
International Journal of Engineering, Science and Mathematics 
Vol. 7 Issue 5, May 2018,  
ISSN: 2320-0294 Impact Factor: 6.765 
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com          
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & 
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A  

  

78 International Journal of Engineering, Science and Mathematics 
http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

On some growth properties related to certain type of difference 

polynomials 
  

Sanjib Kumar Datta
1

 

Satavisha Dey


2 
 

  Abstract  

 
 For an entire function f  , we define the difference operators as
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where c is a non-zero complex number and 2n  being a positive 
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 , where 

f being an entire function and mn, , ),.......3,2,1( djj   are all 

non-negative integers. Then F is called the difference monomial 

generated by entire f . 

 In this paper, we will establish some comparative growth properties 

of differential –difference polynomials of the above form generated 

by an entire function 𝑓 as indicated. In fact, the results obtained here 

improve some earlier theorems.  
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Introduction 
       Let  𝑓  be an transcendental entire function defined in the open complex plane ℂ  . A difference-monomial 

generated by 𝑓 , is an expression of the form  

𝐹 = 𝑓𝑛(𝑓𝑚 − 1) (𝑓 𝑧 + 𝑐𝑗  )𝛾𝑗

𝑑

𝑗=1
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 where 𝑚, 𝑛 and 𝛾𝑗are all non-negative integers. 

    Now for the sake of definiteness let us take, 

 

 𝑀𝑖 𝑓 = 𝑓𝑛(𝑓𝑚 − 1) (𝑓 𝑧 + 𝑐𝑗  )𝛾𝑗𝑖
𝑗=1  

 where 1 ≤ 𝑖 ≤ 𝑑. 
          If  𝑀1 𝑓 ,𝑀2 𝑓 ,… .𝑀𝑛  𝑓  be such monomials in 𝑓 as defined above, then 

 

 ∅ 𝑓 = 𝑎1𝑀1 𝑓 + 𝑎2𝑀2 𝑓 + ⋯𝑎𝑛𝑀𝑛 𝑓  
 

 where 𝑎𝑖 ≠ 0(𝑖 = 1,2, …𝑛) is called a difference-polynomial generated by 𝑓. 

            Let 𝑓 be an entire function defined in the open complex plane ℂ. The maximum term μ(r,f) of 

 𝑓 =  𝑎𝑛
∞
𝑛=0 𝑧𝑛on |z|=r is defined by 

 

 𝜇 𝑟, 𝑓 = 𝑚𝑎𝑥𝑛≥0  𝑎𝑛 𝑟
𝑛 . 

 

To start our paper we just recall the following definitions: 
    Let Ψ:[0,∞)→(0,∞) be a non-decreasing unbounded functionm, satisfying the following two conditions: 

 

(i) lim𝑟→∞
𝑙𝑜𝑔 [𝑞 ]𝑟

𝑙𝑜𝑔  𝑞 𝛹(𝑟)
= 0  

    and 

 

 (ii) lim𝑟→∞
𝑙𝑜𝑔 [𝑞−1]𝛹(𝛼𝑟 )

𝑙𝑜𝑔  𝑞 𝛹(𝑟)
= 1 

    for some 𝛼 > 1. 

 

Definition 1  The Ψ-order 𝜌(𝑓,𝛹) and  Ψ-lower order 𝜆(𝑓 ,𝛹) of an entire function of an entire function 𝑓 is defined 

as follows: 
 

 𝜌(𝑓,𝛹) = lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝑀(𝑟 ,𝑓)

log 𝛹(𝑟)
 and  𝜆(𝑓,𝛹) = lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔  2 𝑀(𝑟 ,𝑓)

log 𝛹(𝑟)
 

 

    where 𝑙𝑜𝑔[𝑘]𝑥 = log(𝑙𝑜𝑔[𝑘−1]𝑥)for k=1,2,3,.... and  𝑙𝑜𝑔[0]𝑥 = 𝑥. 

    If 𝜌(𝑓,𝛹) < ∞ then 𝑓is of finite Ψ-order.Also 𝜌 𝑓 ,𝛹 =0  means that 𝑓is of Ψ-order zero. In this connection 

following Liao and Yang [6] we may give the definition as below: 

Definition 2 Let 𝑓 be an entire function of order zero.Then the quantities 𝜌∗
(𝑓 ,𝛹)

 and 𝜆∗
(𝑓,𝛹) of an entire function f 

is defined as 

𝜌∗
(𝑓 ,𝛹)

= lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝑀(𝑟 ,𝑓)

log [2]𝛹(𝑟)
   and 𝜆∗

(𝑓,𝛹) = lim𝑖𝑛𝑓𝑟→∞   
𝑙𝑜𝑔  2 𝑀(𝑟 ,𝑓)

log [2] 𝛹(𝑟)
 

 
 

  
 

         In the line of Datta and Biswas [3] gave an alternative definition of zero Ψ-order and zero Ψ-lower order of 
an entire function may be given as: 

 

Definition 3 Let 𝑓 be an entire function of order zero.Then the quantities and 𝜌∗∗
(𝑓 ,𝛹)

 and 𝜆∗∗
(𝑓 ,𝛹) of an entire 

function f is defined by: 

 

 𝜌 ∗∗(𝑓 ,𝛹)= lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔𝑀 (𝑟 ,𝑓)

log 𝛹(𝑟)
  and 𝜆∗∗

(𝑓,𝛹) = lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔𝑀 (𝑟 ,𝑓)

log 𝛹(𝑟)
. 

 

 

    Since for 0 ≤ 𝑟 ≤ 𝑅, 
 

     𝜇(𝑟, 𝑓) ≤ 𝑀(𝑟, 𝑓) ≤
𝑅

𝑅−𝑟
𝜇(𝑅, 𝑓) 

 

    it is easy to see that 

𝜌∗∗
(𝑓 ,𝛹)

= lim𝑠𝑢𝑝𝑟→∞
log [2]𝜇(𝑟 ,𝑓)

log 𝛹(𝑟)
   and 𝜆∗∗

(𝑓 ,𝛹) = lim𝑖𝑛𝑓𝑟→∞ .
𝑙𝑜𝑔 [2]𝜇(𝑟 ,𝑓)

log 𝛹(𝑟)
 

𝜌 ∗(𝑓 ,𝛹)= lim𝑠𝑢𝑝𝑟→∞  
log [2]𝑀(𝑟 ,𝑓)

log [2] 𝛹(𝑟)
  and 𝜆∗

(𝑓,𝛹) = lim𝑖𝑛𝑓𝑟→∞ .
log [2]𝜇(𝑟 ,𝑓)

log [2] 𝛹(𝑟)
 

𝜌 ∗∗(𝑓 ,𝛹)= lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔𝜇 (𝑟 ,𝑓)

log 𝛹(𝑟)
  and 𝜆∗∗

(𝑓,𝛹) = lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔𝜇 (𝑟 ,𝑓)

log 𝛹(𝑟)
. 
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Definition 4 The Ψ-type 𝜎(𝑓 ,𝛹) and Ψ-lower type 𝜎 (𝑓 ,𝛹) of an entire function 𝑓   are defined as 

𝜎(𝑓 ,𝛹) = lim𝑠𝑢𝑝
𝑟→∞

𝑙𝑜𝑔𝑀 (𝑟 ,𝑓)

𝛹 (𝑟)𝜌 (𝑓 ,𝛹 ) 
 and 𝜎 (𝑓 ,𝛹) = lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔𝑀 (𝑟 ,𝑓)

𝛹(𝑟)𝜌 (𝑓 ,𝛹 )
 0<𝜌 𝑓,𝛹 < ∞. 

 With the help of notion of maximum terms of entire functions, Definition 4 can be alternatively stated as follows: 

 

Definition 5 The Ψ-type 𝜎(𝑓 ,𝛹) and Ψ- lower type 𝜎 (𝑓 ,𝛹) of an entire function 𝑓 are defined as 

 

 𝜎(𝑓 ,𝛹) = lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔𝜇 (𝑟 ,𝑓)

𝛹(𝑟)𝜌 (𝑓 ,𝛹 )
 and 𝜎 (𝑓 ,𝛹) = lim𝑖𝑛𝑓𝑟→∞

𝑙𝑜𝑔𝜇 (𝑟 ,𝑓)

𝛹(𝑟)𝜌 (𝑓 ,𝛹 )
  , 0<𝜌 𝑓,𝛹 < ∞. 

 

Definition 6 A function 𝜆𝑓(𝑟)is called a lower proximate order of 𝑓 relative to T(r,f) if 

 

                             (i) 𝜆𝑓(𝑟) is non-negative and continuous for  r ≥ r₀ , say, 

                            (ii) 𝜆𝑓(𝑟) is differentiable for r≥r₀  except possibly at isolated points at which 𝜆′
𝑓(𝑟 − 0)and 

𝜆′
𝑓 𝑟 + 0 exist, 

                           (iii)lim𝑟→∞ 𝜆𝑓(𝑟) = 𝜆𝑓 ,<∞ 

                           (iv) lim𝑟→∞ 𝑟𝜆′𝑓(𝑟)𝑙𝑜𝑔𝑟 = 0 and 

                           (v) lim𝑠𝑢𝑝𝑟→∞
𝑇(𝑟 ,𝑓)

𝑟
𝜌𝑓(𝑟)

= 1. 

 

Definition 7   A function 𝜌𝑓(𝑟)is called a  proximate order of 𝑓 relative to T(r,f) if 

 

                             (i) 𝜌𝑓(𝑟)  is non-negative and continuous for  r ≥ r₀, say, 

                            (ii) 𝜌𝑓(𝑟) is differentiable for r ≥ r₀ except possibly at isolated points at which 𝜌′
𝑓

(𝑟 − 0)and 

𝜌′
𝑓
 𝑟 + 0 exist, 

                           (iii)lim𝑟→∞ 𝜌𝑓(𝑟) = 𝜌𝑓 ,<∞ 

                           (iv) lim𝑟→∞ 𝑟𝜌′𝑓(𝑟)𝑙𝑜𝑔𝑟 = 0 and 

                           (v) lim𝑠𝑢𝑝𝑟→∞
𝑇(𝑟 ,𝑓)

𝑟
𝜌𝑓(𝑟)

= 1. 

 

                             
    In this paper we study of some aspects on the compartative growths of maximum terms of two entire functions 

with their corresponding left and right factors. We do not explain the standard notations and definitions on the 
theory of entire functions because those are available in [8] . 

 

Lemmas. 
 
                         In this section we present some lemmas which will be needed in the sequel. 

 
Lemma 1   Let f and g be any two entire  functions with g(0)=0. Then for all sufficiently large values of r, 

𝜇 𝑟, 𝑓 ∘ 𝑔 ≥
1

4
𝜇  

1

8
𝜇  

𝑟

4
, 𝑔 −  𝑔 0  ,𝑓 . 

Lemma 2  Let 𝑓 and 𝑔 be any two entire functions. Then for every 𝛼and 0 < 𝑟 < 𝑅,   

𝜇 𝑟, 𝑓 ∘ 𝑔 ≤
𝛼

𝛼 − 1
𝜇  

𝛼𝑅

𝑅 − 𝑟
𝜇 𝑅,𝑔 ,𝑓 . 

 

 . 

Lemma 3  Let 𝑓 be a meromorphic function and 𝑔 be trascendental entire.If 𝜌𝑓∘𝑔 < ∞ then 𝜌 𝑓 ,𝛹 = 0. 

Lemma 4  If 𝑓  and 𝑔 be two entire functions .Then  for sufficiently large values of 𝑟 , 

𝑀 
1

8
𝑀 

𝑟

2
, 𝑔 −  𝑔 0  ,𝑓 ≤ 𝑀 𝑟, 𝑓 ∘ 𝑔 < 𝑀 𝑀 𝑟,𝑔 ,𝑓 . 

 

Lemma 5  If f be any entire function of order zero.Then 
 

                          (i) 𝜌∗
(𝑓 ,𝛹)

= 1 and (ii) 𝜆∗
(𝑓,𝛹) = 1. 

 

Lemma 6  If  𝑓 be an entire function. Then for δ>0 the function  𝑟𝜌𝑓+𝛿−𝜌𝑓(𝑟) is an increasing function of 𝑟. 

Lemma 7  If  f be an entire function . Then for δ>0 the function 𝑟𝜆𝑓+𝛿−𝜆𝑓(𝑟)  is an increasing function of 𝑟. 
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Proof:  Since 

 
𝑑

𝑑𝑟
𝑟𝜆𝑓+𝛿−𝜆𝑓(𝑟) =  𝑟𝜆𝑓+𝛿−𝜆𝑓 𝑟 − 𝑟𝜆𝑓

′  𝑟 𝑙𝑜𝑔𝑟 𝑟𝜆𝑓+𝛿−𝜆𝑓 𝑟 > 0 

 

    the function  𝑟𝜆𝑓+𝛿−𝜆𝑓(𝑟) is an increasing function of 𝑟.        

 

Lemma 8  If  𝑓 be an entire function . Then for δ>0 the function 𝑟𝜌𝑓+𝛿−𝜌𝑓(𝑟) is an increasing function of r. 

Lemma 9  Let f be an entire function and 

𝐹 = 𝑓𝑛(𝑓𝑚 − 1) (𝑓 𝑧 + 𝑐𝑗  )𝛾𝑗

𝑑

𝑗=1

 

 then, 

 

 𝑇 𝑟,𝐹 =  𝑛 + 𝑚 + 𝛾 𝑇 𝑟, 𝑓 + 𝑆 𝑟, 𝑓 . 
 
    where 

 

 𝛾 =  𝛾𝑗
𝑑
𝑗=1 . 

 

    i.e., in other words as lim𝑟→∞
𝑆(𝑟 ,𝑓)

𝑇 𝑟 ,𝑓 
= 0, 

    then, 

lim
𝑟→∞

𝑇(𝑟, 𝐹)

𝑇 𝑟, 𝑓 
=  𝑛 + 𝑚 + 𝛾 . 

 

  

    Analogusly, for ∅[𝑓], we may have the following lemma: 

 

Lemma 10  Let 𝑓 be an entite function and 𝐹, 𝛹 be as defined earlier. Then 
 

 lim𝑟→∞
𝑇(𝑟 ,∅[𝑓])

𝑇 𝑟 ,𝑓 
=  𝑛 + 𝑚 + 𝛾  . 

Lemma 11 Let 𝑓 be an entite function and 𝐹, 𝛹 be as defined earlier. Then the order (lower order) of 𝑓 and 𝐹 are 

equal. Further their types 𝜎𝐹 =  𝑛 + 𝑚 + 𝛾 𝜎𝑓and 𝜎𝐹   = 𝑛 + 𝑚 + 𝛾 𝜎𝑓 . 

 
Proof: In view of Lemma 8, we obtain that 

 

 𝜌𝐹 = lim𝑠𝑢𝑝𝑟→∞  
log 𝑇(𝑟 ,𝐹)

𝑙𝑜𝑔𝑟
 

  =lim𝑠𝑢𝑝𝑟→∞  
log  𝑛+𝑚+𝛾 𝑇 𝑟 ,𝑓 +𝑆(𝑟 ,𝑓)

𝑙𝑜𝑔𝑟
 

  =lim𝑠𝑢𝑝𝑟→∞  
log 𝑇 𝑟 ,𝑓 +𝑂(1)

𝑙𝑜𝑔𝑟
 

  = 𝜌𝑓 . 

 
In a like manner, 

𝜌(𝐹,𝛹) = lim𝑠𝑢𝑝𝑟→∞  

log𝑇(𝑟, 𝐹)

𝑙𝑜𝑔𝛹(𝑟)
 

  =lim𝑠𝑢𝑝𝑟→∞  
log  𝑛+𝑚+𝛾 𝑇 𝑟 ,𝑓 +𝑆(𝑟 ,𝑓)

𝑙𝑜𝑔𝛹 (𝑟)
 

  =lim𝑠𝑢𝑝𝑟→∞  
log 𝑇 𝑟 ,𝑓 +𝑂(1)

𝑙𝑜𝑔𝛹 (𝑟)
 

  = 𝜌(𝑓,𝛹). 

 
  

 
In the line of Lemma 8 and Lemma  9, we may obtain the following two lemmas respectively. 

 

Lemma 12  Let 𝑓 be an entire function and 𝐹, 𝜑[𝐹] be defined as above. then, 𝜌𝐹 = 𝜌∅[𝑓] and 𝜎𝐹 = 𝜎∅[𝑓] 

    The proofs are omitted. 
    Analogously, the following lemma can be derived: 

 

Lemma 13  Let 𝑓 be an entite function and 𝐹, 𝛹 be as defined earlier. Then 
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 𝜌∅[𝑓] = 𝜌(∅ 𝑓 ,𝛹), 

 𝜆∅[𝑓] = 𝜆(∅ 𝑓 ,𝛹) and 

 𝜎∅[𝑓] = 𝜎(∅ 𝑓 ,𝛹) . 

 
      In the line of Lemma 10 we may prove the following Lemma: 

 

Lemma 14 Let 𝑓,𝐹 and ∅[𝑓] be defined as above. Then 

 

 𝜌 (∅ 𝑓 ,𝛹) = 𝜌 (𝑓,𝛹), 

 𝜆 (∅ 𝑓 ,𝛹) = 𝜆 (𝑓 ,𝛹)  and 

 𝜎 (∅ 𝑓 ,𝛹) = 𝜎 (𝑓 ,𝛹). 

 

 
 

Main Results. 
 

             In this section we present the main results of the paper. 
 

Theorem 1 Let 𝑓 and 𝑔 be any two entire functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎  𝑔 ,𝛹 ≤ 𝜎 𝑔,𝛹 < ∞. 

 

     Further suppose that  ∅[𝑔] be the difference monomial in 𝑔. for  𝑛,𝑚,𝛾𝑗 ≥ 1. Then 

 

 lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≥  

1

𝑛+𝑚+𝛾
 

𝜎  𝑔 ,𝛹 𝜌 (𝑓 ,𝛹 )

𝜎(𝑔 ,𝛹 )4
𝜌 (𝑔,𝛹 )

 

                            

Proof: We obtain from Lemma 1 for a sequence of values of 𝑟 tending to infinity, 
 

 𝑙𝑜𝑔 2  𝜇 𝑟, 𝑓 ∘ 𝑔 ≥ 𝑙𝑜𝑔 2  
1

4
𝜇  

1

8
𝜇  

𝑟

4
,𝑔 −  𝑔 0  ,𝑓   

i.e., 𝑙𝑜𝑔 2  𝜇 𝑟,𝑓 ∘ 𝑔 ≥  𝜌(𝑓,𝛹)−∊ log  
1

8
𝜇  

𝑟

4
, 𝑔  + 𝑂(1) 

i.e., 𝑙𝑜𝑔 2  𝜇 𝑟,𝑓 ∘ 𝑔 ≥  𝜌 𝑓,𝛹 −∊ 𝑙𝑜𝑔
1

8
+  𝜌 𝑓,𝛹 −∊ log𝜇  

𝑟

4
,𝑔 + 𝑂 1                                 

… (1) 
 

Again from the definition of lower type, we have for arbitrary positive 휀 and for all sufficiently large values of 𝑟, 
by Lemma 10 

log𝜇  
𝑟

4
, 𝑔 ≥ 𝜎  𝑔 ,𝛹 − ε  

𝛹(𝑟)

4
 
𝜌(𝑔 ,𝛹 )

. 

      
… (2) 

 
 

  

Therefore from (1) and (2) it follows for a sequence of values of 𝑟 tending to infinity, 

𝑙𝑜𝑔 2  𝜇 𝑟, 𝑓 ∘ 𝑔 ≥  𝜌 𝑓,𝛹 − 휀 𝑙𝑜𝑔
1

8
+  𝜌 𝑓,𝛹 −∊  𝜎  𝑔,𝛹 − ε  

𝛹(𝑟)

4
 

𝜌(𝑔 ,𝛹 )

+ 𝑂(1) 

 

… (3) 
 

  

    where we choose 휀(> 0) in such a way that 
 

 0 <  휀 < min 𝜌 𝑓,𝛹 ,𝜎  𝑔 ,𝛹  . 
 

    Also for all sufficiently large values of 𝑟, 

𝑙𝑜𝑔𝜇 𝑟, ∅[𝑔] ≤ (𝑛 + 𝑚 + 𝛾) 𝜎 𝑔,𝛹 + 휀  𝛹(𝑟)𝜌∅ 𝑔 ,𝛹   
 

𝑙𝑜𝑔𝜇 𝑟,∅[𝑔] ≤ (𝑛 + 𝑚 + 𝛾) 𝜎 𝑔,𝛹 + 휀 (𝛹 𝑟 )𝜌(𝑔 ,𝛹 ) . 

                          

   
… (4) 
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    Now from (3) and (4) it follows for a sequence of values of 𝑟 tending to infinity, 

 

 
𝑙𝑜𝑔  2  𝜇 𝑟 ,𝑓∘𝑔 

𝑙𝑜𝑔𝜇  𝑟 ,∅[𝑔] 
≥

 𝜌 𝑓 ,𝛹 −ℇ 𝑙𝑜𝑔
1

8
+ 𝜌 𝑓 ,𝛹 −ℇ  𝜎  𝑔 ,𝛹 −ε  

𝛹 (𝑟)

4
 
𝜌 (𝑔 ,𝛹 )

+𝑂(1)

(𝑛+𝑚+𝛾) 𝜎 𝑔 ,𝛹 +휀 𝑟
𝜌 (𝑔 ,𝛹 )

. 

 

    As  휀(> 0) is arbitrary, we obtain that 

 

lim𝑠𝑢𝑝𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟, ∅ 𝑔 )
≥

𝜎  𝑔 ,𝛹 𝜌(𝑓 ,𝛹 )

 𝑛 + 𝑚 + 𝛾  𝜎(𝑔,𝛹)4𝜌(𝑔 ,𝛹 )
. 

… (5) 
  
    This proves the theorem . 

           In this line ,Theorem 1 one may easily prove the following corollary. 
 

Corollary 1 Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎(𝑔 ,𝛹) < ∞. 

 

     Further suppose that  ∅[𝑔] be the difference monomial in 𝑔 for  𝑛, 𝑚,𝛾𝑗 ≥ 1. Then 

lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≥

𝜆(𝑓 ,𝛹 )

4
𝜌 (𝑔 ,𝛹 )

. 

 
 

      If  𝑓  be any entire function of order zero then the following corollary can also be proved with the help of the 

growth indicator 𝜆∗∗
(𝑓 ,𝛹) for entire  𝑓  in terms of its maximum term. 

 

Corollary 2 Let 𝑓 be any entire function of order zero  such that 0 < 𝜆∗∗
(𝑓,𝛹) < ∞and 𝑔 be any entire function of 

finite order 0 < 𝜎(𝑔,𝛹) < ∞. . 

 

         Further suppose that  ∅[𝑔] be the difference monomial in 𝑔. Then 

lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≥

𝜆∗∗(𝑓 ,𝛹 )

4
𝜌 (𝑔 ,𝛹 )

. 

  
 

Remark 1 If we take  0 < 𝜆(𝑔,𝛹) ≤ 𝜌(𝑔,𝛹) < ∞ instead of " finite order with  " 0 < 𝜎(𝑔,𝛹) < ∞.  in corollary 2 and 

the other conditions remain the same then with the help of growth indicators 𝜌∗
(𝑓 ,𝛹)

 for entire 𝑓  in terms of its 

maximum terms and in view of Lemma 6 and Lemma 10 it can be carried out that 

lim𝑠𝑢𝑝𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟,𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟, ∅ 𝑔 )
≥ 1. 

 

 Theorem 2   Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓 ,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. 

Also let  0 < 𝜎 (𝑔 ,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞. 

 

     Further suppose that  ∅[𝑔] be the difference monomial in 𝑔. for  𝑛,𝑚,𝛾𝑗 ≥ 1. Then 

lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤

𝜌(𝑓 ,𝛹 )𝜎(𝑔 ,𝛹 )

(𝑛+𝑚+𝛾)𝜎  𝑔 ,𝛹 
 . 

  

 Proof:    Since for 0 ≤ 𝑟 < 𝑅 , 
 

𝜇(𝑟, 𝑓) ≤ 𝑀(𝑟, 𝑓) ≤
𝑅

𝑅−𝑟
𝜇(𝑟, 𝑓), 

 
 

    by  Lemma 4 it follows for all sufficiently large values of 𝑟 that 
 

 𝜇(𝑟, 𝑓 ∘ 𝑔)  ≤  𝑀(𝑟, 𝑓 ∘ 𝑔) ≤ 𝑀(𝑀(𝑟, 𝑔),𝑓) 

 𝑙𝑜𝑔 2 𝜇(𝑟,𝑓 ∘ 𝑔) ≤ 𝑙𝑜𝑔 2 𝑀(𝑀 𝑟, 𝑔 ,𝑓) 

 i.e., 𝑙𝑜𝑔 2  𝜇 𝑟,𝑓 ∘ 𝑔 ≤ (𝜌 𝑓,𝛹 + 휀)𝑙𝑜𝑔𝑀 𝑟,𝑔 . 

… (6) 
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    Also for all sufficiently large values of 𝑟 that 

 

 𝑙𝑜𝑔𝑀 𝑟,𝑔 ≤ (𝜎 𝑔 ,𝛹 + 휀)(𝛹(𝑟))𝜌(𝐺 ,𝛹 ) 

 i.e., 𝑙𝑜𝑔𝑀 𝑟,𝑔 ≤ (𝜎 𝑔 ,𝛹 +∊)(𝛹(𝑟))𝜌(𝑔,𝛹 ) ,by Lemma 10.  

… (7) 
 
 

    Therefore from (6) and (7), we have for all sufficiently large values of 𝑟, 

𝑙𝑜𝑔 2  𝜇 𝑟, 𝑓 ∘ 𝑔 ≤ (𝜌 𝑓,𝛹 + 휀)(𝜎 𝑔,𝛹 + 휀)(𝛹(𝑟))𝜌(𝑔 ,𝛹). 

… (8) 
 

    Again for all sufficiently large values of 𝑟, 

 

 𝑙𝑜𝑔𝜇 𝑟,∅ 𝑔  ≥  𝑛 + 𝑚 + 𝛾 (𝜎    𝑔,𝛹 − 휀) 𝛹 𝑟  
𝜌 𝐺 ,𝛹 

 

i.e., 𝑙𝑜𝑔𝜇 𝑟, ∅ 𝑔  ≥  𝑛 + 𝑚 + 𝛾 (𝜎 𝑔,𝛹 − 휀) 𝛹 𝑟  
𝜌 𝑔 ,𝛹 

, by Lemma 10. 

… (9) 
 
  

           Now from (8) and (9), we obtain for all sufficiently large values of 𝑟 , 

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟, ∅ 𝑔 )
≤

(𝜌 𝑓,𝛹 + 휀)(𝜎 𝑔,𝛹 + 휀)(𝛹(𝑟))𝜌(𝑔 ,𝛹 )

 𝑛 + 𝑚 + 𝛾 (𝜎 𝑔,𝛹 − 휀) 𝛹 𝑟  
𝜌 𝑔 ,𝛹 

 

i.e.,  

lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤

𝜌(𝑓 ,𝛹 )𝜎(𝑔 ,𝛹 )

(𝑛+𝑚+𝛾)𝜎  𝑔 ,𝛹 
. 

 

   
              This completes the proof of the theorem. 

                   The  following theorem is a natural consequence of Theorem 1 and Theorem 2. 
 

Theorem 3 Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎 (𝑔 ,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞. 

 

     Further suppose that  ∅[𝑔] be the difference monomial in 𝑔. for  𝑛,𝑚,𝛾𝑗 ≥ 1. Then 

 
1

𝑛+𝑚+𝛾
 

𝜎  𝑔 ,𝛹 𝜌 (𝑓,𝛹 )

𝜎(𝑔 ,𝛹 )4
𝜌 (𝑔 ,𝛹 )

≤ lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤

𝜌(𝑓 ,𝛹 )𝜎(𝑔 ,𝛹 )

(𝑛+𝑚+𝛾)𝜎  𝑔 ,𝛹 
. 

 

 
    The proof is omitted. 

     

            If 𝑓 be any entire function of order zero, then the following theorem can be carried out in the line of 

Theorem 1 and Theorem 2. 
 

Theorem 4 Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎 (𝑔 ,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞. and for  𝑛 ≥ 1 ,  and ∅[𝑔] is a difference polynomial in 𝑔 . Then,  

 
1

𝑛+𝑚+𝛾
 

𝜎  𝑔 ,𝛹 𝜌∗∗(𝑓 ,𝛹 )

𝜎(𝑔 ,𝛹 )4
𝜌 (𝑔,𝛹 )

≤ lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤

𝜌∗∗(𝑓 ,𝛹 )𝜎(𝑔 ,𝛹 )

(𝑛+𝑚+𝛾)𝜎  𝑔 ,𝛹 
. 

 

Remark 2  If we take 0 < 𝜆(𝑔,𝛹) ≤ 𝜌(𝑔,𝛹)  instead  of " finite order with "   0 < 𝜎 (𝑔,𝛹) ≤ 𝜎 𝑔 ,𝛹 < ∞.in Theorem 4 

and the other conditions remain the same then with the help of growth indicators 𝜌∗
𝑓

 for entire 𝑓  in terms of its 

maximum term and Lemma 5 and Lemma 10 it can be carried out that 

𝜆(𝑔,𝛹)

𝜌(𝑔,𝛹)

≤ lim𝑠𝑢𝑝𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔 2 𝜇(𝑟, ∅ 𝑔 )
≤

𝜌(𝑔,𝛹)

𝜆(𝑔 ,𝛹)

. 

   
 

where, ∅[𝑔] is a difference polynomial in 𝑔 . 
 

Theorem 5 Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎 (𝑔 ,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞.and for  𝑛 ≥ 1 ,  and ∅[𝑔] is a difference polynomial in 𝑔 . 

 Then  
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lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≥

𝜆(𝑓,𝛹 )𝜎  𝑔 ,𝛹 

(𝑛+𝑚+𝛾)𝜎(𝑔 ,𝛹 )
. 

 
  

 

Proof: We obtain from Lemma 1  for all sufficiently large values of 𝑟 that 

 

 𝑙𝑜𝑔 2  𝜇 𝑟, 𝑓 ∘ 𝑔 ≥ 𝑙𝑜𝑔 2  
1

4
𝜇  

1

8
𝜇  

𝑟

4
,𝑔 , 𝑓    

i.e., 𝑙𝑜𝑔 2  𝜇 𝑟, 𝑓 ∘ 𝑔 ≥  𝜆 𝑓 ,𝛹 − ε 𝑙𝑜𝑔 
1

8
𝜇  

𝑟

4
, 𝑔  + 𝑂(1) 

 i.e., 𝑙𝑜𝑔 2  𝜇 𝑟,𝑓 ∘ 𝑔 ≥  𝜆 𝑓 ,𝛹 − ε 𝑙𝑜𝑔
1

8
+  𝜆 𝑓 ,𝛹 − ε log𝜇  

𝑟

4
, 𝑔 + 𝑂(1). 

… (10) 
 
 

   

    Therefore from (2) and (10), it follows for all sufficiently large vaules of 𝑟  , 

𝑙𝑜𝑔 2  𝜇 𝑟, 𝑓 ∘ 𝑔 ≥  𝜆 𝑓 ,𝛹 − ε 𝑙𝑜𝑔
1

8
+  𝜆 𝑓 ,𝛹 − ε (𝜎    𝑔,𝛹 −∈)

 𝛹 𝑟  
𝜌 𝑔 ,𝛹 

4
+ 𝑂(1). 

… (11) 
 
  

    Combining (4) and (11), we obtain for all sufficiently large values of 𝑟 , 

𝑙𝑜𝑔 2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≥

𝜇 𝑟 ,𝑓∘𝑔 ≥ 𝜆 𝑓 ,𝛹 −ε 𝑙𝑜𝑔
1

8
+ 𝜆 𝑓 ,𝛹 −ε (𝜎    𝑔 ,𝛹 −∈)

 𝛹 𝑟  
𝜌 𝑔 ,𝛹 

4
+𝑂(1)

(𝑛+𝑚+𝛾) 𝜎 𝑔 ,𝛹 +휀 (𝛹 𝑟 )
𝜌 (𝑔 ,𝛹 )

. 

   

    Since 휀(> 0) is arbitrary it follows from the above that 

lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≥

𝜆(𝑓,𝛹 )𝜎  𝑔 ,𝛹 

(𝑛+𝑚+𝛾)𝜎(𝑔 ,𝛹 )
. 

 

  
    Thus the theorem follows. 

 

Theorem 6  Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎 (𝑔 ,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞.and for  𝑛 ≥ 1 ,  and ∅[𝑔] is a difference polynomial in 𝑔 

Then 

lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟, ∅ 𝑔 )
≤

𝜆(𝑓,𝛹)𝜎(𝑔 ,𝛹)

(𝑛 + 𝑚 + 𝛾)𝜎  𝑔 ,𝛹 

. 

 

 . 
 

 .Proof: Since for 0 ≤ 𝑟 < 𝑅 , 
 

 

     𝜇(𝑟, 𝑓) ≤ 𝑀(𝑟, 𝑓) ≤
𝑅

𝑅−𝑟
𝜇(𝑅, 𝑓)  , 

 

 

    by Lemma 4 and the above inequality it follows for a sequence of values of  𝑟 tending to infinity, 

 

 𝜇(𝑟, 𝑓 ∘ 𝑔)  ≤  𝑀(𝑟, 𝑓 ∘ 𝑔) ≤ 𝑀(𝑀(𝑟, 𝑔),𝑓) 

 i.e. , 𝑙𝑜𝑔[2]𝜇(𝑟,𝑓 ∘ 𝑔)  ≤ 𝑙𝑜𝑔[2]𝑀(𝑀(𝑟,𝑔),𝑓) 

 i.e., 𝑙𝑜𝑔[2]𝜇(𝑟,𝑓 ∘ 𝑔)  ≤  (𝜆(𝑓,𝛹) + 휀)𝑙𝑜𝑔𝑀(𝑟, 𝑔). 

… (12) 
 

 

    Therefore from (7) and (12), we have for a sequence of values of  𝑟 tending to infinity, 

𝑙𝑜𝑔[2]𝜇(𝑟,𝑓 ∘ 𝑔)  ≤  (𝜆(𝑓,𝛹) + 휀) 𝜎 𝑔,𝛹 + 휀 (𝛹 𝑟 )𝜌(𝑔 ,𝛹 ) 

… (13) 
 
  

    Now frrom (9) and (13), we have for a sequence of values of  𝑟 tending to infinity, and by Lemma 10, 



 ISSN: 2320-0294 Impact Factor: 6.765  

86 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟, ∅ 𝑔 )
≤

(𝜆(𝑓,𝛹) + 휀) 𝜎 𝑔,𝛹 + 휀 (𝛹 𝑟 )𝜌(𝑔 ,𝛹 )

 𝑛 + 𝑚 + 𝛾 (𝜎 𝑔,𝛹 − 휀) 𝛹 𝑟  
𝜌 𝑔 ,𝛹 

 

i.e.,  

lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤

𝜆(𝑓,𝛹 )𝜎(𝑔 ,𝛹 )

(𝑛+𝑚+𝛾)𝜎  𝑔 ,𝛹 
    

    This completes the proof. 
                       The following theorem is a natural consequence of Theorem 5 and Theorem 6. 

 

Theorem 7  Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎 (𝑔 ,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞.and for  𝑛 ≥ 1 ,  and ∅[𝑔] is a difference polynomial in 𝑔 

Then 
𝜆(𝑓 ,𝛹 )𝜎  𝑔 ,𝛹 

(𝑛+𝑚+𝛾)𝜎(𝑔 ,𝛹 )
≤ lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤

𝜆(𝑓 ,𝛹 )𝜎(𝑔 ,𝛹 )

(𝑛+𝑚+𝛾)𝜎  𝑔 ,𝛹 
. 

    The proof is omitted. 

       If 𝑓 be any entire function of order zero, then the following theorem can also be carried out in the line of 
Theorem 5 and Theorem 6. 

 

Theorem 8  Let 𝑓 and 𝑔 be any two entire  functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let  

0 < 𝜎 (𝑔 ,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞.and for  𝑛 ≥ 1 ,  and ∅[𝑔] is a difference polynomial in 𝑔 

Then 
𝜆∗∗(𝑓 ,𝛹 )𝜎  𝑔 ,𝛹 

(𝑛+𝑚+𝛾)𝜎(𝑔 ,𝛹 )
≤ lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤

𝜆∗∗(𝑓 ,𝛹 )𝜎(𝑔 ,𝛹 )

(𝑛+𝑚+𝛾)𝜎  𝑔 ,𝛹 
. 

 

 
 

Remark 3 If we take 0 < 𝜆(𝑔,𝛹) ≤ 𝜌(𝑔,𝛹) < ∞ instead  of " finite order” with 0 < 𝜎 (𝑔,𝛹) ≤ 𝜎 𝑔,𝛹 < ∞ in Theorem 

8 and the other conditions remain the same then with the help of growth indicators 𝜌 ∗(𝑓 ,𝛹) for entire 𝑓  in terms of 

its maximum terms and in view of Lemma 5 and Lemma 10 it can be carried out that 
𝜆(𝑔 ,𝛹 )

𝜌(𝑔 ,𝛹 )
≤ lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔  2 𝜇(𝑟 ,∅ 𝑔 )
≤

𝜌(𝑔 ,𝛹 )

𝜆(𝑔 ,𝛹 )
, 

 

  where  ∅[𝑔] is a  difference polynomial in 𝑔 . 

      In this line of Theorem 6 one may easily prove the following two corollaries: 
 

Corollary 3  Let 𝑓 and 𝑔 be any two entire functions with  0 < 𝜆(𝑓 ,𝛹) ≤ 𝜌(𝑓,𝛹) < ∞ and 0 < 𝜌(𝑔,𝛹) < ∞. Also let 

0 < 𝜎(𝑔 ,𝛹) ≤ 𝜎  𝑔,𝛹 < ∞ and for  𝑛 ≥ 1 ,  and ∅[𝑔] is a difference polynomial in 𝑔 

 Then lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤ 𝜌(𝑓,𝛹). 

 

  

Corollary 4 Let 𝑓 be an entire  function of order zero such that 0 < 𝜆∗∗
(𝑓 ,𝛹) < ∞ and  g be  any entire function of  

finite order  with  0 < 𝜎(𝑔,𝛹) < ∞ . 

Then 

lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟, ∅ 𝑔 )
≤ 𝜌 ∗∗(𝑓 ,𝛹) 

  
 

    

Theorem 9  Let 𝑓 be an entire  function of order zero and  𝑔 be  an entire such that 𝜌(𝑔,𝛹) is  finite. Also let ∅ 𝑔  is 

a difference mononomial in 𝑔 .Then for 0 ≤ 𝑟 < 𝑅 , 

 

  

lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (𝑟 ,∅ 𝑔 )
≤ 3. 𝜌∗∗

𝑓
. 2𝜌𝑔 . 

 
 

 

 Proof:   If, 𝜌∗∗
𝑓

= ∞then the results is obvious. So we suppose that 𝜌∗∗
𝑓

< ∞ 

 

    Since for 0 ≤ 𝑟 < 𝑅 , 
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     𝜇(𝑟, 𝑓) ≤ 𝑀(𝑟, 𝑓) ≤
𝑅

𝑅−𝑟
𝜇(𝑅, 𝑓)  , 

 

    by Lemma 4  for 휀(> 0) and for all sufficiently large values of  𝑟 , 
 

 𝑙𝑜𝑔𝜇(𝑟,𝑓 ∘ 𝑔) ≤ (𝜌∗∗
𝑓

+ 휀)𝑙𝑜𝑔𝑀(𝑟, 𝑔). 

 

    Since 𝑇(𝑟, 𝑔) ≤ 𝑙𝑜𝑔⁺𝑀(𝑟, 𝑔) and 휀(> 0) is arbitrary, it follows from the above that 

lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇 𝑅,∅ 𝑔  + 𝑂(1)
≤ 𝜌∗∗

𝑓
lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔𝑀(𝑟, 𝑔)

𝑙𝑜𝑔𝑇(𝑟, 𝑔)
  

  i.e., lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔  2 𝜇(𝑟 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇  𝑅 ,∅ 𝑔  +𝑂(1)
≤ 𝜌∗∗

𝑓
lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔𝑀 (𝑟 ,𝑔)

𝑇(𝑟 ,𝑔)
 

 

… (14) 
 

    Since 

lim𝑠𝑢𝑝𝑟→∞  

𝑇(𝑟, 𝑔)

𝑟𝜌𝑔(𝑟)
= 1, 

 
 

    for given 휀(0 < 휀 < 1) we get for all sufficiently large values of 𝑟, 
 

 𝑇(𝑟,𝑔) < (1 + 휀) 𝑟𝜌𝑔 (𝑟)  

… (15) 
 

 

    and for a sequence of values of 𝑟 tending to infinity , 

𝑇 𝑟,𝑔 > (1 − 휀) 𝑟𝜌𝑔 (𝑟) 

… (16) 
 
 

 

   Since               𝑙𝑜𝑔𝑀(𝑟,𝑔) ≤ 3𝑇(2𝑟,𝑔)   , 
 

    for a sequence of values of 𝑟 tending to infinity we get for any 𝛿(> 0) 

 

 
𝑙𝑜𝑔𝑀 (𝑟 ,𝑔)

𝑇(𝑟 ,𝑔)
≤

3(1+휀)

(1−휀)
.

(2𝑟)𝜌휀+𝛿

(2𝑟)
𝜌휀+𝛿+𝜌𝑔(2𝑟)

.
1

𝑟
𝜌𝑔(𝑟)

 

≤
3(1 + 휀)

(1 − 휀)
(2)𝜌휀+𝛿 , 

 

    because 𝑟𝜌휀+𝛿+𝜌𝑔(𝑟) is increasing function of 𝑟 . Since 휀(> 0) and 𝛿(> 0) are arbitrary, we obtain that 

 

 lim𝑖𝑛𝑓𝑟→∞  
𝑙𝑜𝑔𝑀 (𝑟 ,𝑔)

𝑇(𝑟 ,𝑔)
≤ 3. (2)𝜌휀   

… (17) 
 
 

    Therefore from (14) and (17) it follows that 

lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟, ∅ 𝑔 )
≤ 3.𝜌 ∗∗𝑓 . 2𝜌𝑔 . 

  

    Thus the theorem is established. 
     In the line of Theorem 9 one can easily prove the following theorem using the definition of lower proximate 

order. 
 

Theorem 10 Let 𝑓 be an entire  function of order zero and  𝑔 be  any entire with 𝜆𝑔 < ∞ . Then for 0 ≤ 𝑟 < 𝑅 , 

 

  

lim𝑖𝑛𝑓𝑟→∞  

𝑙𝑜𝑔 2 𝜇(𝑟, 𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(𝑟,∅ 𝑔 )
≤ 3. 𝜌∗∗

𝑓
. 2𝜆𝑔 , 

 

 



 ISSN: 2320-0294 Impact Factor: 6.765  

88 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

    where, ∅ 𝑔  is defined earlier. 

 

Theorem 11:Let 𝑓 and 𝑔 be two  non constant entire  functions such that 𝑓 is of lower order zero and 𝜆 ∗∗𝑓  and 𝜆𝑔  

are finite. Then 

lim𝑠𝑢𝑝𝑟→∞  
𝑙𝑜𝑔𝜇 (𝑅 ,𝑓∘𝑔)

𝑙𝑜𝑔𝜇 (
𝑟

2
,∅ 𝑔 )

≥
1

3
.
𝜆∗∗𝑓  

4𝜆𝑔
, 

  

.    where  ∅ 𝑔  is defined earlier. 
 
 

Proof: If 𝜆 ∗∗𝑓= 0 then the result is obvious. So we suppose that   𝜆∗∗
𝑓 > 0  Since for 0 ≤ 𝑟 < 𝑅 , 

 

     𝜇(𝑟, 𝑓) ≤ 𝑀(𝑟, 𝑓) ≤
𝑅

𝑅−𝑟
𝜇(𝑅, 𝑓)  , 

 

    With the help of the above inequality and Lemma 5 and for 휀(0 < 휀 < min{𝜆∗∗
𝑓 , 1}) we get for all sufficiently 

large values of 𝑟 , 
 

 𝑙𝑜𝑔𝜇(𝑅, 𝑓 ∘ 𝑔) + 𝑂(1)   ≥  𝑙𝑜𝑔𝑀(𝑟,𝑓 ∘ 𝑔) ≥ 𝑙𝑜𝑔𝑀((
1

8
𝑀((

𝑟

2
),𝑔) − |𝑔(0)|,𝑓) 

 i.e.,.𝑙𝑜𝑔𝜇(𝑅,𝑓 ∘ 𝑔) + 𝑂(1)   ≥  (𝜆∗∗
𝑓 − 휀)𝑙𝑜𝑔{(

1

8
)𝑀((

𝑟

4
),𝑔) − |𝑔(0)|} 

 i.e.,.𝑙𝑜𝑔𝜇(𝑅,𝑓 ∘ 𝑔) + 𝑂(1)   ≥  (𝜆∗∗
𝑓 − 휀)𝑙𝑜𝑔{(

1

9
)𝑀((

𝑟

4
),𝑔)} 

 i.e. , . 𝑙𝑜𝑔𝜇(𝑅, 𝑓 ∘ 𝑔) + 𝑂(1)   ≥  (𝜆∗∗
𝑓 − 휀)𝑙𝑜𝑔𝑀((

𝑟

4
),𝑔) + (

1

3
)(𝜆∗∗

𝑓 − 휀)𝑙𝑜𝑔(
1

9
) 

 i.e.,.𝑙𝑜𝑔𝜇 𝑅,𝑓 ∘ 𝑔 + 𝑂 1  ≥   𝜆∗∗
𝑓 − 휀 𝑇  

𝑟

4
, 𝑔 + 𝑂 1    . 

… (18) 
 

 

Since,  lim𝑖𝑛𝑓𝑟→∞  
𝑇(𝑟 ,,∅ 𝑔 )

𝑟𝜆휀 (𝑟)
=

1

𝑛+𝑚+𝛾
 

 

    for given 휀(> 0) we get for all sufficiently large  values of 𝑟 , 
 

 𝑇(𝑟,∅ 𝑔 ) >
1

(𝑛+𝑚+𝜈)
(1 − 휀)𝑟𝜆휀(𝑟)  

 

… (19) 
    and for a sequence of values of 𝑟 tending to infinity, 
 

 𝑇 𝑟,∅ 𝑔  <
1

 𝑛+𝑚+𝜈 
(1 + 휀)𝑟𝜆휀(𝑟). 

… (20) 
 

 

    From (18) and (19) we get for 𝛿(> 0)  and for all sufficiently large values of 𝑟 

 

 𝑙𝑜𝑔𝜇(𝑅, 𝑓 ∘ 𝑔) + 𝑂(1) ≥ (𝜆∗∗
𝑓 − 휀)(1 − 휀)

 
𝑟

4
 
𝜆휀+𝛿

(𝑛+𝑚+𝛾)4𝜆휀+𝛿
. 

    Since 𝑟𝜆휀+𝛿+𝜆𝑔(𝑟) is  an increasing function of 𝑟 it follows for all sufficiently large values of 𝑟  that 

 

 𝑙𝑜𝑔𝜇(𝑅, 𝑓 ∘ 𝑔) + 𝑂(1) ≥ (𝜆∗∗
𝑓 − 휀)(1 − 휀)

𝑟𝜆휀 (𝑟)

(𝑛+𝑚+𝛾)4𝜆휀+𝛿
. 

… (21) 
 

 

    So by (20) and (21) we get for a sequence of values of 𝑟 tending to infinity 

 

𝑙𝑜𝑔𝜇 𝑅, 𝑓 ∘ 𝑔 + 𝑂 1  ≥   𝜆∗∗
𝑓 − 휀 

 1 + 휀 

 1 − 휀 
.
(𝑛 + 𝑚 + 𝛾)𝑇 𝑟, ∅ 𝑔  

(𝑛 + 𝑚 + 𝛾)4𝜆휀+𝛿
 

 i.e.,𝑙𝑜𝑔𝜇(𝑅,𝑓 ∘ 𝑔) + 𝑂(1)   ≥  𝜆∗∗
𝑓 − 휀 

 1+휀 

 1−휀 
 
𝑇 𝑟 ,∅ 𝑔  

4𝜆휀+𝛿
 

 

 i.e. , 𝑙𝑜𝑔𝜇(𝑅, 𝑓 ∘ 𝑔) + 𝑂(1)   ≥   𝜆∗∗
𝑓 − 휀 

 1+휀 

3 1−휀 

𝑙𝑜𝑔𝑀 (
𝑟

2
,∅ 𝑔 )

4𝜆휀+𝛿
. 

  



 ISSN: 2320-0294 Impact Factor: 6.765  

89 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

    Since 휀(> 0) and 𝛿(> 0) are arbitrary it follows from above that 

 

  

lim𝑠𝑢𝑝𝑟→∞  

𝑙𝑜𝑔𝜇 𝑅,𝑓 ∘ 𝑔 + 𝑂(1)

𝑙𝑜𝑔𝜇(
𝑟

2
, ∅ 𝑔 )

≥
1

3
.
𝜆∗∗

𝑓  

4𝜆𝑔
 

i.e.,  

lim𝑠𝑢𝑝𝑟→∞  

𝑙𝑜𝑔𝜇(𝑅,𝑓 ∘ 𝑔)

𝑙𝑜𝑔𝜇(
𝑟

2
, ∅ 𝑔 )

≥
1

3
.
𝜆∗∗

𝑓  

4𝜆𝑔
 

 

which is independent of 𝑛,𝑚, 𝛾. 
    Thus the theorem is proved. 

     

Conclusion 
     

The behaviour of  the logarithmic derivative of an entire function is of much useful in the study of many 

problems in the value distribution theory for such functions as well as in the study of properties of the 
solutions  of certain types of differential equations. The growth of  integrated modulii of the logarithimic 

derivative with respect to Nevanlinnas charecteristic functions in case of meromorphic functions is an active 

area of research and therefore the estimation of respective growth indicators can be treated analogously. 

Therefore in the present paper expectation of all the treatments made on difference polynomials can be done 

from the view point of the interrelationship between integrated moduli of the logarithmic derivative of a 

meromorphic function and that of Nevanlinna’s characteristic function. 
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