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  Abstract  

 
 

Quantum mechanical harmonic oscillators have been used to explain different 

complex phenomenon in physics. In this paper, fractional dimensional 

harmonic oscillator has been studied. We have considered nonlinear variation 

of potential with space. The time independent fractional Schrodinger equation 

has been investigated. Solutions of the fractional Schrodinger equation for 

different plausible fractional parameter are also critically examined. 
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1. Introduction 

Harmonic oscillator in quantum mechanics is a very important topic for researcher in recent years. It has 

very wide applications like molecular spectroscopy, radiation phenomena, structure of solids and so on. But in 

many instances force law involves nonlinear function of space coordinates in physical realm. Hence the 

potential varies as fractional power of space coordinates. So, conventional methods of solution for harmonic 

oscillator problem are not appropriate in such cases. Regarding this problem, fractional contribution of space 

coordinate has satisfactorily been applied as an effective description of restraint in some low-dimensional 

problem [1]. Laskin has developed fractional Schrödinger equation originated from fractional path integral [2], 

[3]. Xu, Dong and Guo discussed the method of solution of Schrodinger equation for different cases, such as 

barrier penetration problems, infinite potential well and other physical applications [4], [5]. Laskin solved the 

fractional Schrodinger equation for single dimensional oscillator using semi-classical approaches [6]. Herrman 

studied fractional form of Schrodinger equation with potential well of infinite depth [7]. Analytical and 

numerical method is used to solve fractional Schrodinger equation with Riemann-Liouville operator by Ibrahim 

and Jalab [8]. In all above mentioned papers the authors concerned with second order derivative dealing the 

kinetic energy. They replaced the second order derivative to a fractional order derivative and derive the effect 

on the eigenfunction and energy eigenvalues [9].  

The purpose of this paper is to find out the solutions of Schrödinger equation for one dimensional 

fractional harmonic oscillator.  Here the order of the derivative representing the kinetic energy kept identical. 

The nonlinearity of force and corresponding fractional potential are taken into account as the evolution of the 

problem. The suitable stable wave functions have been found out for fractional potential by numerical solution 

of time independent Schrödinger equation. 
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2. Method and analysis 

Time independent Schrödinger equation in one dimension is given by: 

 

−
ℏ2

2𝑚

𝑑2𝛹(𝑥)

𝑑𝑥2 + 𝑉(𝑥)𝛹(𝑥) = 𝐸𝛹(𝑥)                                               (1) 

 

Where m is the mass of the particle, 𝑉(𝑥) is the potential function, 𝛹(𝑥) is the wavefunction, 𝐸 is the 

energy of the oscillator system. For physical oscillator, we take restoring force, 𝐹 = −𝑠𝑥α and potential, 

𝑉(𝑥) = 𝑘𝑥β, where s, k, α and β(= α + 1) are constants. Then equation (1) reduces to  

𝑑2𝛹(𝑥)

𝑑𝑥2
= −

2𝑚

ℏ2
(𝐸 −

1

2
𝑘𝑥β) 𝛹(𝑥)                                                (2) 

 

If β = 2, the quantized energy of the oscillator is given by  

𝐸𝑛 =  ℏω (n +
1

2
) ,           n = 0, 1, 2, …                                        (3)  

 

But we take the value of  α and β equal to a fraction. The corresponding eigenfunctions (and quantized 

eigenvaules) have been derived by the method of numerical solution of differential equation to a desired 

precision by Mathematica software (and graphical analysis).   

To solve Schrödinger equation, the values of constants throughout the whole work will be taken as 

follows:  

𝑚 = 1, ℏ = 1, 𝑘 = 1                                                                         (4) 

 

We consider the ground state (n=0) and first excited state (n=1) of the fractional harmonic oscillator for 

numerical analysis. So the Schrödinger equations take the form respectively, 

 
𝑑2𝛹(𝑥)

𝑑𝑥2 = −2𝜋 ((1 + 𝑎) − 2𝜋𝑥β) 𝛹(𝑥)                                     (5) 

  
𝑑2𝛹(𝑥)

𝑑𝑥2
= −2𝜋((3 + 𝑎) − 2𝜋𝑥β)𝛹(𝑥)                                       (6) 

 

Where 𝑎 stands for the fractional perturbation term over the energy eigenvalue of linear harmonic 

oscillator. 

 
Figure 1. Variation of linear harmonic and fractional potential with respect to position coordinates. 
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In the figure 1, we have plotted variation of potential with position for different value of β. This figure 

clearly shows that shape of potential well has a large difference when we increase β from 2.01 to 2.1. But 

potential well are almost identical for β = 2 and β = 2.001. We have plotted the wavefunctions with respect 

to some arbitrary scale. 

 

 
Figure 2. Solutions of Schrödinger equation (n=0) for different values of energy where 𝛽 = 2 and 𝛽 = 2.01. 

 

 
Figure 3. Solutions of Schrödinger equation (n=0) for different values of energy where  𝛽 = 2.01. 

 
Figure 2 depicts the ground state wave functions for V(x) = x2.00 and V(x) = x2.01 for different values of 

the parameter ‘a’. We get a usual normalized wavefunction when 𝑎 = 0.00 which corresponds to the 

energy 𝐸0 = 0.5ℏω. But when we change the energy by changing the parameter ‘a’ we have got the 

wavefunctions that blow exponentially towards the infinity. So to find the normalizable wavefunction, we have 

varied the parameter ‘a’ and solutions are plotted in the figure 3. It is clearly evident that 𝑎 = −0.0045 is the 

nearest approach towards the normalized wave solution among the three solutions of this figure for V(x) = x2.01. 

Finally we have got a normalized ground state wavefunction for 𝑎 = −0.00448 which corresponds to the 

energy  𝐸0 = 0.49776ℏω. Which is 0.448% lower than the usual ground state energy of linear harmonic 

oscillator. The precision of results are correct up to the value ±10−5. 
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Figure 4. Solutions of Schrödinger equation (n=1) for different values of energy when 𝛽 = 2.01. 

 

 
Figure 5. Solutions of Schrödinger equation (n=1) for different values of energy (𝛽 = 2.01) in the first 

quadrant. 

 

We have found three distinct wavefunctions for three respective energies specified by the parameter 𝑎 =
−0.01, −0.03, 0.00 for first excited state of the oscillator. These three solutions are plotted in figure 4. Among 

the above three, last value of 𝑎 is taken from conventional linear harmonic energy for n=1. But it is evident 

from the figure that these solutions are not normalizable, because these solutions blow up exponentially at large 

x. Figure 4 suggests that normalizable solution should be obtained between 𝑎 = 0 and 𝑎 = −0.01. For higher 

precision we have plotted the solutions for 𝑎 = −0.00850, 𝑎 = −0.00845  and 𝑎 = −0.00840 in the figure 

5. This plot shows that   𝑎 = −0.00850 is the better approach to the normalised wavefunction for first excited 

state with the said potential well. The corresponding energy for the first excited state we have calculated is 𝐸1 =
1.49575ℏω.Which is 0.283% lower than the usual first excited state energy of linear harmonic oscillator. 
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3. Conclusion and Summary 

Nature follows nonlinearity of space, so the restoring force can have nonlinear part in any circumstances 

while dealing with the real world. So we introduce fractional potential and deviations from linear harmonic 

oscillators are analysed graphically. We have solved time independent Schrödinger equations numerically and 

derive the normalised wavefunctions for ground state and first excited state with high degree of accuracy. The 

calculation is mainly focussed on β = 2.01. Wavefunction blows exponentially towards infinity at the classical 

forbidden regions with a slight departure from proper energy eigenvalue.  

 Energy eigenvalues for ground state and first excited state are 𝐸0 = 0.49776ℏω and 𝐸1 = 1.49575ℏω 

respectively. Energy gap between these adjacent energy states is  0.99799ℏω which 0.201% lower than that 

for one dimensional linear harmonic oscillator. The present work could be extended for higher excited states 

and dimensions. 
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