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  Abstract  

 
 The theory of complex differential equation has been developed since 

1960‟s.Many researchers like IlpoLaine (1993) have investigated the 

system of complex differential equation of the following form k
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where Ai(z)‟s (i=0,1,2….k-1) and F(z) 0 are entire or meromorphic 

functions.The prime concern of this paper is to investigate the 

comparative growth analysis of the solution as well as the  

coefficients of the above system of equations. 

AMS Subject Classification(2000): 30D35,30D30,34M10. 

Keywords: 

Entire function, 

Linear differential equation, 

Composition, 

Growth, 

Entire function of order zero, 

Meromorphic function, 

Complex Differential Equation. 
Copyright © 2018 International Journals of Multidisciplinary Research 

Academy.All rights reserved. 

Author correspondence: 

1&2Department of Mathematics,University of Kalyani 

P.O.-Kalyani ,Dist.-Nadia,PIN-741235. 

Email:sanjibdatta05@gmail.com 

Email: duttabananimath@gmail.com. 

 

1. Introduction  
 

For any two transcendental entire functions f and g defined in the open complex plane C, Clunie[3] proved 
that  
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Singh [13] proved some comparative growth properties of  fogrT ,log  and  frT , .He also raised the problem 

of investigating the comparative growth of  fogrT ,log  and  grT ,  which he was unable to solve.However 

some result on comparative growth of  fogrT ,log  and  grT ,  are proved later. 

 

Let f be an entire function defined in the open complex plane C.Known[8] studied on the growth of an entire 

function f satisfying second order linear differential equation.Later Chen[4] proved some result on the growth 

of solutions of second order linear differential equations with meromorphiccoefficients.Chen and 

Yang[5]eshtablished a few theorems on the zeros and growths of entire functions of second order linear 
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differential equations.The purpose of this paper is to study on the growth of the solution 0f of the nth order  

linear differential equation  
            0....2
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where Ai‟s  0  are entire functions.In this paper we investigate the comparative growth of composite entire 

functions which satisfy n
th
 order linear differential equations.  

 

We do not explain the standard notations and definitions in the theory of entire and meromorphic functions as 

those are available in [13] and [7]. 

 
The following definitions are well known. 

 

Definition 1 The order
f

and lower order  f

of an entire function f is defined as 
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If f is meromorphic, one can easily verify that 
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Definition 2 The hyper order 
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Definition 3  The type  f
of an entire function f is defined as 
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If f is meromorphic then 
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Definition 4 Let f be an entire function order zero.Then the quantities 
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If f is meromorphic then clearly 
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Definition 5  Let „a‟ be a complex number, finite or infinite . The Nevanlinna deficiency and the Valiron 

deficiency of „a‟ w.r.t. a meromorphic function f are defined as 
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Now let us define another function : 

 

Let   ,0),0[:  be a non-decreasing unbounded function, satisfying the following two conditions: 
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for some >1. 

 

With the help of the function  ,the classical definitions can be written as, 

 

Definition 6  The  - order
,f

and lower  -order  ,f

of an entire function f is defined as follows: 
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 then f is of finite  -order.Also
,f

=0 means that f is of  -order zero. In this connection 

following Liao and Yang [11] we may give the definition as below: 

 

Definition 7{ cf. [11]}  Let f be an entire function of  order zero.Then the quantities 
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In the line of Datta and Biswas [6] an alternative definition of zero  -order and zero  -lower order of an 

entire function may be given as: 

 

Definition 8{ cf. [6]}  Let f be an entire function of  order zero.Then the quantities 


**

,f

,


**

,f

,are defined in 

the following way: 

 


**

,f

 

)(

,

log

log
suplim

r

frM

r 




   

and    
**

,f
 

)(

,

log

log
inflim

r

frM

r 




. 

 

Definition 9  The  


,f
type and  
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lowertype  of an entire function f are defined  as: 
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2. Research Method : Lemmas 

 

In this section we present some lemmas which will be needed in the sequel. 
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Lemma 1 [1]  If f is meromorphic and g is entire then for all sufficiently large values of r, 

   
 
 

  .,,
,log

,
}11{, fgrMT

grM

grT
ofogrT  . 

 

Lemma 2 [2]  If f is meromorphic and g is entire and suppose that  
g

0 .Then for a sequence of 

values of r tending to infinity, 
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Lemma 3 [12]  If f , g be two transcendental entire functions with 
g

,  be a constant satisfying 0< <1 

and  be a positive number.Then 
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as r through all values. 

 
 

3. Results and Analysis. 
 

In this section we present the main results of the paper. 

 

Theorem 1 Let f be an entire function satisfying the nth order linear differential equation 
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Proof   It is well known that for an entire function An
,    ArMArT nn ,log,  .So in view of Lemma 1 ,we 

get for all sufficiently large values of r, 

 

       

       

   
 

  

   
     1..................)1).....,.,.

,log)1).....,.,.

.....),,(log11log).....,

.....),,(11).....,

,

121

121

((log

((log

(log.,.

(

,.....121

,.....121

121121

121121

rAAAAT

AAAAAT
AAAAAAAATei

AAAAAAAAT

An

n

n

AAA
orei

rM
AAA

orei

rMTor

rMTor

nn

nnn

nnnn

nnnn















































 
 
Also, we obtain for all sufficiently large values of r, 

 

    rAAAT AnAA

n
r 






 ,1.....21).....,

121
(  ……………(2) 

 



 ISSN: 2320-0294 Impact Factor: 6.765  

48 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

Now combining (1) & (2) it follows for all sufficiently large values of r, 
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Since, 
,An

<    ,1.....21 AnAA  , we can choose 0 in such a way that 
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 r  is a non-decreasing function ,so  it follows from above that 
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Therefore in view of (3) and (6), we obtain that 
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This proves the theorem. 

 

Remark 1   The following example ensures the validity of the conclusion as drawn in Theorem 1. 
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Remark 2 We can choose Ai‟s as meromorphic function for i=1,2,…n-1, but An must be an entire 

function. 

Thus in the next example we take A1 as meromorphic function. 
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Theorem 2  Let f be an entire function satisfying the nth order linear differential equation 
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Thus the theorem is proved. 

 

Theorem 3  Let f be an entire function satisfying the nth order linear differential equation 
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from which the theorem follows. 

 

Remark 3 :We choose f instead of F in the denominator of the statement then the analogous theorem also 

holds. The following example reveals the fact. 
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Theorem 4 : Let f be an entire function satisfying the nth order linear differential equation 
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Proof : From the definition of hyper  -order we get for all sufficiently large values of r, 

 

 
 

 .log)().....,
,.....

121

]2[

121

(log r
AAAA

r
nn

AAAAT
nn










  

 

Again we have for a sequence of values of r tending to infinity, 

 

   rfT
f

r 











log,
,

]2[

log 
    , as  r  is equivalent to  .r  

Now combining above two equations, it follows for a sequence of values of r tending to infinity that 

 

 

 
 

 

 r

r
AAAA

fT

r

f

nn nn

r

AAAAT









 

log}

log}

,

).....,

{

{

log

(log

,

),.....

]2[

121

]2[

121












 
 

Since 0  is arbitrary, it follows from above that 
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Then the theorem follows from (9) and (12).
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Remark 5  Theorem 4 and Corollary 1 shows that the middle part of the first one is independent of ,
where as the second one is dependent on the same. 

 

Theorem 5  Let f be an entire function satisfying the nth order linear differential equation 
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Proof  From the definition of   type , we get  for arbitrary positive  and for all sufficiently large 
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Again we have for a sequence of values of r tending to infinity, 
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  ,so from (13) and (14) it follows for a sequence of values of r tending 

to infinity, 
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Since 0  is arbitrary, it follows from above that 
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Also for a sequence of values of r tending to infinity, 
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Now for all sufficiently large values of r, 
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Now from (16) & (17) we obtain for a sequence of values of r tending to infinity, 

 

 
 

 

}

}

,

).....,

{

{(

,

,.....
121 121


















 

f

nn AAAA

fT

r
nn

r

AAAAT 

 

Since 0  is arbitrary, it follows from above that 
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Then the theorem follows from (15) and (18).  
 

Theorem 6  Let f be a transcendental entire function satisfying the nth order linear differential equation 
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where   szAi
' are non zero entire functions. If 
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 where   is a real constant. 

 

Proof  We suppose that  >0 , otherwise the theorem is obvious. 
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values or r tending to infinity. 

 

So from Lemma 3 , we get for a sequence of values or r tending to infinity,
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Since f is transcendental ,it follows that 
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So from above we get for a sequence of values of r tending to infinity , 
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Also we see that for all large values of r, 
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So from (19),using (20) & (21) we get for a sequence of values of r tending to infinity , 
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This proves the theorem. 

 

Remark 6  If we consider   in the place of  , then the analogous theorem is also true with „limit 

superior‟  replaced by „limit‟. 

 

Remark 7  In the theorem using   ,if we consider 0
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121
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instead of 
0.....2( 1 ),
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n


the 

theorem remains  true with „limit‟ replaced by „limit superior‟. 
 

Conclusion 
   The results as deduced in this paper may be thought of from another angle of view and those can be 

carried out in case of difference polynomials of higher degree. Therefore several modified techniques may be 

adopted in order to solve the problems arisen and those can be regarded as a virgin area to the researchers in 

this field. 
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