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1. Introduction 

Let f be an entire function defined in the open complex plane C. The maximum term  fr,  of 
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n

n zaf  

on |z|=r is defined by  fr, =  .max
0

ra
n

n
n

. To start this paper we just recall the following: 

Let f be an entire function defined in the open complex plane C .The central index    frr
f

,   is the 

greatest exponent m such that ra
m

m
 fr, . We note that  fr,  is a real and non-decreasing function of r. 

 

The following definitions are well known. 

 

Definition 1The order
f

and lower order  f
of an entire function f is defined as 
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Definition 2The hyper order 


f

and hyper lower order 
 f

of an entire function f is defined as follows 
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r

fr

r
f log

,log
suplim

]2[







and  

.
log

,log
inflim

]2[

r

fr

r
f








 

 
Now let us define another function : 

Let   ,0),0[:  be a non-decreasing unbounded function, satisfying the following two conditions: 
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for some >1. 

 

Now we will define the classical definitions of growth indicators of  f with respect to central index  fr,  , 

with the help of the function  . 
 

Using the concept of central index we may reframe the following definitions as follows : 

 

Definition 3  The - order
,f

and lower  -order  ,f

of an entire function f is defined as follows: 
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Definition 4: the hyper  -order 

,f  , 
the hyper  -order  ,f of  f is defined by 
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. 

 

Somasundaram and Thamizharasi ([4]) introduced the notion of L-order ,L-lower order and L-type for entire 

functions where L=L(r) is a positive continuous function increasing slowly i.e. L(ar) ~ L(r) as r tending to 

infinity for every constant „a‟. 

 
Now we will define the L-order(L-lower order)with respect to the function  .

. 
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Definition 5 {cf. [4]} The L- - order


L
f ,

and L- lower  -order L
f ,

of an entire function f is defined as 

follows: 
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When f is meromorphic, then 
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Definition 6 {cf. [4]}  The L- - type


L
f ,

of an entire function f is 
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When f is meromorphic, then 
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Definition 7 : The (p,q) th
order and lower (p,q) th

order of an entire function f respectively as 

follows: 
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wherep,q are integers with p>q. 

 

when f is meromorphic one can easily verify that 
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where p, q are  positive integers with p>q. 

 

With the notion of slowly changing function one can easily define the following: 

 

Definition 8 : The L-(p,q) th order and L- lower (p,q) th order of an entire function f respectively as 

follows: 
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The more generalized concept of L-order and L-type of entire and meromorphic functions are L*-order and 

L*-type with respect to  , respectively .Their definitions are as follows : 

 

Definition 9 : The L*
 order , L*- lower  order and L*

 type  of an meromorphic function f are 

defined by: 
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When f is entire, one can easily verify that 
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In view of the notion of central index of entire functions we may state the following definition. 

 

Definition 10 : The L*-(p,q) th order and L*- lower (p,q) th order of an entire function f are respectively 

as follows: 
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When f is meromorphic , then 
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 cannot be defined in the above way. 

 

In the paper we further investigate the comparative growths of two entire functions with their corresponding 

left and right factors with respect to central index on the basis of L- (p,q) th  -order(lower order) and L* 

(p,q) th  - order(lower order), where p, q are positive integers and p>q. 

 

 

2. Results and Analysis. 
 

Theorem 1 : Let f and g be two entire functions such that     
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Proof : (i)From the definition of L-(p,q)th order we have for arbitrary positive  and for all large values of r, 
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Thus (i) follows from (3) and (6). 
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(ii)From the definition of L -(p,q)th lower order we have for arbitrary 0 and for all large values of r, 
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Thus (ii) follows from (8) , (11) , (13) and  (14). 

(iii) Combining (i) and (ii) of the theorem, (iii) follows. 

 
Remark 1 : The middle part of the inequality (i) is independent of the constant A. 
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Theorem 2 : If f and g two entire functions with 
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where p ,q ,m are positive integers with q< min {p , m}. 

 

Proof :  Let us assume that the conclusion of the theorem does not hold. Then there exists a constant C>0 
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holds for all large values of r. So from (15) and (16) we obtain for all sufficiently large values of r, 
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Remark 1 : The second condition is necessary. As we see in the following example. 
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Remark 2 : If we take   
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In the line of Theorem 1 and 2 we may respectively state the following two theorems whose proofs are given 
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Proof : (i)From the definition of L*-(p,q)th order we have for arbitrary positive  and for all large values of r, 
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Now from (23) and (24) it follows for a sequence of values of r tending to infinity, 
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As 0 is arbitrary we obtain that 
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Now for a sequence of values of r tending to infinity, 
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Also for sufficiently large values of r, 
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So combining (26) and (27) we get for a sequence of values of r tending to infinity, 
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As 0 is arbitrary it follows that 
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Thus (i) follows from (25) and (28). 

 

(ii)From the definition of L*-(p,q)th lower order we have for arbitrary 0 and for all large values of r, 
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Now from (27) and (29) it follows for all large values of r, 
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Again for a sequence of values of r tending to infinity, 
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and for all large values of r, 
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So from (31) and (32) we get for a sequence of values of r tending to infinity, 
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Again for a sequence of values of r tending to infinity, 
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Now from (29) and (34) we obtain for a sequence of values of r tending to infinity,

    
   

 

 
 .1

,

,

,log

,log
*

*

,

,
O

qm

qp

gr

fogr
L

g

L

fog

Am

p






















 

As 0 is arbitrary we obtain that 

   
   

 

 
)35........(....................

,

,

,log

,log
*

*

,

,

suplim
qm

qp

gr

fogr
L

g

L

fog

Am

p

r 














 

Again from (23) and (32) it follows for all large values of r 
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Thus (ii) follows from (30) , (33) , (35) and  (36). 

(iii) Combining (i) and (ii) of the theorem, (iii) follows. 

 

Theorem 5  If f and g two entire functions with 
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where p ,q ,m are positive integers with q< min {p , m}. 

 

Proof :  Let us assume that the conclusion of the theorem does not hold. Then there exists a constant C>0 

such that for all sufficiently large values of r, 
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holds for all large values of r. So from (37) and (38) we obtain for all sufficiently large values of r, 
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From (39) it follows that   .,
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So we arrive at a contradiction. This proves the theorem. 

Remark 4 : If we take   
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  in this theorem and the other conditions 

remain same then the theorem remains valid with g replaced byf in the  denominator as we see in the 

following theorem. 

 

Theorem 6 : If f , g be two entire functions with   
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Where p, q, m are positive integers with q <min{p, m}. 

 

Proof : Let us assume that the conclusion of the theorem does not hold. Then there exists a constant C such 

that for all sufficiently large values of r , 
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holds for all large values of r. So from (40) and (41) we obtain for all sufficiently large values of r,  
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Thus we arrive at a contradiction. So the theorem is established. 
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