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  Abstract  

 
 Bandyopadhyay and Das [Phys. Plasmas, 9, 465-473, 2002] have derived a 

nonlinear macroscopic evolution equation for ion acoustic wave in a 

magnetized plasma consisting of warm adiabatic ions and non-thermal 

electrons including the effect of Landau damping. In that paper they have 

also derived the corresponding nonlinear evolution equation when coefficient 

of the nonlinear term of the above mentioned macroscopic evolution 

equation vanishes, the nonlinear behaviour of the ion acoustic wave is 

described by a modified macroscopic evolution equation. But they have not 

considered the case when the coefficient is very near to zero. This is the case 

we consider in this paper and we derive the corresponding evolution equation 

including the effect of Landau damping. Finally, a solitary wave solution of 

this macroscopic evolution is obtained, whose amplitude is found to decay 

slowly with time. The corresponding nonlinear evolution equation and its 

solitary wave solution without including the effect of Landau damping has 

been subject matter of study of the paper made by Das et al. [Phys. Plasmas, 

14, 092304-1--10, 2007] 
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1. Introduction  
In the investigations made by Das et al [2], the Landau damping effect has not been taken into 

account. In the present paper, we include this effect on the problem considered in Das et al [2]. Starting from 

the same governing equations but replacing the expression for the number density of non-thermal electrons 

by the Vlasov-Boltzmann equation for electrons, an appropriate macroscopic evolution equation 

corresponding to the combined modified Korteweg-de Vries-Zakharov-Kuznetsov (combined MKdV-KdV-

ZK) equation of Das et al [2] is derived, which describes the long-time evolution of weakly nonlinear long 

wave-length ion acoustic waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal 

electrons including the effect of Landau damping. Following Ott and Sudan [3], Bandyopadhyay and Das [1] 

derived a macroscopic evolution equation to investigate the nonlinear behaviour of the ion acoustic waves in 

a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons including the effect of 

Landau damping. This equation is a Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equation except for 

an extra term that accounts for the effect of Landau damping. Bandyopadhyay and Das [1] reported that this 

macroscopic evolution equation admits solitary wave solution propagating o bliquely to the external uniform 

static magnetic field and having a -profile. But the amplitude of solitary wave does not remain 

constant; it varies slowly with time  as , where  is a constant depending on the initial 

amplitude of the solitary wave, the angle between the direction of propagation of the solitary wave and the 
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external uniform static magnetic field and the parameters involved in the system. This evolution equation, 

which we are discussing about, losses its validity when the coefficient of the nonlinear term of the 

macroscopic evolution equation vanishes and this vanishes along a particular curve in the -parametric 

plane as shown in Fig1. In this situation, in the same paper, they have derived a modified macroscopic 

evolution equation when the coefficient of the nonlinear term of the macroscopic evolution equation 

vanishes. This equation is a modified Korteweg-de Vries-Zakharov-Kuznetsov (MKdV-ZK) equation except 

for an extra term that accounts for the effect of Landau damping.  Bandyopadhyay and Das [2] reported that 

this modified macroscopic evolution equation admits solitary wave solution propagating obliquely to the 

external uniform static magnetic field and having a -profile. But the amplitude of solitary wave does not 

remain constant; it varies slowly with time time  as , where  is a constant depending on the 

initial amplitude of the solitary wave, the angle between the direction of propagation of the solitary wave and 

the external uniform static magnetic field and the parameters involved in the system. But again this modified 

macroscopic evolution equation is unable to describe the nonlinear behaviour of the ion acoustic waves 

including the effect of Landau damping if the coefficient of the nonlinear term of the macroscopic evolution 

equation approaches to zero, but not exactly equal to zero. This is the case we are considering in the present 

paper; we derive a further modified macroscopic evolution equation to study the nonlinear behaviour of the 

ion acoustic waves including the effect of Landau damping. This equation is a combined MKdV-KdV-ZK 

equation except for an extra term that accounts for the effect of Landau damping. The solitary wave solution 

of this further modified macroscopic evolution has been obtained. It is found that due to inclusion of the 

effect of Landau damping the amplitude of the alternative solitary wave solution of this equation is a slowly 

varying function of time. 

The physics of nonlinear Landau damping is of interest for two major reasons. First, it is a 

fundamental and distinctive plasma phenomenon that links collective and single-particle behaviour. Second, 

the derivation of reduced fluid models that incorporate accurately such kinetic effects, is of great importance 

for plasma transport studies. For instance, some authors have proposed a k-dependent dissipation term, which 

correctly reproduces linear Landau damping within the framework of fluid models [4]. However, the long 

time behaviour of Landau damping is intrinsically nonlinear, and, in order to assess the validity of the above 

models, it is important to understand whether the damping will continue indefinitely, or will eventually be 

stopped by the nonlinearity. In the nonlinear theory, it is well known that the usual ion acoustic wave in 

electron ion plasma suffers Landau damping due to the resonant particle i.e. the particles whose velocity is 

nearly equal to the wave phase velocity (Chen[11]). Ott and Sudan [3] have incorporated this linear Landau 

damping on ion acoustic solitary wave neglecting the particle trapping effect under the assumption that the 

particle trapping time is much greater than the Landau damping time. 

The research works on solitary waves in plasmas have been done under various physical conditions 

such as plasmas including multi-species ions [5],  negative ions [6], and dust particles [7]. In many cases, the 

Korteweg-de Vries (KdV) equation is used to describe basic characters of the wave. Detailed properties of 

the solitary waves observed in experiments in plasmas are, however, slightly different from those predicted 

by the equation. Using Q-machine plasmas, Karpman et al  [8] have observed oscillations in the tail of 

solitary waves, which are caused by resonant particles and have shown that the tail changes its shape 

depending on the strength of Landau damping. 

This paper is an extension of the work of Bandyopadhyay and Das [2], where we derive a further 

modified macroscopic evolution equation which describe the non-linear behaviour of ion-acoustic waves in 

fully ionized collisionless plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-

like velocity distribution, immersed in a uniform static magnetic field directed along z-axis including the 

effect of Landau damping. This equation is true only for the case when the coefficient of the nonlinear term 

of the macroscopic evolution equation derived by Bandyopadhyay and Das [2] approaches to zero and not 

exactly equal to zero. With the help of multiple time scale analysis of Ott and Sudan [3], we find a solitary 

wave solution of this equation. From the solution, we can conclude that the amplitude of the solitary wave 

slowly decreases with time. 

This paper is organized as follows. The basic equation have been given in Section 2. The 

macroscopic evolution equations are given in Section 3, in which the derivation of MKdV-KdV-ZK like 

macroscopic evolution equation is given in subsection 3.3. Solitary wave solutions of the combined MKdV-

KdV-ZK like macroscopic evolution equation are investigated in Section 4. Finally, we have concluded our 

findings in Section 5. 

 

2. Basic Equation  
The following are the governing equations describing the non-linear behaviour of ion-acoustic 

waves in fully ionized collisionless plasma consisting of warm adiabatic ions and non-thermal electrons 

having vortex-like velocity distribution, immersed in a uniform static magnetic field directed along z-axis. 

Here it is assumed that the plasma beta i.e., the ratio of particle pressure to the magnetic pressure is very 
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small and the characteristic frequency is much smaller than ion cyclotron frequency (Cairns et al [9], Mamun 

[10]) 

 

 

 

 
where 

 
and the velocity distribution function of electrons  f  must satisfy the Vlasov- Boltzmann equation. 

  Here n,  u, p,  , (x, y, z) and t are respectively the ion number density, electron number density, 

ion fluid velocity, ion pressure, electrostatic potential, spatial variables and time, and they have been 

normalized respectively by (unperturbed ion number density), ,  (ion-acoustic speed), 

, ,  (Debye length) and (ion plasma period), where , is the ion 

cyclotron frequency normalized by   and is the ratio of two specific heats. Here is 

the Boltzmann constant;  are respectively the electron and ion temperatures; m is the mass of an ion and 

e is the electronic charge  is the velocity of electrons in phase space normalized to .   In (4), the 

adiabatic law has been taken on the basis of the assumption that the effect of viscosity, thermal conductivity 

and the energy transfer due to collision can be neglected. 

Since the electrons are assumed to be nonthermally distributed, the electron velocity distribution 

function can be taken as (Cairns et al [9]) 

 
where is a parameter that determines proportion of fast energetic nonthermal electrons.  

To discuss the effect of Landau damping on ion-acoustic solitary waves, we follow the method of Ott and 

Sudan [3] and following them, we replace  by  where  is a small parameter. The equation (6) 

then assumes the following form 

 

where  

Again using (4), the equation (2) becomes 

 
and the equation (3), which is the Poisson equation becomes 

 
 Therefore Eqs. (1), (9), (10) and (8) are our governing equations. 

 

3. Evolution equations 

3.1. Macroscopic evolution equation 
Before deriving the nonlinear evolution equation for ion-acoustic wave in a magnetized collisionless 

plasma consisting of warm adiabatic ions and non-thermal electrons including the effect of Landau damping 

for a particular case not considered in the paper of Bandyopadhyay and Das [1] we give below in short a 

summary of the results obtained in that paper. The macroscopic evolution equation obtained is the 

following: 
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where 

 

 

 

 
and the constant V is given by 

 
and 

 
The equation (11) is a KdV-ZK equation except for an extra term (last term of the left hand side of (11)) 

that accounts for the effect of Landau damping. The solitary wave solution of the equation (11) has been 

obtained in that paper of Bandyopadhyay and Das [1]. They have found that the solitary wave solution of the 

equation (11) has the same - profile as in the case of KdV-ZK equation. But, here the amplitude as well 

as the width of the solitary wave varies slowly with time. In particular, the amplitude (a) of the solitary wave 

solution of the equation (11) is given by the following equation. 

 
where  is the value of  at  and  is given by the following equation 

 
Using (16) the expression for can be simplified as 

 
where 

 
From this expression of  it is easy to see that the coefficient of the non-linear term in (11) vanishes 

along a particular curve Fig1 in the  plane, and consequently, it is not possible to discuss the nonlinear 

behaviour of ion acoustic wave including the effect of Landau damping with the help of Eq. (11). In this 

situation, i.e., when  Bandyopadhyay and Das [1] have also derived a modified macroscopic evolution 

equation. 

 

3.2. Modified macroscopic evolution equation 
For this case, i.e., when giving appropriate stretching of space coordinates and time, and 

appropriate perturbation expansions of the dependent variables Bandyopadhyay and Das [1] in the same 

paper have derived the following modified macroscopic evolution equation for ion acoustic waves in a fully 

ionized collisionless plasma consisting of warm ions and non-thermal electrons immersed in a uniform static 

magnetic field directed along the z-axis: 

 

 
Here  and  are same as given by the equations (12), (14) and (15) respectively and is given by 

the following equation: 

 
and the constant  is determined from equation (16). 
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Figure 1: Variation of against    

 
The equation (21) is a MKdV-ZK equation except for an extra term (last term of the left hand side of (21) 

that accounts for the effect of Landau damping. The solitary wave solution of the equation (21) has been 

investigated by Bandyopadhyay and Das [1] in the same paper. They have found that the solitary wave 

solution of theequation (21) has the same -profile as in the case of MKdV-ZK equation. But, here the 

amplitude as well as the width of the solitary wave varies slowly with time. In particular, the amplitude (a) of 

the solitary wave solution of the equation (21) is given by the following equation. 

 
where  is the value of  at  and  is given by the following equation 

 
But both the evolution equations (11) and (21) are unable to describe the nonlinear behaviour of the ion 

acoustic wave along with the effect of Landau damping in the neighbourhood of the curve in the - 

parametric plane along which  (Fig1). This is the situation we are considering here. We have derive in 

this case, a further modified macroscopic evolution equation which describes the nonlinear behaviour of the 

ion acoustic wave in the neighbourhood of the curve  in the  - parametric plane along 

which . 

3.3. Further Modified Macroscopic evolution equation 
To discuss the nonlinear behaviour of the ion acoustic wave in the neighbourhood of the curve in the 

 parametric plane along which , we assume  (Nejoh [11]), and we take the following 

stretching of space coordinates and time. 

  

where  is a small parameter measuring the weakness of the dispersion and V is a constant. 

With the stretching given by (25), the equations (1), (9), (10) and (8) respectively assume the 

following form: 
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Here 

   

Next we use the following perturbation expansions of the dependent variables to make a balance between 

nonlinear and dispersive terms. 

 
Substituting (31) into the equations (26)-(29) and then equating coefficient of different powers of  on both 

sides, we get a sequence of equations. From the lowest order equations obtained from (26)-(28), which are at 

the order , we get the following equations. 

  

 

 

 

 

From the Vlasov equation (29) at the lowest order, i.e., at the order , we get the following equation 

 
As this equation does not have unique solutions, we include an extra higher order term 

 originated from the Vlasov equation at the order Let us write the equation (33) 

as follows. 

 
Then  can be obtained as unique solution of this equation by imposing the natural relation of the form 

Assuming dependence of and  to be of the form , the equation (35) can be written as 

 
Now taking Fourier transform of this equation with respect to the variable according to the definition, 

 
we get 

 

This equation gives the following expression for  

                                                                                                                                                                                                                            

Now whenever the factor  comes under integration over  along the real axis, the 

general prescription is to replace this integration according to Landau, along a contour in the complex -
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plane known as Landau contour. This is equivalent to replacing the factor  by the 

following: 

 
Substituting this relation into the equation (39) and then proceeding to the limit , we get according to 

(35) the following expression for : 

 
Due to the relation , this equation assumes the following form: 

 
Taking Fourier inverse transform of (42), we get 

                                                                                                                         

Substituting (43) in the last equation of (32) and then performing the integration we get 

                                                                                                       
This equation along with the first equation of (32) gives the following dispersion relation to determine the 

constant  

. 

This equation is same as the equation (16) as well as the equation (20) of Das et. al. [2]. 

In the next order, i.e., at the order solving the ion continuity equation and the parallel component 

(i.e., the component parallel to the ambient magnetic field, i.e., z-component or -component) of ion fluid 

equation of motion for and to express them in terms of  and we get the following 

equations: 

 

 
From the perpendicular component (i.e., the component perpendicular to the ambient magnetic field, i.e., the 

components along x-axis and y-axis) of the ion fluid equation of motion at the order , we get the following 

equation: 

 
From the Poisson equation at the order we get 

 

      To find , we again consider the Vlasov equation at the order . The Vlasov equation at the order 

is the following, in which as mentioned in the lowest order Vlasov equation, an extra time derivative term 

has been included and has been replaced by   

 
Then  can be obtained as unique solution of this equation by imposing the natural relation of the form 

 
Assuming dependence of  and  to be of the form ,taking Fourier transform of this equation 

with respect to the variable , using the causality condition (40) and finally proceeding to the limit 

,we get according to (50) the following expression for : 
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where 

 

and we have used the relations  and =1 to simplify the equation (51). 

Taking Fourier inverse transform of (51), we get 

                                                                               

Substituting for  and given respectively by (53) and the first equation of (46) into the equation (48), 

we get the following equation after simplification 

 
Now the first term of the left hand side of the equation (54) is identically equal to zero due to the  

dispersion relation as given by the equation (45) and as , the second term of the left hand side of 

the equation (54) along with its sign has to be included in the next higher order Poisson equation, i.e., this 

term along with its sign must be included in the left hand side Poisson equation of order  and consequently 

the equation (54), i.e., the Poisson equation of order is identically satisfied. So, including the term 

 in the Poisson equation of order we can write the Poisson equation at the order as follows 

 

Now, in the next order, i.e., at the order , solving the ion continuity equation and the parallel 

component of ion fluid equation of motion for the variable  to express it in terms , we 

get the following equation. 

 

 
where we have used equations (32), (46) and (47) to get this equation in this present form. 

Now our task is to find  that determines from the Poisson equation (55) at the order  To 

find  we consider the Vlasov equation at the order .  The Vlasov equation at the order  is the 

following, in which as in the lowest order case an extra higher order term  has been included and 

 has been replaced by and where we have substituted the expressions for  and  given by 

equations (43) and (53) respectively. 

 
where 

 
Therefore  is obtained from the unique solution of the equation (57) by the relation 

 
As in the earlier cases, assuming dependence of  and  to be of the form , taking Fourier 

transform of this equation with respect to the variable , using the causality condition (40) and finally 

proceeding to the limit , we get according to (50) the following equation determining : 

 
Integrating (60) over the entire range of , we get the following equation. 
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where we set 

 
Taking inverse Fourier transform of the above equation, we get 

 
in which the convolution theorem has been used to find the inverse Fourier transform of . Now 

using the equations (62) and (63), we get the following equation. 

 

Substituting (64) into the equation obtained by differentiating the Poisson equation (55) at the order   with 

respect to , we get the following equation 

 

 

Now substituting for  given by (56) into the equation (65), we get the following further modified 

macroscopic evolution equation, where the term  being of higher order since  

has been omitted. 

 

 
Here  and  are respectively given by the equations (12)-(15) and (22) and the constant is 

determined by the equation (16). The equation (66) is a combined MKdV-KdV-ZK equation except for an 

extra term (last term of the left hand side of (66)) that accounts for the effect of Landau damping. In the next 

section, we find the solitary wave solution of this further modified macroscopic evolution equation. 

 

4. Solitary wave solution of the further modified macroscopic equation 
If we neglect the electron to ion mass ratio, i.e., if we set , the equation (66) reduces to a 

combined MKdV-KdV-ZK equation. The solitary wave solution of this combined MKdV-KdV-ZK equation 

has been studied in Das et al [2]. In this paper, our aim is to find the solitary wave solution of the equation 

(66). 

The solitary wave solution of the equation (66) with  propagating at an angle with the 

external uniform static magnetic field is the following, which has already been obtained in section IV of Das 

et al. [2], 

 
where 

 

 
                                                                                                                                                          

 

 

 
For the existence of the solitary wave solution (67), it is necessary that the following condition is satisfied. 
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If the condition (74) holds good,  is given by the equation 

 
where 

 
With the help of the equations (71), (72), (75) and (76), we get the following expressions of and to 

express them in terms of  

 

 

 
where 

 

 
Using (77), we can write the Eq.(67) as 

 

 
Assuming that  to be a slowly varying function of time, following Ott and Sudan [3], we introduced the 

following space coordinate in a frame moving with the solitary wave. 

 
It is important to note that if is a constant, then and consequently, 

 

 
is the solitary wave solution of the combined MKdV-KdV-ZK equation propagating at an angle to the 

external uniform static magnetic field. Now dropping “overline” on  we can write the equation (84) as 

 

 
where is given by the following equation: 

 
Now our aim is to find the condition for which given by the equation (85) is a solitary wave solution of 

the further modified macroscopic equation (66). 

With the change of variable defined by the equation (86) and assuming that  is a function of 

only, Eq.(66) can be written as 

 

 

To investigate the solution of Eq. (87), we follow Ott and Sudan [3] and generalizing the multiple-time scale 

analysis with respect to , by setting 
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where each  are the function of . Here is given by 

 
Substituting (88) into (87) and then equating the coefficient of different power of  on each side of Eq. (87), 

we get a sequence of equations. The zeroth and the first order equation of this sequence are respectively, 

given by the following equations. 

 
 

 
where 

 

 

 

Now it can be easily verified that  is the soliton solution of the zeroth order equation if 

 
which implies that  is independent of time, i.e., at the lowest order, the solitary wave solution of the further 

modified macroscopic evolution equation is same as that of the combined MKdV-KdV-ZK equation. 

Using (95), Eq.(91) can be written as 

 
Now for the existence of a solution of the equation (96), its right hand must be perpendicular to the kernel of 

the operator adjoint to the operator ; this kernel, which must tend to zero as is . Thus 

we get the following consistency condition for the existence of a solution of the equation (96). 

 
From equation (97), we get the following differential equation for the solitary wave amplitude . 

 
where 

 
Using the relation , the equation (\ref{5.4.36}) can be written in  the following simplified form: 

 

Here it is important to note that  appearing in  is a function of . So, it is not possible to 

find the exact analytical dependence of on . But we can solve the above equation by using the Taylor 

series expansion for the terms of the form  in powers of . Keeping terms upto the order , we get 

the following differential equation for  from equation (100). 

 
                                                                                                                                                                     (101) 

where  are given by the following integrals. 
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 appearing in the above are given by 

 

 
Now solving the above differential equation (101) for by the use of the initial condition,  when 

, we get the following equation for : 

 
where 

 

 
From equation (105), we see that is implicitly depends on  and consequently, from this equation it is not 

possible to predict the nature (decreasing or increasing) of dependence of  on  But plotting  against  for 

the appropriate set of values of the parameters involved in the system, we find that  is slowly varying 

function of time. By the phrase “appropriate set of values of the parameters”, we mean that those values of 

the parameters of the system for which the condition for existence of alternative solitary wave solution of the 

combined MKdV-KdV-ZK equation holds good, i.e., for those values of the parameters of the system for 

which . Taking  (arbitrary) and the values of the parameters as mentioned in the Figure 2, we 

plot  against . This figure clearly shows that the amplitude (  decays slowly with time (  and 

consequently, the amplitude of the alternative solitary wave solution of the combined MKdV-KdV-ZK 

equation is a slowly varying function of time when the effect of Landau damping is considered. 

 

5. Conclusions 
A macroscopic evolution equation corresponding to the combined MKdV-KdV-ZK equation has been 

derived to include the effect of Landau damping. This macroscopic evolution equation admits the same 

alternative solitary wave solution of the combined MKdV-KdV-ZK equation except the fact that the 

amplitude of the solitary wave solution of the combined MKdV-KdV-ZK like macroscopic equation is a 

slowly varying function of time. The multiple time scale method of Ott and Sudan [3] has been generalized 

here to solve the said evolution equation. In small amplitude limit, we have observed the following result. 

 

Result:Due to inclusion of the effect of Landau damping, the amplitude of the alternative solitary wave 

solution having profile different from  or  of the macroscopic evolution equation decays slowly 

with time. 
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Figure 2: Variation of  against  
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