Arman, D.S. Gunderson and P.C. Li, "Properties of the Fibonacci-sum graph", Preprint, arXiv:1710.10303v1, [math CO].
[2] J.A. Bondy and U.S.R. Murty, Graph theory, Springer, New York, (2008).
[3] K. Fox, W.B. Kinnersley, D. McDonald, N. Orlow and G.J. Puleo, "Spanning paths in Fibonacci-sum graphs", Fibonacci Quart., vol. 52, pp. 46-49.
[4] F. Harary, Graph theory, Narosa Publ. House, New Delhi, (2001).
[5] J. Kok, K.P. Chithra, N.K. Sudev and C. Susanth, "A Study on Set-Graphs", Int. J. Computer Appl., Vol 118(7), 1-5.
[6] J. Kok and N.K. Sudev, "On the rainbow neighbourhood numbers of setgraphs", arXiv:1712.02324v1, [math.GM].
[7] D.B. West, Introduction to graph theory, Prentice-Hall of India, New Delhi, (2001).
[8] Eunice Gogo Mphako-Banda, Johan Kok and Sudev Naduvath, "Some Properties of Fibonacci-Sum Set-Graphs", arXiv:1802.02452v1 [math.GM] 6 Feb (2018).

