THE DIVISIBILITY OF DOUBLE MERSENNE JOIN MATRICES BY THE DOUBLE MERSENNE MEET MATRICES

${ }^{[1]}$ N.Elumalai $\&^{[2]}$ R.Anuradha
${ }^{[1]}$ Associate Professor of Mathematics,A.V.C College(autonomous),
Mannampandal - 609305,Mayiladuthurai,Tamilnadu, India
${ }^{[2]}$ Assistant Professor of Mathematics,A.V.C College(autonomous), Mannampandal - 609305,Mayiladuthurai,Tamilnadu, India

Abstract

We define the double mersenne meet matrix and double mersenne join matrices separately.Also, we divide the double mersenne join matrices by the double mersenne meet matrices. We calculate the determinant,trace and inverse of double Mersenne Meet Matrices by using arithmetical functions.

KEYWORDS:Double Mersenne Meet,Double Mersenne Join,Divisibility

INTRODUCTION

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of n positive integers with $x_{1}<x_{2}<\ldots<x_{n}$ and let $f: P \rightarrow \mathbb{C}$ be a complex valued function on Z_{+}(i.e., arithmetic function). Let ($\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$) denotes the greatest common divisor (gcd) of x_{i} and x_{j} and defines the $n \times n$ matrix $(S)_{f}$ by $\left((S)_{f}\right)_{i j}=f\left(x_{i}, x_{j}\right)$. We refer to $(S)_{f}$ as the GCD Matrix on S with respect to f. The Set S is said to be gcdclosed if $\left(x_{i}, x_{j}\right) \in S$ whenever $x_{i}, x_{j} \in S$. The set S is said to be factor-closed if it contains every positive divisor of each $x_{i} \in S$. Clearly, a factor-closed set is always gcd-closed but the converse does not hold.

This paper develops the divisibility of Meet and Join Matrices on the Posets.We
present a characterization for the matrix divisibility of the join Matrix by the Meet Matrix in the ring $Z^{n \times n}$ in terms of the usual divisibility in Z, where S is a Meet Closed set and f is an integer-valued function on P.K.Bourque and S.Ligh [1,2] ,S.Hong [5,6,7,] studied this subject extensively.P.Haukkanen and I.Korkee [3] and C.He and I.Zhao [4] are also developed in this divisibility.

2.STRUCTURE OF DOUBLE MERSENNE MEET AND DOUBLE MERSENNE JOIN MATRICES

2.1 Definition:

A number is said to be S-Prime if it can be written in the form $4 n+1$.

2.2 Definition:

Let $\mathrm{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a subset of P and the $n \times n$ matrix $(M)_{P}=\left(M_{i j}\right)$ where
$M_{i j}=2^{x_{i} \wedge x_{j}}-1$, is called the Mersenne Meet Matrix on M.

2.3 Definition:

Let $\mathrm{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a subset of P and the $n \times n$ matrix $(M M)_{P}=\left(M M_{i j}\right)$ where
$M M_{i j}=2^{2^{i_{i} \kappa_{j}-1}-1}$, is called the double Mersenne Meet Matrix on S .

2.4 Definition:

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers and $n \times n$ matrix $[M]_{P}=\left[M_{i j}\right]=\frac{\left(2^{x_{i}}-1\right)\left(2^{x_{j}}-1\right)}{\left(2^{x_{i} \wedge x_{j}}-1\right)}$, is called the Mersenne Join Matrix On S.

2.5 Definition:

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers and $n \times n$ matrix
$[M M]_{P}=\left[M M_{i j}\right]=\frac{\left(2^{2^{i_{i}-1}}-1\right)\left(2^{2^{x_{j}-1}-1}\right)}{\left(2^{2^{x_{i \times 1} x_{j}}-1}-1\right)}$, is called the Double Mersenne Join

Matrix On S.

2.6 Definition:

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers and $n \times n$ matrix $\mathrm{R}=\left(\mathrm{r}_{\mathrm{ij}}\right)$ where $r_{i j}=\frac{[M]_{P}}{(M)_{P}}=\frac{\left(2^{x_{i}}-1\right)\left(2^{x_{j}}-1\right)}{\left(2^{x_{i} \wedge x_{j}}-1\right)^{2}}$ call it to be the Mersenne Join Matrix

- Reciprocal Mersenne Meet Matrix on S.

2.7 Definition:

Let $\mathrm{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers and $n \times n$ matrix
$\mathrm{Q}=\left(\mathrm{q}_{\mathrm{ij}}\right)$ where $q_{i j}=\frac{[M M]_{P}}{(M M)_{P}}=\frac{\left(2^{2^{x_{i}-1}-1}\right)\left(2^{\left.2^{x_{j}-1}-1\right)}\right.}{\left(2^{2^{x_{i j} x_{j}}-1}-1\right)^{2}}$ call it to be the Double
Mersenne Join Matrix - Reciprocal Double Mersenne Meet Matrix on S.

3.MAIN RESULTS

3.1 Theorem

Define $n \times n$ matrix $\Lambda=\operatorname{diag}\left(g\left(x_{1}\right), g\left(x_{2}\right), \ldots, g\left(x_{n}\right)\right)$, where

$$
g\left(x_{i}\right)=\frac{1}{\left(2^{2^{x_{i}-1}}-1\right)^{2}} \sum_{x_{j} \leq x_{i}}\left(2^{2^{x_{j}}-1}-1\right)^{2} \mu\left(x_{i}, x_{j}\right) \text { and } n \times n \text { matrix } \mathrm{E}=\left(\mathrm{e}_{\mathrm{ij}}\right) \text { by }
$$

$$
e_{i j}=\left\{\begin{array}{l}
2^{2^{x_{i}-1}} \text { if } 2^{2^{x_{i}-1}-1} / 2^{2^{x_{j}}-1}-1 \\
0 \quad \text { otherwise }
\end{array} \quad \text { then } \quad \mathrm{Q}=\mathrm{E} \Lambda \mathrm{E}^{\top}\right.
$$

Proof:

The ij-entry in $\mathrm{E} \Lambda \mathrm{E}^{\top}$ is $\left(E \Lambda E^{T}\right)_{i j}=\sum_{k=1}^{n} e_{i k} g\left(x_{k}\right) e_{j k}$

$$
\begin{array}{r}
=\sum_{\substack{x_{k} \leq x_{i} \\
x_{k} \leq x_{j}}}\left(2^{2^{x_{i}}-1}-1\right) g\left(x_{k}\right)\left(2^{2^{x_{j}}-1}-1\right) \\
=\left(2^{2^{x_{i}}-1}-1\right)\left(2^{2^{x_{j}}-1}-1\right) \sum_{\left.\left.x_{k} \leq \leq x_{i}\right\rangle x_{j}\right]} g\left(x_{k}\right)
\end{array}
$$

Where g is an arithmetical functions.
By the Mobius Inversion formula, we have

$$
\sum_{d / n} g(d)=\frac{1}{n^{2}}
$$

$\therefore\left(E \Lambda E^{T}\right)_{i j}=\frac{\left(2^{2^{x_{i}-1}}-1\right)\left(2^{2^{x_{j}-1}-1}\right)}{\left(2^{2^{x_{i} \times x_{j}}-1}-1\right)^{2}}=q_{i j}$

3.2 Theorem

If Q is an $n \times n$ double Mersenne Join Matrix - Reciprocal Double Mersenne Meet Matrix on S then $\operatorname{det}(Q)=\prod_{i=1}^{n}\left(2^{2^{x_{i}-1}-1}\right)^{2} g\left(x_{i}\right)$ where

$$
g\left(x_{i}\right)=\frac{1}{\left(2^{2^{x_{i}-1}}-1\right)^{2}} \sum_{x_{j} \leq x_{i}}\left(2^{2^{x_{j}}-1}-1\right) \mu\left(x_{i}, x_{j}\right)
$$

Proof:

By using the theorem (3.1), $\mathrm{Q}=\mathrm{E} \Lambda \mathrm{E}^{\top}$ where $\Lambda=\operatorname{diag}\left(g\left(x_{1}\right), g\left(x_{2}\right), \ldots, g\left(x_{n}\right)\right)$ and $E=\left(e_{i j}\right)$ lower-triangular matrix with diagonal

From these it follows that
$\operatorname{det} Q=(\operatorname{det} E)(\operatorname{det} \Lambda)\left(\operatorname{det} E^{T}\right)$

$$
\begin{aligned}
& =(\operatorname{det} E)^{2}(\operatorname{det} \Lambda) \\
& =\prod_{k=1}^{n}\left(2^{2^{x_{i}-1}-1}\right)^{2} g\left(x_{i}\right)
\end{aligned}
$$

3.3 Theorem

If $\mathrm{Q}=\left(\mathrm{q}_{\mathrm{ij}}\right)$ is an $n \times n$ double Mersenne Join-Matrix - Double Reciprocal Mersenne Meet Matrix on S then trace $(Q)=n$.

Proof:

The ij-entry of Q is $q_{i j}$ where $q_{i j}=\frac{\left(2^{2^{x_{i}-1}}-1\right)\left(2^{2^{x_{j}-1}-1}\right)}{\left(2^{2^{x_{i} x_{j}-1}}-1\right)^{2}}$
$\operatorname{Trace}(\mathrm{Q})=\sum_{i=1}^{n} r_{i i}=\sum_{i=1}^{n} \frac{\left(2^{2^{x_{i}-1}-1}\right)\left(2^{2^{x_{j}-1}-1}\right)}{\left(2^{2^{2_{i i x}-1}-1}\right)^{2}}=\sum_{i=1}^{n} 1=n$

3.4Theorem:

$$
\text { Let } \mathrm{E}=\left(\mathrm{e}_{\mathrm{i} j}\right) \text { where } e_{i j}= \begin{cases}2^{2^{x_{i}-1}-1} & \text { if } \frac{2^{2^{x_{i}-1}-1}}{2^{2^{x_{j}}-1}-1} \\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathrm{U}=\left(\mathrm{u}_{\mathrm{ij}}\right)$ be defined by
$u_{i j}=\left\{\begin{array}{l}\frac{1}{2^{2^{x_{j}-1}}-1} \mu\left(\frac{2^{2^{x_{i}}-1}-1}{2^{2^{x_{j}}-1}-1}\right) \text { if } \frac{2^{2^{x_{i}}-1}-1}{2^{2^{x_{j}}-1}-1} \text { is inverse of } E . \\ 0 \quad \text { otherwise }\end{array}\right.$

Proof:

The ij -entry of EU is $(E U)_{\mathrm{ij}}$
$(E U)_{i j}=\sum_{k=1}^{n} e_{i k} u_{k j}=\sum_{\substack{x_{k} / x_{i} \\ x_{j} / x_{k}}}\left(2^{2^{x_{i}-1}}-1\right) \frac{1}{2^{2^{x_{j}}-1}-1} \mu\left(\frac{2^{2^{x_{i}}-1}-1}{2^{2^{x_{i}-1}-1}}\right)$

$$
=\frac{2^{2^{x_{i}-1}}-1}{2^{2^{x_{j}-1}-1} \sum_{x_{d} / \frac{x_{i}}{x_{j}}} \mu\left(x_{d}\right)= \begin{cases}1 & \text { if } \quad x_{i}=x_{j} \\ 0 & \text { otherwise }\end{cases} }
$$

Thus $\mathrm{E}^{-1}=\mathrm{U}$.

3.5 Theorem:

If Q is invertible then the inverse of Q is the $n \times n$ matrix $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ where $b_{i j}=\frac{1}{q\left(x_{i}\right) q\left(x_{j}\right)} \sum_{x_{i} \vee x_{j} \leqslant_{x_{k}}} \frac{\mu\left(x_{i} / x_{k}\right) \mu\left(x_{j} / x_{k}\right)}{g\left(x_{k}\right)}$

Proof:

By using the theorem (3.1), $\mathrm{Q}=\mathrm{E} \Lambda \mathrm{E}^{\top} \Rightarrow Q^{-1}=\left(E^{T}\right)^{-1} \wedge^{-1} E^{-1}$
By using the theorem(3.1) and (3.4),
$\Lambda=\operatorname{diag}\left(g\left(x_{1}\right), g\left(x_{2}\right), \ldots, g\left(x_{n}\right)\right)$ and $\mathrm{U}=\mathrm{E}^{-1}$, we have $Q^{-1}=U^{T} \Lambda^{-1} U=\left(b_{i j}\right)=B$.
Thus the proof of the theorem.

3.6Example:

Construct the 2×2 Double Mersenne Join Matrix - Double reciprocal Mersenne Meet Matrix on the lower closed -upper closed set $S=\{1,2\}$,then by using the definition(2.7),

$$
q_{i j}=\frac{\left(2^{2^{x_{i}-1}}-1\right)\left(2^{2^{x_{j}}-1}-1\right)}{\left(2^{2^{x_{i} \wedge x_{j}}-1}-1\right)^{2}}
$$

$$
q_{11}=\frac{\left(2^{2^{1}-1}-1\right)\left(2^{2^{1}-1}-1\right)}{\left(2^{2^{111}-1}-1\right)^{2}}=\frac{1}{1}=1
$$

$$
q_{12}=q_{21}=\frac{\left(2^{2^{1}-1}-1\right)\left(2^{2^{2}-1}-1\right)}{\left(2^{2^{1 / 2}-1}-1\right)^{2}}=\frac{1.7}{1}=7
$$

$$
q_{22}=\frac{\left(2^{2^{2}-1}-1\right)\left(2^{2^{2}-1}-1\right)}{\left(2^{2^{2 \sim 2}-1}-1\right)^{2}}=\frac{7.7}{49}=1
$$

$\therefore Q=\left[\begin{array}{ll}1 & 7 \\ 7 & 1\end{array}\right]$
By using the theorem(3.2),

$$
\begin{aligned}
& \operatorname{det}(Q)=\prod_{i=1}^{n}\left(2^{\left.2^{x_{i}-1}-1\right)^{2} g\left(x_{i}\right) \text { where } g\left(x_{i}\right)=\frac{1}{\left(2^{2^{i_{i}-1}-1}-1\right)^{2}} \sum_{x_{j} \leq x_{i}}\left(2^{2^{j_{j}}-1}-1\right) \mu\left(x_{i}, x_{j}\right)} \begin{array}{rl}
g\left(x_{1}\right)=g(1)= & \frac{1}{\left(2^{2^{1}-1}-1\right)^{2}} \sum_{x_{j} \leq 1}\left(2^{\left.2^{x_{j}-1}-1\right)^{2} \mu\left(x_{i}, x_{j}\right)}\right. \\
\quad=\frac{1}{1}\left(2^{2^{1}-1}-1\right) \mu(1,1)=1 \\
\begin{array}{rl}
g\left(x_{2}\right)=g(2)= & \frac{1}{\left(2^{2^{2}-1}-1\right)^{2}} \sum_{x_{j} \leq 2}\left(2^{\left.2^{j_{j}-1}-1\right)^{2} \mu\left(x_{i}, x_{j}\right)}\right. \\
\left.\quad=\frac{1}{49}\left[\left(2^{2^{1}-1}-1\right)^{2} \mu(1,1)+\left(2^{2^{2}-1}-1\right)^{2} \mu(1,2)\right]=\frac{1}{49}[1+49(-1)]\right] \\
=\frac{-48}{49}
\end{array}
\end{array} .\right.
\end{aligned}
$$

$\operatorname{Det}(\mathrm{Q})=\left(2^{2^{1}-1}-1\right)^{2} g(1)\left(2^{2^{2}-1}-1\right)^{2} g(2)=49 \cdot \frac{-48}{49}=-48$
By using the theorem(3.3), $\operatorname{trace}(Q)=q_{11}+q_{22}=1+1=2$
By using the theorem (3.5), $\mathrm{Q}^{-1}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ where

$$
\begin{aligned}
& b_{i j}=\frac{1}{q\left(x_{i}\right) q\left(x_{j}\right)} \sum_{\left[x_{i} v x_{j} \leqslant x_{x_{k}}\right.} \frac{\mu\left(x_{i} / x_{k}\right) \mu\left(x_{j} / x_{k}\right)}{g\left(x_{k}\right)} \\
& b_{11}=\frac{1}{q\left(x_{1}\right)^{2}} \sum_{x_{1} / x_{k}} \frac{\mu\left(x_{1} / x_{k}\right)^{2}}{g\left(x_{k}\right)}= \\
& \frac{1}{q(1)^{2}} \sum_{x_{i} / x_{k}} \frac{\mu\left(1 / x_{k}\right)^{2}}{g\left(x_{k}\right)} \\
& \\
& =\frac{1}{1}\left[\frac{\mu(1 / 1)^{2}}{g(1)}+\frac{\mu(1 / 2)^{2}}{g(2)}\right] \\
& \\
& =\frac{1}{1}+\frac{(-1)^{2}}{-48 / 49}=1-\frac{49}{48}=\frac{-1}{48}
\end{aligned}
$$

International Journal of Engineering, Science and Mathematics

Vol. 7 Issue 4, April 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
& b_{12}=\frac{1}{q\left(x_{1}\right) q\left(x_{2}\right)} \sum_{x_{1} \times x_{2} / x_{k}} \frac{\mu\left(x_{1} / x_{k}\right) \mu\left(x_{2} / x_{k}\right)}{g\left(x_{k}\right)}=\frac{1}{q(1) q(2)} \sum_{1 v 2 / x_{k}} \frac{\mu\left(1 / x_{k}\right) \mu\left(2 / x_{k}\right)}{g\left(x_{k}\right)} \\
& =\frac{1}{7} \sum_{2 / x_{k}} \frac{\mu\left(1 / x_{k}\right) \mu\left(2 / x_{k}\right)}{g(2)} \\
& =\frac{1}{7}\left[\frac{-1.1}{-48 / 49}\right] \\
& =\frac{49}{336}=\frac{7}{48} \\
& b_{12}=\frac{1}{q\left(x_{1}\right) q\left(x_{2}\right)} \sum_{x_{1}, x_{2} / x_{k}} \frac{\mu\left(x_{1} / x_{k}\right) \mu\left(x_{2} / x_{k}\right)}{g\left(x_{k}\right)}=\frac{1}{q(1) q(2)} \sum_{1 \vee 2 / x_{k}} \frac{\mu\left(1 / x_{k}\right) \mu\left(2 / x_{k}\right)}{g\left(x_{k}\right)} \\
& =\frac{1}{7} \sum_{2 / x_{k}} \frac{\mu\left(1 / x_{k}\right) \mu\left(2 / x_{k}\right)}{g(2)} \\
& =\frac{1}{7}\left[\frac{-1.1}{-48 / 49}\right] \\
& =\frac{7}{48} \\
& b_{22}=\frac{1}{q\left(x_{2}\right)^{2}} \sum_{x_{2} / x_{k}} \frac{\mu\left(x_{2} / x_{k}\right)^{2}}{g\left(x_{k}\right)}=\frac{1}{q(2)^{2}} \sum_{x_{2} / x_{k}} \frac{\mu\left(2 / x_{k}\right)^{2}}{g\left(x_{k}\right)} \\
& =\frac{1}{1}\left[\frac{\mu(2 / 1)^{2}}{g(2)}+\frac{\mu(2 / 2)^{2}}{g(1)}\right] \\
& =\left[\frac{1}{-48 / 49}+\frac{1}{1}\right] \\
& =\left[\frac{-49}{48}+1\right]=\frac{-1}{48} \\
& \therefore \quad Q^{-1}=\left[\begin{array}{cc}
-\frac{1}{48} & \frac{7}{48} \\
\frac{7}{48} & -\frac{1}{48}
\end{array}\right]
\end{aligned}
$$

References:

[1] K.Bourque and S.Ligh, "On GCD and LCM matrices;Linear Algebra and its applications,174(1992),65-74.
[2] K.Bourque and S.Ligh, "Matrices associated with arithmetical functions:Linear and multi-
linear algebra,34(1993),261-267.
[3] P.Haukkanen and I.Korkee,Notes on the divisibility of GCD and LCM matrices;

International Journal of Mathematics and Mathematical Sciences,6(2005),925938.
[4] C.He and I.Zhao,More on Divisibility of determinant of LCM matrices on GCD closed
sets,Southeast Asian Bull.Math,29(2005),887-893.
[5] S.Hong,Divisibility of determinants of Least Common Multiple matrices on GCD closed
sets;Southeast ,Asian Bull.Math,27(2003),615-621.
[6] S.Hong,GCD closed sets and determinant of matrices associated with arithmetical
functions;Acta Arithmetical ,4(2002),322-332.
[7] S.Hong , On the factorization LCM matrices on GCD closed sets;Linear Algebra and its
applications, 343(2002),225-233.

