On the growth analysis of complex linear differential equations with entire and meromorphic coefficients

Sanjib Kumar Datta ${ }^{* 1}$
BananiDutta**2

Keywords:

Entire function, Linear differential equation, Composition, Growth,
Entire function of order zero, Meromorphic function, Complex Differential Equation.

Abstract

The theory of complex differential equation has been developed since 1960's.Many researchers like IlpoLaine (1993) have investigated the system of complex differential equation of the following form k ≥ 2, $f^{(k)}+A_{k-1}(z) f^{(k-1)}+\ldots \ldots .+A_{1}(z) f^{\prime}+A_{0}(z) f=0$ $f^{(k)}+A_{k-1}(z) f^{(k-1)}+\ldots \ldots .+A_{1}(z) f^{\prime}+A_{0}(z) f=F(z)$

where $\mathrm{A}_{\mathrm{i}}(\mathrm{z})$'s $(\mathrm{i}=0,1,2 \ldots \mathrm{k}-1)$ and $\mathrm{F}(\mathrm{z}) \neq 0$ are entire or meromorphic functions. The prime concern of this paper is to investigate the comparative growth analysis of the solution as well as the coefficients of the above system of equations.

AMS Subject Classification(2000): 30D35,30D30,34M10.
Copyright © 2018 International Journals of Multidisciplinary Research Academy.All rights reserved.

Author correspondence:

${ }^{1 \& 2}$ Department of Mathematics, University of Kalyani
P.O.-Kalyani ,Dist.-Nadia,PIN-741235.

Email:sanjibdatta05@gmail.com
Email: duttabananimath@gmail.com.

1. Introduction

For any two transcendental entire functions f and g defined in the open complex plane C , Clunie[3] proved that
$\lim _{r \rightarrow \infty} \frac{T(r, f o g)}{T(r, f)}=\infty \quad$ and $\quad \lim _{r \rightarrow \infty} \frac{T(r, f o g)}{T(r, g)}=\infty$.
Singh [13] proved some comparative growth properties of $\log T(r, f o g)$ and $T(r, f)$.He also raised the problem of investigating the comparative growth of $\log T(r, f \circ g)$ and $T(r, g)$ which he was unable to solve.However some result on comparative growth of $\log T(r, f o g)$ and $T(r, g)$ are proved later.

Let f be an entire function defined in the open complex plane C.Known[8] studied on the growth of an entire function f satisfying second order linear differential equation.Later Chen[4] proved some result on the growth of solutions of second order linear differential equations with meromorphiccoefficients.Chen and Yang[5]eshtablished a few theorems on the zeros and growths of entire functions of second order linear
differential equations.The purpose of this paper is to study on the growth of the solution $f \neq 0$ of the $\mathrm{n}^{\text {th }}$ order linear differential equation
$f^{(n)}+A_{1}(z) f^{(n-1)}+A_{2}(z) f^{(n-2)}+\ldots .+A_{n}(z) f=0$,
where A_{i} 's $(\neq 0)$ are entire functions. In this paper we investigate the comparative growth of composite entire functions which satisfy $\mathrm{n}^{\text {th }}$ order linear differential equations.

We do not explain the standard notations and definitions in the theory of entire and meromorphic functions as those are available in [13] and [7].

The following definitions are well known.
Definition 1 The order ρ_{f} and lower order λ_{f} of an entire function f is defined as
$\rho_{f}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log r}$ and $\lambda_{f}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log r}$
where $\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right)$, fork $=1,2, \ldots$, and $\log ^{[0]} x=x$.

If f is meromorphic, one can easily verify that
$\rho_{f}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}$ and $\lambda_{f}=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}$.
Definition 2 The hyper order $\bar{\rho}_{f}$ and hyper lower order $\bar{\lambda}_{f}$ of an entire function f is defined as follows
$\bar{\rho}_{f}=\limsup _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log r}$ and $\bar{\lambda}_{f}=\liminf _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log r}$.
If f is meromorphic then
$\bar{\rho}_{f}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log r}$ and $\bar{\lambda}_{f}=\lim _{r \rightarrow \infty} \inf \frac{\log ^{[2]} T(r, f)}{\log r}$.
Definition 3 The type σ_{f} of an entire function f is defined as
$\sigma_{f}=\underset{r \rightarrow \infty}{\lim \sup } \frac{\log M(r, f)}{r^{\rho_{,}}}, \quad 0<\rho_{f}<\infty$.
If f is meromorphic then
$\sigma_{f}=\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho_{f}}}, 0<\rho_{f}<\infty$.
Definition 4 Let f be an entire function order zero.Then the quantities $\rho_{f}{ }^{*} \lambda_{\lambda_{f}}, \bar{\rho}_{f}, \bar{\lambda}_{f}{ }^{*}$ are defined in the following way:
$\rho_{f}^{*}=\lim _{r \rightarrow \infty} \sup ^{\log ^{[2]} M(r, f)} \frac{\lambda_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log ^{[2]}} \quad \log ^{[2]} r}{}$
$\bar{\rho}_{f}=\limsup _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log _{r}^{2[]}} \quad \bar{\lambda}_{f}=\liminf _{r \rightarrow \infty} \frac{\log ^{[8]} M(r, f)}{\log _{r}^{[2]}}$.
If f is meromorphic then clearly
$\rho_{f}^{*}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log ^{[2]} r} \quad \lambda_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log ^{[2]} r}$
$\bar{\rho}_{f}^{*}=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[2]} T(r, f)}{\log ^{[2]} r} \quad \bar{\lambda}_{f}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log ^{[2]} r}$.

Definition 5 Let ' a ' be a complex number, finite or infinite. The Nevanlinna deficiency and the Valiron deficiency of 'a' w.r.t. a meromorphic function f are defined as
$\delta(a ; f)=1-\lim \sup _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)}=\liminf _{r \rightarrow \infty} \frac{m(r, a ; f)}{T(r, f)}$
$\Delta(a ; f)=1-\liminf _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)}=\lim _{r \rightarrow \infty} \sup \frac{m(r, a ; f)}{T(r, f)}$.
Now let us define another function :
Let $\Psi:[0, \infty) \rightarrow(0, \infty)$ be a non-decreasing unbounded function, satisfying the following two conditions:
(i) $\lim _{r \rightarrow \infty} \frac{\log ^{[p]} r}{\log ^{[q]} \Psi(r)}=0$
(ii) $\lim _{r \rightarrow \infty} \frac{\log ^{[q]} \Psi(\alpha r)}{\log ^{[q]} \Psi(r)}=1$
for some $\alpha>1$.
With the help of the function Ψ,the classical definitions can be written as,
Definition 6 The Ψ - order $\rho_{f, \Psi}$ and lower Ψ-order $\lambda_{f, \Psi}$ of an entire function f is defined as follows:
$\rho_{f, \Psi}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log \Psi(r)}$ and $\lambda_{f, \Psi}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log \Psi(r)}$
where $\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right)$, fork $=1,2, \ldots$, and $\log ^{[0]} x=x$.

If $\rho_{f, \Psi}<\infty$ then f is of finite Ψ-order.Also $\rho_{f, \Psi}=0$ means that f is of Ψ-order zero. In this connection following Liao and Yang [11] we may give the definition as below:

Definition $7\{c f .[11]\}$ Let f be an entire function of Ψ order zero. Then the quantities $\rho_{f, \varphi}^{*}, \lambda_{f, \psi}^{*}$, are defined in the following way:
$\rho_{f, \Psi}^{*}=\lim _{r \rightarrow \infty} \sup ^{\log ^{[2]} M(r, f)} \log ^{[2]} \Psi(r) \quad$ and $\quad \lambda_{f, \psi}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log ^{[2]} \Psi(r)}$.
In the line of Datta and Biswas [6] an alternative definition of zero Ψ-order and zero Ψ-lower order of an entire function may be given as:

Definition $8\{c f .[6]\}$ Let f be an entire function of Ψ order zero. Then the quantities $\rho_{f, \psi}^{* *}, \lambda_{f, 4}^{\prime \prime \prime}$, are defined in the following way:
$\rho_{f, \Psi}^{* *}=\lim \sup _{r \rightarrow \infty} \frac{\log M(r, f)}{\log \Psi(r)} \quad$ and $\quad \lambda_{f, \Psi}^{* *}=\liminf _{r \rightarrow \infty} \frac{\log M(r, f)}{\log \Psi(r)}$.
Definition 9 The Ψ-type $\sigma_{f, \Psi}$ and Ψ-lowertype $\bar{\sigma}_{f, \Psi}$ of an entire function f are defined as:
$\sigma_{f, \Psi}=\lim _{r \rightarrow \infty} \sup \frac{\log M(r, f)}{\Psi(r)^{\rho_{f, \psi}}} \quad$ and $\quad \bar{\sigma}_{f, \psi}=\lim _{r \rightarrow \infty} \frac{\inf }{} \frac{\log M(r, f)}{\Psi(r)^{\rho_{f, \varphi}}}, 0<\rho_{f, \Psi}<\infty$.

2. Research Method : Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [1] If f is meromorphic and g is entire then for all sufficiently large values of r , $T(r, f o g) \leq\{1+o(1)\} \frac{T(r, g)}{\log M(r, g)} T(M(r, g), f)$.

Lemma 2 [2] If f is meromorphic and g is entire and suppose that $0<\mu \leq \rho_{g} \leq \infty$. Then for a sequence of values of r tending to infinity,
$T(r, f o g) \geq T\left(\exp \left(r^{\mu}\right), f\right)$.
Lemma 3 [12] If f, g be two transcendental entire functions with $\rho_{g}<\infty, \eta$ be a constant satisfying $0<\eta<1$ and α be a positive number.Then

$$
T(r, f o g)+O(1) \geq N(r, 0 ; f o g) \quad \geq \log \left(\frac{1}{\eta}\right)\left[\frac{N\left(M\left((\eta r)^{\frac{1}{1+\alpha}}, g\right), 0, f\right)}{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, g\right)-O(1)}-O(1)\right]
$$

as $r \rightarrow \infty$ through all values.

3. Results and Analysis.

In this section we present the main results of the paper.
Theorem 1 Let f be an entire function satisfying the $\mathrm{n}^{\text {th }}$ order linear differential equation

$$
f^{(n)}+A_{1}(z) f^{(n-1)}+A_{2}(z) f^{(n-2)}+\ldots \ldots .+A_{n}(z) f=0
$$

where $A_{i}(z)^{\prime} s$ are non zero entire functions.If
(i) $\rho_{A_{1} \psi^{\psi}}, \rho_{A_{2} \psi^{\psi}}, \cdots \cdots \cdots, \rho_{A_{n}{ }^{\psi}}$ all are finite,
(ii) $\lambda_{\left(A_{\bullet} \cdot A_{2} \cdot \cdots A_{n-1}\right),}, \lambda_{f, \Psi}$ are both non negative,
(iii) $\rho_{A_{i^{*}}{ }^{\Psi}} \leq \lambda_{\left(A_{i}{ }^{\circ} A_{2} \cdot \cdots A_{n-1}\right), \psi}$ and $\rho_{A_{i^{*}}} \leq \lambda_{f, \psi}$ i.e. $\rho_{A_{N^{\Psi}}{ }^{\Psi}} \leq \min \left\{\lambda_{\left(A_{i}{ }^{\circ} A_{2} \cdots A_{n-1}\right), \psi}, \lambda_{f, \psi}\right\}$ and
(iv) A_{n} be of regular growth, then
$\lim _{r \rightarrow \infty} \frac{\left\{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . . A_{n-1}\right) \circ A_{n}\right)\right\}^{2}}{T(r, f) T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right)\right)}=0$.
Proof It is well known that for an entire function $A_{n}, T\left(r, A_{n}\right) \leq \log ^{+} M\left(r, A_{n}\right)$.So in view of Lemma 1 , we get for all sufficiently large values of r,
$T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . . A_{n-1}\right) \circ A_{n}\right) \leq(1+o(1)) T\left(M\left(r, A_{n}\right),\left(A_{1} \circ A_{2} \circ \ldots . . A_{n-1}\right)\right)$
i.e., $\log T\left(r,\left(A_{1}{ }^{\circ} A_{2}{ }^{\circ} \ldots . . A_{n-1}\right) \circ A_{n}\right) \leq \log (1+o(1))+\log T\left(M\left(r, A_{n}\right),\left(A_{1}{ }^{\circ} A_{2}{ }^{\circ} \ldots . . A_{n-1}\right)\right)$
i.e., $\log T\left(r,\left(A_{1}{ }^{\circ} A_{2} \circ \ldots . . A_{n-1}\right) \circ A_{n}\right) \leq o(1)+\left(\rho_{\left(A_{1}{ }^{\circ} A_{2} \cdot \cdots A_{n-1}\right), \psi^{\prime}}+\varepsilon\right) \log M\left(\Psi(r), A_{n}\right)$
i.e., $\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . . A_{n-1}\right) \circ A_{n}\right) \leq o(1)+\left(\rho_{\left(A_{1}{ }^{\circ} A_{2} \circ \ldots A_{n-1}\right), \psi}+\varepsilon\right) \Psi(r)^{\rho_{A_{n} \psi^{*}+\varepsilon}}$

Also, we obtain for all sufficiently large values of r ,

Now combining (1) \& (2) it follows for all sufficiently large values of r,

Since, $\rho_{A_{n} \Psi}<\lambda_{\left(A_{1} \rho^{\circ} A 2^{\circ} \ldots, A_{n-1}\right), \Psi}$, we can choose $\varepsilon>0$ in such a way that $\rho_{A_{n} \Psi}+\varepsilon<\lambda_{\left(A_{1} \rho^{\rho} 2^{2} \ldots A_{n}-1\right), \Psi}-\varepsilon$ and $\Psi(r)$ is a non-decreasing function, so it follows from above that

$$
\begin{align*}
& \limsup _{r \rightarrow \infty} \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \cdot A_{n-1}\right) \circ A_{n}\right)}{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right)\right)}=0 \\
& \text { i.e. } \lim _{r \rightarrow \infty} \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \cdot A_{n-1}\right) A_{n}\right)}{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \cdot A_{n-1}\right)\right.}=0 \tag{3}
\end{align*}
$$

Again, for all sufficiently large values of r,

$$
\begin{align*}
& \log T(r, f) \geq\left(\lambda_{f, \Psi}-\varepsilon\right) \log \Psi(r) \ldots \ldots \ldots \ldots \ldots . .(4) \\
& \Rightarrow T(r, f) \geq \Psi(r)^{\lambda_{f, \psi}-\varepsilon} \\
& \text { Since, } \rho_{A_{n} \Psi}<\lambda_{f, \Psi}, \text { we can choose } \varepsilon>0 \text { in such a way that } \\
& \rho_{A_{n} \Psi}+\varepsilon<\lambda_{f, \Psi}-\varepsilon . \ldots \ldots \ldots \ldots \ldots \ldots . .(5)
\end{align*}
$$

Now combining (1),(4)\& (5) it follows for all sufficiently large values of r,

$$
\begin{align*}
& \text { i.e. } \limsup _{r \rightarrow \infty} \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \ldots A_{n-1}\right) \circ A_{n}\right)}{T(r, f)}=0 \\
& \text { i.e. } \lim _{r \rightarrow \infty} \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . . A_{n-1}\right) \circ A_{n}\right)}{T(r, f)}=0 \tag{6}
\end{align*}
$$

Therefore in view of (3) and (6), we obtain that

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{\left\{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right) \circ A_{n}\right)\right\}^{2}}{T(r, f) T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \cdot A_{n-1}\right)\right)} \\
& \text { i.e. } \lim _{r \rightarrow \infty} \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \ldots A_{n-1}\right) \circ A_{n}\right)}{T(r, f)} \bullet \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right) \circ A_{n}\right)}{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . \cdot A_{n-1}\right)\right)}=0 \\
& \text { i.e. } \lim _{r \rightarrow \infty} \frac{\left\{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right) \circ A_{n}\right)\right\}^{2}=0 .}{T(r, f) T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \cdot A_{n-1}\right)\right)}=0 .
\end{aligned}
$$

This proves the theorem.
Remark 1 The following example ensures the validity of the conclusion as drawn in Theorem 1.
Example 1 Let $\mathrm{n}=2, f=\Psi=z^{2}, A_{1}=z, \boldsymbol{A}_{2}=z^{2}$.
Then
$A_{1}{ }^{\circ} A_{2}=z^{2}$,
$\log T\left(r, A_{1}{ }^{\circ} A_{2}\right)=\log \{2 \log r+O(1)\}$,
$\rho_{A_{r^{\psi}}}=\lim _{r \rightarrow \infty} \sup \frac{\log \log T\left(r, A_{1}\right)}{\log \Psi(z)}=0$, finite.
Similarly, $\lambda_{z^{2}, \Psi}=0$,
$\lambda_{f, \Psi}=0$.
Then
$\lim _{r \rightarrow \infty} \frac{\left\{\log T\left(r, A_{1} \circ A_{2}\right)\right\}^{2}}{T(r, f) T\left(r, A_{1}\right)}=0$.
Remark 2 We can choose A_{i} 's as meromorphic function for $i=1,2, \ldots n-1$, but A_{n} must be an entire function.

Thus in the next example we take A_{1} as meromorphic function.
Example 2 Let $\mathrm{n}=2, f=\Psi=z^{2}, A_{\mathrm{t}}=\frac{1}{z-2}$ and $A_{2}=z^{2}$.
$A_{1} \circ A_{2}=\frac{1}{z^{2}-2}$,
$\log T\left(r, A_{1}{ }^{\circ} A_{2}\right)=\log \{2 \log r+O(1)\}$,
$\rho_{A_{r} \Psi^{\Psi}}=\lim _{r \rightarrow \infty} \sup \frac{\log \log T\left(r, A_{1}\right)}{\log \Psi(z)}=0$, finite.
Similarly, $\lambda_{A_{1} A_{2}{ }^{\Psi}}=0$,
$\lambda_{f, \Psi}=0$.
Thus the conditions are satisfied
and $\lim _{r \rightarrow \infty} \frac{\left\{\log T\left(r, A_{1} \circ A_{2}\right)\right\}^{2}}{T(r, f) T\left(r, A_{1}\right)}=0$.
Theorem 2 Let f be an entire function satisfying the $\mathrm{n}^{\text {th }}$ order linear differential equation

$$
f^{(n)}+A_{1}(z) f^{(n-1)}+A_{2}(z) f^{(n-2)}+\ldots \ldots .+A_{n}(z) f=0
$$

where $A_{i}(z)^{\prime} s$ are non zero entire functions. If $\lambda_{\left.\left(A^{\circ} A_{2}^{*} \cdots A_{1}\right)^{\prime}\right)^{\psi}}=0$ then
$\rho_{\left(A_{1} A_{2}^{\circ} \cdots A_{n-1}\right)^{\prime} A_{n^{4}}} \geq \lambda^{*}{ }_{\left(A_{1} A^{\circ} A_{2} \cdots A_{n-1}\right) \Psi} \bullet \mu$
where $0<\mu<\rho_{\left.\left(A_{1} \cdot A_{2} \cdot \cdots A_{n}\right)\right)^{*}}$.
Proof: In view of Lemma 2 and for $0<\mu<\rho_{\left(A_{\uparrow}{ }^{\circ} A_{2} \cdots \cdots A_{n-1}\right) \text {. }}$, we get that

$$
\begin{aligned}
& \geq \liminf _{r \rightarrow \infty} \frac{\log T\left(\exp r^{\mu},\left(A_{\circ}{ }^{\circ} A_{2} \circ \cdots A_{n-1}\right)\right)}{\log \Psi(r)} \\
& =\liminf _{r \rightarrow \infty} \frac{\log T\left(\exp r^{\mu},\left(A_{1} A_{2} A^{\circ} \cdots A_{n-1}\right)\right)}{\log ^{21]}\left(\exp \Psi(r)^{\prime}\right)} \cdot \lim \inf _{r \rightarrow \infty} \frac{\log ^{[2]}\left(\exp \Psi(r)^{)^{\prime \prime}}\right)}{\log \Psi(r)} \\
& =\lambda^{*}{ }_{\left(A_{i} A_{2} A_{2} \cdots A_{n-1}\right) \psi^{\bullet}} \liminf \frac{\log \left(\Psi(r)^{*}\right)}{\log \Psi(r)}
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda^{*}{ }_{\left(A_{1}{ }^{\circ} A_{2} \cdots A_{n-1}\right) \cdot \psi} \cdot \mu \liminf \frac{\log (\Psi(r))}{\log \Psi(r)} \\
& =\lambda^{*}{ }_{\left(A_{1}{ }^{\circ} A_{2} \cdots A_{n-1}\right) \cdot \psi} \cdot \mu .
\end{aligned}
$$

Thus the theorem is proved.
Theorem 3 Let f be an entire function satisfying the $\mathrm{n}^{\text {th }}$ order linear differential equation

$$
f^{(n)}+A_{1}(z) f^{(n-1)}+A_{2}(z) f^{(n-2)}+\ldots \ldots . .+A_{n}(z) f=F(z),
$$

where $A_{i}(z) s$ are non zero entire functions. If
(i) $\rho_{\left(A_{1}{ }^{\circ} A_{2} \cdots A_{n-1}\right),}, \rho_{A_{n} \psi^{\Psi}}$ are both finite,
${ }^{(i i)} \rho_{A_{r^{\psi}}}<\lambda_{F, \psi}$ and $\lambda_{F, \psi}$ is positive, then for any $\alpha \in(-\infty, \infty)$,

$$
\lim _{r \rightarrow \infty} \frac{\left[\log \left\{T\left(r,\left(\left(A_{1}{ }^{\circ} A_{2} \circ \cdots \cdots A_{n-1}\right) \circ A_{n}\right)\right) \log M\left(r, A_{n}\right)\right]^{1+\alpha}\right.}{T(\exp r, F)}=0 .
$$

Proof : If $1+\alpha \leq 0$, the theorem is obhious. So we suppose that $1+\alpha>0$. In view of Lemma 1 , we have for all sufficiently large values of r,

$$
\begin{aligned}
& \log \left\{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . . A_{n-1}\right) \circ A_{n}\right) \log M\left(r, A_{n}\right)\right\} \\
& \leq \log T\left(r, A_{n}\right)+\log T\left(M\left(r, A_{n}\right),\left(A_{1}{ }^{\circ} A_{2} \circ \ldots . . A_{n-1}\right)\right)+\log \{1+o(1)\}
\end{aligned}
$$

Again we have for all sufficiently large values of r ,

$$
\begin{align*}
& \log T(r, F) \geq\left(\lambda_{F, \Psi}-\varepsilon\right) \log \Psi(r) \\
& \Rightarrow T(r, F) \geq \Psi(r)^{\left(\lambda_{F, \Psi^{-\varepsilon}}\right.} \\
& \Rightarrow T(\exp r, F) \geq \Psi(r)^{\left(\lambda_{r, \Psi^{-\varepsilon}}\right)} \ldots . \tag{8}
\end{align*}
$$

Now combining (7) and (8), we have for all sufficiently large values of r
$\frac{\left[\log \left\{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right) \circ A_{n}\right) \log M\left(r, A_{n}\right)\right\}\right]^{\}+\alpha}}{T(\exp r, F)}$

Since $\rho_{A_{n}, \psi}<\lambda_{F, \Psi}$,we can choose $\varepsilon>0$ in such a way that $\rho_{A_{n} \Psi}+\varepsilon<\lambda_{F, \Psi}-\varepsilon$
i.e. $\limsup _{r \rightarrow \infty} \frac{\left[\log \left\{T\left(r,\left(A_{1}{ }^{\circ} A_{2} \circ \ldots \ldots A_{n-1}\right)^{\circ} A_{n}\right) \log M\left(r, A_{n}\right)\right\}\right]^{1+\alpha}}{T(\exp r, F)}=0$,
from which the theorem follows.
Remark 3 :We choose f instead of F in the denominator of the statement then the analogous theorem also holds. The following example reveals the fact.

Example 3 : Let $\mathrm{n}=2, f=\Psi=z^{2}, A_{1}=z, \boldsymbol{A}_{2}=z^{2}$ and $\alpha=0$.

$$
A_{1}{ }^{\circ} A_{2}=z^{2},
$$

$\log T\left(r, A_{1}{ }^{\circ} A_{2}\right)=\log (2 \log r+O(1))$,
$\log M\left(r, z^{2}\right)=2 \log r$,
$T\left(\exp r, z^{2}\right)=2 r+O(1)$.
Then
$\limsup _{r \rightarrow \infty} \frac{\left\{\log \left\{T\left(r, A_{1} \circ A_{2}\right) \log M\left(r, A_{2}\right)\right\}\right\}}{T(\exp r, f)}=0$.
Theorem 4 : Let f be an entire function satisfying the $\mathrm{n}^{\text {th }}$ order linear differential equation

$$
f^{(n)}+A_{1}(z) f^{(n-1)}+A_{2}(z) f^{(n-2)}+\ldots \ldots \ldots+A_{n}(z) f=0,
$$

where $A_{i}(z) s$ are non zero entire functions. If
(i) $0<\bar{\lambda}_{\left(A_{i} \cdot A_{2} \cdots A_{n-1}\right) A_{A_{n}}{ }^{\psi}} \leq \bar{\rho}_{\left(A_{i} \cdot A_{2}, \cdots A_{n-1}\right) A_{n} w^{\psi}}<\infty$
(ii) $0<\bar{\rho}_{f, \Psi}<\infty$

Then for any positive number α,

Proof : From the definition of hyper Ψ-order we get for all sufficiently large values of r ,

$$
\left.\log ^{[2]} T\left(r,\left(A_{1}{ }^{\circ} A_{2} \circ \cdots \cdots A_{n-1}\right) \circ A_{n}\right) \leq \bar{\rho}_{\left(A_{\bullet} \cdot A_{2} \cdot \cdots A_{n-1}\right) A_{A^{\prime}}{ }^{+}}+\varepsilon\right) \log \Psi(r) .
$$

Again we have for a sequence of values of r tending to infinity,
$\log ^{[2]} T\left(r^{\alpha}, f\right) \geq\left(\bar{\rho}_{f, \psi}-\varepsilon\right) \log \Psi(r)$, as $\Psi(r)$ is equivalent to $\Psi\left(r^{\alpha}\right)$.
Now combining above two equations, it follows for a sequence of values of r tending to infinity that

Since $\varepsilon>0$ is arbitrary, it follows from above that

Also for arbitrary positive ε and for all sufficiently large values of r ,

$$
\begin{equation*}
\log ^{[2]} T\left(r^{\alpha}, f\right) \leq\left(\bar{\rho}_{f, \psi}+\varepsilon\right) \log \Psi(r) \tag{.}
\end{equation*}
$$

Also for a sequence of values of r tending to infinity,
$\log ^{[2]} \boldsymbol{T}\left(r,\left(A_{1} \circ A_{2} \circ \cdots \cdot A_{n-1}\right) \circ A_{n}\right) \geq\left(\bar{\rho}_{\left(A_{i} A_{2} \cdot \cdots A_{n-1}\right) A_{1}, \Psi^{\prime}}-\varepsilon\right) \log \Psi(r)$.
Now from (10) \& (11) we obtain for a sequence of values of r tending to infinity,

Since $\varepsilon>0$ is arbitrary, it follows from above that

Then the theorem follows from (9) and (12).
Remark 4 If $\Psi(z)=z$, we may obtain the corollary.
 α,

Remark 5 Theorem 4 and Corollary 1 shows that the middle part of the first one is independent of α, where as the second one is dependent on the same.

Theorem 5 Let f be an entire function satisfying the $\mathrm{n}^{\text {th }}$ order linear differential equation

$$
f^{(n)}+A_{1}(z) f^{(n-1)}+A_{2}(z) f^{(n-2)}+\ldots \ldots \ldots+A_{n}(z) f=0,
$$

where $A_{i}(z)^{\prime}$ s are non zero entire functions. If

(ii) $0<\rho_{f, \Psi}<\infty$,
(iii) $\sigma_{f, \psi}<\infty$,
(iv) $\rho_{\left(A_{\uparrow}{ }^{\circ} A_{2} \cdots A_{n-1}\right){ }^{\circ} A_{n}{ }^{\Psi}}=\rho_{f, \psi}$.

Then

$$
\liminf _{r \rightarrow \infty} \frac{T\left(r,\left(A_{1}{ }^{\circ} A_{2} \circ \ldots . A_{n-1}\right) \circ A_{n}\right)}{T(r, f)} \leq \frac{\sigma_{\left.\left(A_{1} \cdot A_{2} \cdot \cdots A_{n}\right)\right)_{A}, \psi w}}{\sigma_{f, \psi}} \leq \lim _{r \rightarrow \infty} \sup \frac{T\left(r,\left(A_{1}{ }^{\circ} A_{2} \circ \cdots \cdot A_{n-1}\right) \circ A_{n}\right)}{T(r, f)} .
$$

Proof From the definition of Ψ - type, we get for arbitrary positive ε and for all sufficiently large values of r ,

Again we have for a sequence of values of r tending to infinity,

$$
\begin{equation*}
T(r, f) \geq\left(\sigma_{f, \Psi}-\varepsilon\right) \Psi(r) \rho_{f, \Psi} \tag{14}
\end{equation*}
$$

Since $\rho_{\left(A_{1}{ }^{\circ} A_{2}{ }^{\circ} \ldots A_{n-1}\right){ }^{\circ} A_{n}{ }^{\Psi} \Psi}=\rho_{f, \Psi}$,so from (13) and (14) it follows for a sequence of values of r tending to infinity,

$$
\frac{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right)^{\circ} A_{n}\right)}{T(r, f)} \leq \frac{\left\{\sigma_{\left.\left(A_{\uparrow} \odot A_{2} \cdot \cdots A_{n}\right)\right\} A_{i, ~}}+\varepsilon\right\}}{\left\{\sigma_{f, \psi}-\varepsilon\right\}}
$$

Since $\varepsilon>0$ is arbitrary, it follows from above that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . A_{n-1}\right) \circ A_{n}\right)}{T(r, f)} \leq \frac{\sigma_{\left.\left(A_{r} A_{2} \circ \cdots A_{n}\right)\right)_{A} A^{\psi}}}{\sigma_{f, \psi}} \tag{15}
\end{equation*}
$$

Also for a sequence of values of r tending to infinity,

$$
\begin{equation*}
T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \cdot A_{n-1}\right) \circ A_{n}\right) \geq\left(\sigma_{\left(A_{1} \cdot A_{2} \cdot \cdots A_{n-1}\right)^{\prime} A_{n}, \Psi}-\varepsilon\right) \Psi(r) \rho_{(\lambda} \tag{16}
\end{equation*}
$$

Now for all sufficiently large values of r ,
$T(r, f) \leq\left(\sigma_{f, \Psi}+\varepsilon\right) \Psi(r) .{ }^{\rho_{f, \Psi}}$.
Now from (16) \& (17) we obtain for a sequence of values of r tending to infinity,

$$
\frac{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . . A_{n-1}\right) \circ A_{n}\right)}{T(r, f)} \geq \frac{\left\{\sigma_{\left(A_{\bullet} A_{2} A_{2} \cdots A_{n-1}\right) A_{n} \mu^{*}}-\varepsilon\right\}}{\left\{\sigma_{f, 4}+\varepsilon\right\}}
$$

Since $\varepsilon>0$ is arbitrary, it follows from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . \cdot A_{n-1}\right) \circ A_{n}\right)}{T(r, f)} \geq \frac{\sigma_{\left.\left(A_{1} A^{\circ} A_{2} \cdots A_{n-1}\right) A_{n}\right)^{, \Psi}}}{\sigma_{f, \Psi}} \tag{18}
\end{equation*}
$$

Then the theorem follows from (15) and (18).
Theorem 6 Let f be a transcendental entire function satisfying the $\mathrm{n}^{\text {th }}$ order linear differential equation

$$
f^{(n)}+A_{1}(z) f^{(n-1)}+A_{2}(z) f^{(n-2)}+\ldots \ldots \ldots+A_{n}(z) f=0,
$$

where $A_{i}(z)^{\prime} s$ are non zero entire functions. If
(i) $0<\lambda_{A_{n}{ }^{\psi}} \leq \rho_{A_{n}{ }^{\psi}}<\infty$,
(ii) $\lambda_{A_{1}{ }^{\circ} A_{2} \circ \ldots \ldots \circ A_{m-i}{ }^{\text {ir }}}>0$,
(iii) $\rho_{f, \psi}<\infty$,
(iv) $\delta\left(0 ; A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)<1$,

Then
$\limsup _{r \rightarrow \infty} \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \ldots \circ A_{n-1}\right) \circ A_{n}\right)}{\log T\left(r^{\beta}, f\right)}=\infty,{ }^{\beta}$ where ${ }_{\beta}$ is a real constant.
Proof We suppose that ${ }_{\beta}>0$, otherwise the theorem is obvious.
For given $\varepsilon\left(0<\varepsilon<1-\delta\left(0 ; A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)\right)$,
$N\left(r, 0 ;\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)\right)>\left(1-\delta\left(0 ; A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)-\varepsilon\right) T\left(r, A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)$, for a sequence of values or r tending to infinity.

So from Lemma 3, we get for a sequence of values or r tending to infinity,

$$
\begin{aligned}
& T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right) \circ A_{n}\right)+O(1) \\
& \geq\left(\log \frac{1}{\eta}\left[\frac{\left(1-\delta\left(0 ; A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)-\varepsilon\right) T\left(\left(M(\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right) \cdot\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)\right)}{\log \left(M(\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right)-O(1)}-O(1)\right]\right. \\
& \Rightarrow \log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right) \circ A_{n}\right)+O(1) \geq O(\log r)+\log T\left(\left(M(\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right),\left(A_{1} \circ A_{2^{\circ}} \ldots \ldots \circ A_{n-1}\right)\right) \\
& \left.+\log \left[1-\frac{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right)+O(1)}{\left(1-\delta\left(0 ;\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)\right)-\varepsilon\right) r\left(\left(M(\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right),\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)\right.}\right)\right]
\end{aligned}
$$

Since f is transcendental , it follows that

$$
\lim _{r \rightarrow \infty} \frac{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right)}{T\left(\left(M(\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right),\left(A_{1} \circ A_{2^{\circ}}^{\circ} \ldots . \circ A_{n-1}\right)\right)}=0 .
$$

So from above we get for a sequence of values of r tending to infinity,

$$
\begin{equation*}
\Rightarrow \log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . . \circ A_{n-1}\right) \circ A_{n}\right) \geq O(\log r)+\log T\left(\left(M(\eta r)^{\frac{1}{1+\alpha}}, A_{n}\right),\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)\right)+O(1) . \tag{19}
\end{equation*}
$$

Also we see that for all large values of r,

$$
\begin{align*}
& M\left(r, A_{n}\right)>\exp \left\{\Psi(r)^{\frac{1}{2} \lambda_{n} m^{*}}\right\} \tag{20}\\
& \log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}\right)\right)>\frac{1}{2} \lambda_{\left(A_{1} \circ A_{2} \circ \ldots \circ A_{n-1} \cdot \psi^{\prime}\right.} \log \Psi(r) . \tag{21}
\end{align*}
$$

So from (19),using (20) \& (21) we get for a sequence of values of r tending to infinity,

$$
\begin{aligned}
& \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots \ldots A_{n-1}\right) A_{n}\right)}{\log T\left(r^{\beta}, f\right)}>\frac{o(\log r)}{\left(1+\rho_{f, \Psi}\right) \log \Psi(r)}+\frac{\lambda_{A 1^{\circ} A 2^{\circ} \ldots \ldots A_{\ldots-i} \psi^{\psi}}}{2} \cdot \frac{(\eta r)^{\frac{\lambda_{n+\cdots}}{2(1+\sigma)}}}{\left(1+\rho_{f, \psi}\right)^{\log } \Psi(r)}+O(1) \\
& \Rightarrow \limsup _{r \rightarrow \infty} \frac{\log T\left(r,\left(A_{1} \circ A_{2} \circ \ldots . \circ A_{n-1}{ }^{\circ} A_{n}\right)\right.}{\log T\left(r^{\beta}, f\right)}=\infty \text {. } \\
& \text { This proves the theorem. }
\end{aligned}
$$

Remark 6 If we consider Δ in the place of δ, then the analogous theorem is also true with 'limit superior' replaced by 'limit'.

Remark 7 In the theorem using Δ,if we consider

$$
\rho_{A_{\mathrm{P}} A_{2} \cdots A_{n-1} \Psi}>0 \text { instead of } \lambda_{\left(A_{1} \circ A 2^{\circ} \ldots . . \circ A_{n-1},\right)^{\prime}>0}>0 \text { the }
$$ theorem remains true with 'limit' replaced by 'limit superior'.

Conclusion

The results as deduced in this paper may be thought of from another angle of view and those can be carried out in case of difference polynomials of higher degree. Therefore several modified techniques may be adopted in order to solve the problems arisen and those can be regarded as a virgin area to the researchers in this field.

References

[1] Bergweiler ,W., "On the Nevanlinna characteristic of a composite function,Complex Variables",Vol. 10, pp. 225236,1988.
[2] Bergweiler, W. ,"On the growth rate composite meromorphic functions ,Complex Variables" ,Vol. 14, pp. 187196,1990.
[3] Clunie,J. , "The composition of entire and meromorphic functions, Mathematical essays dedicated to A. J .Macintyre", Ohio University Press, pp. 75-92,1970.
[4] Chen, Z. X. , "The growth of solutions of second order linear differential equations with meromorphic coefficients",Kodai Math. J., Vol. 22, pp. 208-221,1999.
[5] Chen,Z. X. and Yang C. C., "Some further results on the zeros and growths of entire solutions of second order linear differential equations", Kodai Math J., Vol. 22 ,pp. 273-285,1999.
[6] Datta,S. K. and Biswas T., "On the definition of a meromorphic function of order zero", International Mathematical Forum, Vol . 4 , No. 37, pp. 1851-1861,2009.
[7] Hayman, W. K. ," Meromorphic Functions", The Clarendron Press, Oxford, 1964.
[8] Kwon,K. H. ""On the growth of entire functions satisfying second order linear differential equations", Bull.Korean Math. Soc., Vol. 33, pp. 487-496,1996.
[9] Lahiri,I. ""Growth of composite integral functions" ,Indian J. Pure Appl. Math., Vol. 20, No.9, pp. 899907,September 1989.
[10] Laine,I. ,"Nevanlinna's theory and complex linear differential equation", Walter De Gruyenter, Berlin, 1993.
[11] Liao,L. and Yang C.C. , "On the growth of composite entire functions", Yokohama Math J.,Vol. 46,pp. 97107,1999.
[12] Ninno,K. and SuitaN. , " Growth of a composite function of entire functions ", Kodai Math. J.,Vol. 3, pp.374379,1980.
[13] Singh,A.P. , " Growth of composite entire functions", Kodai Math. J., Vol.8, pp. 99-102,1985.
[14] Valiron,G. " Lectures on the general theory of Integral functions", Chelesa Publishing Company, 1949.

