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Abstract 

Binary operations on graphs are studied widely in graph theory ever since each of these 

operations has been introduced. The neighbourhood polynomial plays a vital role in 

describing the neighbourhood characteristics of the vertices of a graph.  In this study 

neighbourhood polynomial of graphs arising from the operations like conjunction, join and 

symmetric difference of certain classes of graphs are calculated and tried to characterize 

the nature of neighbourhood polynomial.  
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Introduction 

The neighbourhood polynomials of the graphs resulting from Cartesian product have been 

studied and some properties have been established in [3].  

1.1. The operations on graphs in this study 

The operation of conjunction (∧) on graphs was introduced by Weichsel in 1963. For any 

two graphs𝐺1 and 𝐺2, it is denoted as 𝐺 = 𝐺1 ∧ 𝐺2 and is defined as 𝑉 𝐺 = 𝑉 𝐺1 ×

𝑉 𝐺2 , two vertices  𝑢𝑖 , 𝑣𝑗 ,  𝑢𝑘 ,𝑣𝑙  are adjacent if 𝑢𝑖  adjacent to 𝑢𝑘  in𝐺1 and 𝑣𝑗adjacent 

to 𝑣𝑙  in 𝐺2. Join of two graphs 𝐺1 and 𝐺2 is denoted as 𝐺 = 𝐺1 ∨ 𝐺2. In join, 𝑉 𝐺 =

𝑉 𝐺1 ∪ 𝑉 𝐺2 , edge set consists of edges of 𝐺1 and 𝐺2 together with all edges joining 

every vertex of 𝐺1 to every vertices of 𝐺2. The symmetric difference (⊕) 
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between any two graphs 𝐺1 and 𝐺2, it is denoted as 𝐺 = 𝐺1 ⊕𝐺2 and is defined as 

𝑉 𝐺 = 𝑉 𝐺1 × 𝑉 𝐺2 , two vertices  𝑢𝑖 , 𝑣𝑗 ,  𝑢𝑘 ,𝑣𝑙  are adjacent if either 𝑢𝑖  adjacent to 

𝑢𝑘  in𝐺1 or 𝑣𝑗adjacent to 𝑣𝑙  in 𝐺2, but not the both. For notations and terminology we 

follow [2]. 

1.2. Neighbourhood complex and polynomial 

A complex on a finite set 𝒳 is a collection 𝒞 of subsets of𝒳, closed under certain 

predefined restriction. Each set in 𝒞 is called the face of the complex. In the 

neighbourhood complex 𝒩 𝐺  of a graph𝐺, 𝒳 = 𝑉 𝐺 , and faces are subsets of vertices 

that have a common neighbour. In [1] the neighbourhood polynomial of a graph 𝐺, is 

defined as 

𝑛𝑒𝑖𝑔𝐺 𝑥 =  𝑥  𝑢  𝑢∈𝒩(𝐺) .  

For example consider 𝐶4 with vertices  𝑎, 𝑏, 𝑐, 𝑑 . The neighbourhood complex 𝒩(𝐶4) of 

𝐶4 is  𝜙,  𝑎 ,  𝑏 ,  𝑐 ,  𝑑 ,  𝑎, 𝑐 ,  𝑏, 𝑑  Since the empty set trivially has a common 

neighbour, each of the single vertices has a neighbour, the sets  𝑎, 𝑐 ,  𝑏, 𝑑  has two 

common neighbours (one is sufficient), but no three vertices have a common neighbour. 

The associated neighbourhood polynomial of 𝐶4is 𝑛𝑒𝑖𝑔𝐶4
 𝑥 = 1 + 4𝑥 + 2𝑥2.  

Similarly, the neighbourhood polynomials of certain standard graphs are as follows: 

1. 𝐾𝑛  - 𝑛𝑒𝑖𝑔𝐾𝑛  𝑥 =  1 + 𝑥 𝑛 − 𝑥𝑛 . 

2. 𝑃𝑛  - 𝑛𝑒𝑖𝑔𝑃𝑛  𝑥 = 1 + 𝑛𝑥 +  𝑛 − 2 𝑥2. 

3. 𝐶𝑛  – 𝑛𝑒𝑖𝑔𝐶4
 𝑥 =  

1 + 𝑛𝑥 + 𝑛𝑥2, 𝑛 ≠ 4

1 + 𝑛𝑥 + 2𝑥2, 𝑛 = 4
  . 

In this paper, neighbourhood polynomials for the graphs resulting from the binary 

operations of conjunction, join, and symmetric difference are calculated. Also tried to 

characterize some properties of the neighbourhood polynomial of the graph 𝐺 so formed. 

2. Main Results  

2.1 Conjunction of two graphs and their Neighbourhood Polynomials 

Lemma 2.1.1 The neighbourhood polynomial of mesh graph is  

1 + 𝑚𝑛𝑥 +  4𝑚𝑛− 6 𝑚 + 𝑛 + 8 𝑥2 +  𝑚 − 2  𝑛 − 2  4𝑥3 + 𝑥4 . 
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Proof.Consider the mesh graph 𝐺 = 𝑃𝑛 ∧ 𝑃𝑚 . In 𝑃𝑛 ∧ 𝑃𝑚  there are 𝑚𝑛 vertices. The empty 

set trivially has a neighbour and each of the 𝑚𝑛 single vertices has a neighbour. 

Now consider the figure 1, 𝑃5 ∧ 𝑃4 

 

 

𝐺 = 𝑃5 ∧ 𝑃4 

  

The two element subsets   𝑎, 𝑘 ,  𝑗, 𝑡 ,  𝑏, 𝑙 ,  𝑖, 𝑠 ,  𝑐,𝑚 ,  , 𝑟 ,  𝑑,𝑥 ,  𝑔, 𝑞 ,  𝑒, 𝑜 ,

 𝑓, 𝑝  [𝑚 𝑛 − 2 = 5 4 − 2 = 10];   𝑎, 𝑐 ,  𝑏, 𝑑 ,  𝑐, 𝑒 ,  𝑗,  ,  𝑖,𝑔 ,  , 𝑓 ,  𝑘,𝑚 ,

 𝑙,𝑛 ,  𝑚,𝑜 ,  𝑡, 𝑟 ,  𝑠, 𝑞 ,  𝑟, 𝑝  [𝑛 𝑚 − 2 = 4 5 − 2 = 12]; and   𝑗, 𝑟  ,  𝑎,𝑚 ,

 𝑖,𝑞 ,  𝑏,𝑛 ,  ,𝑝 ,  𝑐, 𝑜 ,  𝑐, 𝑘 ,  𝑑, 𝑙 ,  , 𝑡 ,  𝑒,𝑚 ,  𝑔, 𝑠 ,  𝑓, 𝑟  [2 𝑚 − 2  𝑛 −

2 ]; have at least one common neighbour. The three element subsets having at least one 

common neighbour are   𝑐, 𝑒,𝑚 ,  𝑐, 𝑒, 𝑜 ,  𝑐,𝑚,𝑜 ,  𝑒,𝑚, 𝑜 ,  𝑏,𝑑, 𝑙 ,  𝑏,𝑑,𝑛 ,

 𝑏, 𝑙, 𝑛 ,  𝑑, 𝑙, 𝑛 ,  𝑎, 𝑐, 𝑘 ,  𝑎, 𝑐,𝑚 ,  𝑎,𝑘,𝑚 ,  𝑐, 𝑘,𝑚 ,  , 𝑗, 𝑟 ,  , 𝑗, 𝑡 ,  , 𝑟, 𝑡 ,

 𝑗, 𝑟, 𝑡 ,  𝑔, 𝑖,𝑞 ,  𝑔, 𝑖, 𝑠 ,  𝑔, 𝑞, 𝑠 ,  𝑖, 𝑞, 𝑠 ,  𝑓, , 𝑝 ,  𝑓, , 𝑟 ,  𝑓,𝑝, 𝑟 ,

 , 𝑝, 𝑟  [4 𝑚 − 2  𝑛 − 2 = 4 5 − 2  4 − 2 = 24] and   𝑐, 𝑒,𝑚, 𝑜 ,  𝑏,𝑑, 𝑙,𝑛  ,

Figure 1 
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 𝑎, 𝑐,𝑘,𝑚 ,  , 𝑗, 𝑟, 𝑡 ,  𝑔, 𝑖, 𝑞, 𝑠 ,  𝑓,,𝑝, 𝑟  [ 𝑚 − 2  𝑛 − 2 =  5 − 2  4 − 2 = 6] 

are the four element subsets having at least one common neighbour. 

Thus for 𝐺 = 𝑃5 ∧ 𝑃4, the neighbourhood polynomial is  

𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 + 20𝑥 + 34𝑥2 + 24𝑥3 + 6𝑥4. 

Generally, for 𝐺 = 𝑃𝑚 ∧ 𝑃𝑛 ,  

𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 + 𝑚𝑛𝑥 + [4𝑚𝑛 − 6 𝑚 + 𝑛 + 8]𝑥2 + (𝑚 − 2)(𝑛 − 2)(4𝑥3 + 𝑥4). 

Corollary 2.1.2 The neighbourhood polynomial of 𝑃𝑚 ∧ 𝐾2is 1 + 2𝑚𝑥 + (2𝑚− 4)𝑥2. 

Proof. We have, 

𝑛𝑒𝑖𝑔𝑃𝑚×𝑃𝑛
 𝑥 = 1 + 𝑚𝑛𝑥 + [4𝑚𝑛 − 6 𝑚 + 𝑛 + 8]𝑥2 + (𝑚− 2)(𝑛 − 2)(4𝑥3 + 𝑥4). 

When 𝑛 = 2, we get, 𝑛𝑒𝑖𝑔𝑃𝑚×𝐾2
 𝑥 = 1 + 2𝑚𝑥 + (2𝑚 − 4)𝑥2. 

Lemma 2.1.3 The neighbourhood polynomial of 𝐶𝑚 ∧ 𝐶𝑛  is, 

1 + 𝑚𝑛𝑥 + 4𝑚𝑛 𝑥2 + 𝑥3 + 𝑚𝑛𝑥4,𝑚 ≠ 𝑛 ≠ 4. 

Proof. Consider, 𝐺 = 𝐶𝑚 ∧ 𝐶𝑛 ,𝑚 ≠ 𝑛 ≠ 4. From the definition of conjunction, for every 

𝑣𝑗 ∈ 𝑉 𝐺 , we have 𝑑 𝑣𝑗 = 4. That is, there corresponds 4 neighbours to every vertex 𝑣𝑗  

of 𝐺 

To find set of vertices having at least one common neighbour, say 𝑣𝑗 , we compute, 

 4
2
 ,  4

3
 ,  4

4
 , of the four neighbouring vertices of 𝑣𝑗 . Since in 𝐺, there are 𝑚𝑛 vertices, in 

the neighbourhood complex of 𝐺 we have null set, 𝑚𝑛 single vertices, 𝑚𝑛 4
2
 = 6𝑚𝑛, two 

element subsets, 4𝑚𝑛 three element subsets and 4𝑚𝑛 four element subsets. 

On considering 𝐶𝑚 ∧ 𝐶𝑛 , for different 𝑚 and 𝑛, it is verified that there are only  

 6𝑚𝑛 − 2𝑚𝑛 = 4𝑚𝑛distinct two element subsets of vertices having at least a common 

neighbour. 

Hence,  𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 + 𝑚𝑛𝑥 + 4𝑚𝑛 𝑥2 + 𝑥3 + 𝑚𝑛𝑥4,𝑚 ≠ 𝑛 ≠ 4. 

Corollary 2.1.4 The neighbourhood polynomial of 𝐶𝑚 ∧ 𝐶4 is, 

1 + 4𝑚𝑥 + 10𝑚𝑥2 + 8𝑚𝑥3 + 2𝑚𝑥4,𝑚 ≠ 4. 

Proof.Let 𝐺 = 𝐶𝑚 ∧ 𝐶𝑛 .  𝑉(𝐺) = 𝑚𝑛. Each of the  𝑚𝑛 vertices has 4 neighbours. When 

𝑛 = 4, the neighbours of first 𝑚𝑛 2  vertices is same as that of later 𝑚𝑛 2  vertices. That 

is, we have to consider the neighbours of only 4𝑚 2 = 2𝑚, vertices are only needed to be 
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considered( since, we are finding the distinct set of vertices having common neighbours). 

Following the same argument as in lemma 2.1.3, we get  

𝑛𝑒𝑖𝑔𝐶𝑚∧𝐶4
 𝑥 = 1 + 4𝑚𝑥 + 10𝑚𝑥2 + 8𝑚𝑥3 + 2𝑚𝑥4,𝑚 ≠ 4. 

Remark. The neighbourhood polynomial of 𝐶4 ∧ 𝐶4 is1 + 16𝑥 + 24𝑥2 + 16𝑥3 + 4𝑥4. 

Consider figure 2,𝐺 = 𝐶4 ∧ 𝐶4 

 

 

 

 

𝐺 = 𝐶4 ∧ 𝐶4 

   Figure 2 
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Here, the each vertex of the set {𝑣1 ,𝑣3, 𝑣9, 𝑣11} have same set of neighbours as that 

of {𝑣2, 𝑣4, 𝑣10 , 𝑣12} and vice versa. Also for the vertices {𝑣5, 𝑣7,𝑣13 , 𝑣15} and 

{𝑣6 ,𝑣8 ,𝑣14 ,𝑣16}. 

The neighbourhood polynomial is is1 + 16𝑥 + 24𝑥2 + 16𝑥3 + 4𝑥4. 

Lemma 2.1.5 The neighbourhood polynomial of 𝑃𝑚 ∧ 𝐶𝑛  is 

1 + 𝑚𝑛𝑥 +  4𝑚𝑛 − 6𝑛 𝑥2 + 4𝑛 𝑚 − 2 𝑥3 + 𝑛 𝑚 − 2 𝑥4,𝑛 ≠ 4. 

Proof. Let 𝐺 = 𝑃𝑚 ∧ 𝐶𝑛 . 𝐺has𝑚𝑛 vertices, 2 vertices of 𝑃𝑚  is of degree 1 and  𝑚 − 2  

vertices of 𝑃𝑚 , and 𝑛 vertices of 𝐶𝑛  are of degree 2. Hence in 𝐺 = 𝑃𝑚 ∧ 𝐶𝑛 , 2𝑛 vertices are 

of degree 2, and  𝑚 − 2 𝑛 vertices are of degree 4. The neighbourhood complex of 𝐺 

consists of null vertex along with 𝑚𝑛 single vertices. The number of two element 

simplexes are 

 𝑛 − 2 𝑚 +  𝑚 − 2 𝑛 + 2𝑚 + 2𝑛 𝑚 − 2 = (4𝑚𝑛 − 6𝑛), the three element simplexes 

count to 4𝑛 𝑚 − 2 and there are 𝑛 𝑚 − 2  four element simplexes. Also there is no set of 

five more vertices having a common neighbour in 𝑃𝑚 ∧ 𝐶𝑛 .  

Hence the neighbourhood polynomial of 𝑃𝑚 ∧ 𝐶𝑛  is, 

𝑛𝑒𝑖𝑔𝑃𝑚∧𝐶𝑛
 𝑥 = 1 + 𝑚𝑛𝑥 +  4𝑚𝑛 − 6𝑛 𝑥2 + 4𝑛 𝑚 − 2 𝑥3 + 𝑛 𝑚 − 2 𝑥4,𝑛 ≠ 4. 

Corollary 2.1.6 The neighbourhood polynomial of 𝑃𝑚 ∧ 𝐶4is, 

1 + 4𝑚𝑥 +  10𝑚− 16 𝑥2 + 8 𝑚 − 2 𝑥3 + 2 𝑚 − 2 𝑥4. 

Proof. Let 𝐺 = 𝑃𝑚 ∧ 𝐶4. Then 𝐺 has 4𝑚 vertices, of which 8 vertices are of degree 2 and 

(4𝑚− 8) vertices are of degree 4.In 𝑃𝑚 ∧ 𝐶𝑛 , there are  𝑛 − 2 𝑚 +  𝑚 − 2 𝑛 + 2𝑚 +

2𝑛 𝑚 − 2 , two element subsets of vertices having at least a common neighbour. When 

𝑛 = 4, first subset of  𝑛(𝑚 − 2) two element vertices coincides with later  𝑛(𝑚 − 2) two 

element subsets of vertices and 2𝑚 subsets with two elements coincides with 𝑛 𝑚 − 2  

subsets of vertices. 

 Thus we have, 

 4𝑚𝑛 − 6𝑛 − 𝑛 𝑚 − 2 − 2𝑚 = 3𝑚𝑛 − 4𝑛 − 2𝑚 

                                                             = 10𝑚− 16( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 4),  
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two simplexes. Also when 𝑛 = 4, the neighbours of first 2𝑚 set of vertices are same as 

that of later 2𝑚 set of vertices. Hence the number of three and four element subsets are 

8(𝑚− 2) and 2(𝑚 − 2) respectively. 

 Thus for 𝐺 = 𝑃𝑚 ∧ 𝐶4,  

𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 + 4𝑚𝑥 +  10𝑚− 16 𝑥2 + 8 𝑚 − 2 𝑥3 + 2 𝑚 − 2 𝑥4. 

Theorem 2.1.7 If 𝐺 = 𝐺1 ∧ 𝐺2, then , 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝐺 𝑥  = ∆ 𝐺1 × ∆ 𝐺2 . 

Proof. Let  𝑢1,𝑢2 ,𝑢3,… , 𝑢𝑚  ∈ 𝑉 𝐺1  and  𝑣1,𝑣2 ,𝑣,… , 𝑣𝑛  ∈ 𝑉(𝐺2). For any vertex, 

𝑤𝑖 = (𝑢𝑘 , 𝑣𝑗 ), in 𝐺,  

𝑑 𝑤𝑖 = 𝑑(𝑢𝑘) × 𝑑(𝑣𝑗 ), which follows from the definition of 𝐺1 ∧ 𝐺2. 

𝑑 𝑤𝑖  is maximum, only if 𝑑 𝑢𝑘 = ∆ 𝐺1  𝑎𝑛𝑑 𝑑 𝑣𝑗 = ∆ 𝐺2 . Consider the 

neighbourhood complex 𝒩 𝐺  of  𝐺. The 𝑑 𝑤𝑖 , vertices adjacent to 𝑤𝑖 , forms complexes 

with one element, two elements, three elements, …, 𝑑 𝑤𝑖  elements (since, these 𝑑 𝑤𝑖  

vertices have at least a common neighbour 𝑤𝑖) and also no [𝑑 𝑤𝑖 + 1] vertices can have 

𝑤𝑖  as a common neighbour. Thus in 𝐺, there exists a maximal face with respect to a vertex 

with maximum degree. 

Also we have, 𝑛𝑒𝑖𝑔𝐺 𝑥 =  𝑥  𝑢 𝑢∈𝒩(𝐺) , which implies, 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝐺 𝑥  , is the 

maximum cardinality of the face in the neighbourhood complex. Thus if 𝑤𝑖 ∈ 𝑉(𝐺), with 

𝑑 𝑤𝑖 = ∆ 𝐺1 × ∆ 𝐺2 ,  

𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝐺 𝑥  = ∆ 𝐺1 × ∆ 𝐺2 . 

2.2 Join of two graphs and their Neighbourhood Polynomials. 

Lemma 2.2.1 The neighbourhood polynomial of fan graph 𝐹𝑛  is  

1 +  𝑛 + 1 𝑥 +   𝑛
2
 + 𝑛 𝑥2 +   𝑛

3
 +  𝑛 − 2  𝑥3 +  𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 . 

Proof. The fan graph 𝐹𝑛 = 𝑃𝑛 ∨ 𝐾1. 𝐹𝑛consists of 𝑃𝑛 , along with edges joining every vertex 

𝑣𝑖 , 𝑖 = 1,2,…𝑛, of 𝑃𝑛 , to the single vertex 𝑢 of 𝐾1. Thus 𝐹𝑛has  𝑛 + 1  vertices.  

The neighbourhood complex 𝒩 𝐹𝑛 , of 𝐹𝑛  is, 

𝒩 𝐹𝑛 =

 ∅,  𝑣1 ,  𝑣2 ,  𝑣3 ,… ,  𝑣𝑛  ,  𝑢 ,  𝑣1 ,𝑣2 ,  𝑣1,𝑣3 ,… ,  𝑣1,𝑣𝑛  ,  𝑣2,𝑣3 ,  𝑣2, 𝑣4  ,… ,
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 𝑣2 ,𝑣𝑛  ,… ,  𝑣𝑛−1 ,𝑣𝑛  ,  𝑣1 ,𝑢 ,  𝑣2 ,𝑢 ,… ,  𝑣𝑛 , 𝑢 ,  𝑣1, 𝑣2, 𝑣3 ,  𝑣1, 𝑣2, 𝑣4 ,… ,  𝑣1, 𝑣2,𝑣𝑛  ,… ,

 𝑣𝑛−2 , 𝑣𝑛−1, 𝑣𝑛  ,  𝑣1, 𝑣3, 𝑢  ,  𝑣2, 𝑣4, 𝑢 ,… ,  𝑣𝑛−2 , 𝑣𝑛 ,𝑢 ,  𝑣1, 𝑣2, 𝑣3, 𝑣4 ,… ,

 𝑣𝑛−3 , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛  ,… ,  𝑣1, 𝑣2,𝑣3 ,… , 𝑣𝑛   . 

From the neighbourhood complex of 𝐹𝑛  we get, 

𝑛𝑒𝑖𝑔𝐹𝑛  𝑥 = 1 +  𝑛 + 1 𝑥 +   𝑛
2
 + 𝑛 𝑥2 +   𝑛

3
 +  𝑛 − 2  𝑥3 +  𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 . 

Example  

Consider 𝐹4 = 𝑃4 ∨ 𝐾1, 

 

𝐹4 

 

𝒩 𝐹𝑛 =  ∅,  𝑣1 ,  𝑣2 ,  𝑣3 ,  𝑣4 ,  𝑢 ,  𝑣1, 𝑣2 ,  𝑣1 ,𝑣3 ,  𝑣1,𝑣4 ,  𝑣2, 𝑣3 ,  𝑣2 ,𝑣4 ,

 𝑣3, 𝑣4 ,  𝑣1 ,𝑢 ,  𝑣2 ,𝑢 ,  𝑣3,𝑢 ,  𝑣4, 𝑢 ,  𝑣1, 𝑣2,𝑣3 ,  𝑣1, 𝑣2, 𝑣4 ,

 𝑣1, 𝑣3, 𝑣4 ,  𝑣2, 𝑣3, 𝑣4 ,  𝑣1 ,𝑢, 𝑣3 ,  𝑣2 ,𝑢, 𝑣4 ,  𝑣1, 𝑣2, 𝑣3,𝑣4   

From the definition of neighbourhood polynomial we have 𝑛𝑒𝑖𝑔𝐹𝑛  𝑥 =  𝑥  𝑢 𝑢∈𝒩 𝐹𝑛  . 

Hence,  𝑛𝑒𝑖𝑔𝐹4
 𝑥 = 1 + 5𝑥 + 10𝑥2 + 6𝑥3 + 𝑥4. 

 

 

 

 

Figure 3 
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Lemma 2.2.2 The neighbourhood polynomial of 𝑊𝑛  is  

1 +  𝑛 + 1 𝑥 +  
𝑛

2
+ 𝑛 𝑥2 +   

𝑛

3
 + 𝑛 𝑥3 +  

𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 ,𝑛 > 3. 

Proof. We have 𝑊𝑛 = 𝐶𝑛 ∨ 𝐾1. Let (𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑛) ∈ 𝑉(𝐶𝑛)and 𝑉 𝐾1 = 𝑢. In 𝑊𝑛 , one 

vertex of the   𝑛 + 1  vertices, has 𝑛 neighbours and others has three neighbours each. 

The neighbourhood complex 𝒩 𝑊𝑛   of 𝑊𝑛  is, 

𝒩 𝑊𝑛 =

 𝜑,  𝑣1 ,  𝑣2 ,  𝑣3 ,… ,  𝑣𝑛  ,  𝑣1,𝑢 ,  𝑣2, 𝑢 ,… ,  𝑣𝑛−1 , 𝑣𝑛  ,… ,  𝑣1, 𝑣2, 𝑣3,… ,𝑣𝑛   .  

That is, the neighbourhood complex consists of empty set, which trivially having a 

common neighbour and subsets of vertices with 𝑜𝑛𝑒 element, 𝑡𝑤𝑜 elements, 𝑡𝑟𝑒𝑒 

elements, etc. up to 𝑛 elements, with cardinalities  𝑛 + 1 ,  𝑛
2

+ 𝑛 ,   𝑛
3
 + 𝑛 ,  𝑛

4
 ,… , 1(=

 𝑛
𝑛
 ) , respectively. 

Hence, the neighbourhood polynomial of 𝑊𝑛  is, 

𝑛𝑒𝑖𝑔𝑊𝑛
 𝑥 = 1 +  𝑛 + 1 𝑥 +  

𝑛

2
+ 𝑛 𝑥2 +   

𝑛

3
 + 𝑛 𝑥3 +  

𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 ,𝑛 > 3. 

Example  

Consider 𝑊3 = 𝐶3 ∨ 𝐾1, 

 

𝑊3 

Figure 4 
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𝒩 𝑊3 =  𝜑,  𝑣1 ,  𝑣2 ,  𝑣3 ,  𝑣1, 𝑣2 ,  𝑣1, 𝑣3 ,  𝑣2, 𝑣3 ,  𝑣1, 𝑢 ,  𝑣2, 𝑢 ,

 𝑣3 ,𝑢 ,    𝑣1, 𝑣2, 𝑣3 ,  𝑣1, 𝑣2, 𝑢 ,  𝑣1, 𝑣3, 𝑢 ,  𝑣2 ,𝑣3 ,𝑢  .  

𝑛𝑒𝑖𝑔𝑊3
 𝑥 = 1 + 4𝑥 + 6𝑥2 + 4𝑥3. 

Lemma 2.2.3 Let 𝐺1 be a 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph and 𝐺2 be a 𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph of orders 𝑚 

and 𝑛 respectively. Then 𝐺 = 𝐺1 ∨ 𝐺2 is regular if and only if, 𝑟 + 𝑛 = 𝑠 + 𝑚. 

Proof. Assume 𝐺 is regular. Let 𝑢1 ,𝑢2, 𝑢3,… ,𝑢𝑚 ∈ 𝑉(𝐺1)and 𝑣1, 𝑣2, 𝑣3,… ,𝑣𝑛 ∈ 𝑉(𝐺2). In 

𝐺 = 𝐺1 ∨ 𝐺2, each vertex 𝑢𝑖  of 𝐺1 is joined to every vertex of 𝑣𝑗  of 𝐺2, in addition to the 

edges of 𝐺1 and 𝐺2. Also since 𝐺1 and 𝐺2 are 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 and  𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 respectively, 

every vertex 𝑢𝑖  and 𝑣𝑗  of  𝐺 are of degree 𝑟 + 𝑛and 𝑠 + 𝑚, respectively. Since 𝐺 is 

regular 𝑟 + 𝑛 = 𝑠 + 𝑚. 

Conversely assume, 𝑟 + 𝑛 = 𝑠 + 𝑚. 

⇒ 𝑑𝑒𝑔 𝑢𝑖 + 𝑛 = 𝑑𝑒𝑔 𝑣𝑗  + 𝑚, since 𝐺1 is 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 and 𝐺2 is 𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 

⇒ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢 𝑜𝑓 𝐺 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑜𝑓 𝐺. 

⇒ 𝐺 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 

Theorem 2.2.4 Let 𝐺1 and 𝐺2be any two graphs of order 𝑚 and 𝑛 respectively. 

 If 𝐺 = 𝐺1 ∨ 𝐺2 is a 𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph, then, 

𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 +  𝑚 + 𝑛 𝑥 +   𝑚
2
 + 𝑚𝑛 +  𝑛

2
  𝑥2 +   𝑚

3
 +  𝑚

2
  𝑛

1
 +  𝑚

1
  𝑛

2
 +

 𝑛
3
  𝑥3 +   𝑚

4
 +  𝑚

3
  𝑛

1
 +  𝑚

2
  𝑛

2
 +  𝑚

1
  𝑛

3
 +  𝑛

4
  𝑥4 + ⋯+   𝑚

𝑠
 +  𝑚

𝑠−1
  𝑛

1
 + ⋯+

 𝑚
1
  𝑛

𝑠−1
 +  𝑛

𝑠
  𝑥𝑠. 

Proof. Since, 𝐺1 and 𝐺2 are any two graphs of order 𝑚 and 𝑛 respectively, in 𝐺 = 𝐺1 ∨ 𝐺2, 

there are  𝑚 + 𝑛 vertices, such that every vertex of 𝐺1 is joined to every vertex of 𝐺2 

through an edge, in addition to the edges of 𝐺1 and 𝐺2. Thus for every 𝑢𝑖 ∈ 𝑉(𝐺), 𝑢𝑖  has 𝑛 

more neighbours in addition to that which 𝑢𝑖  has in 𝐺1 and for every 𝑣𝑗 ∈ 𝑉(𝐺), 𝑣𝑗  has 𝑚 

more neighbours in addition to that which 𝑣𝑗  has in 𝐺2. 

By definition the neighbourhood complex of 𝐺consists of the null set,  𝑚 + 𝑛  single 

vertices, since each has a neighbour. Also since 𝐺 = 𝐺1 ∨ 𝐺2, any two vertices either in 𝐺1 

or in 𝐺2 has a common neighbour, also any combination of 𝑢𝑖  and 𝑣𝑗  has a common 

neighbour. Thus the number of two element simplexes are   𝑚
2
 + 𝑚𝑛 +  𝑛

2
  . 
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On considering the number of simplexes with three elements, any 3 vertices of both 𝐺1 and 

𝐺2 has a common neighbour, any 2 vertices of 𝐺1 and any 1 vertex of 𝐺2 has a common 

neighbour. Similarly any 1 vertex of 𝐺1 and any 2 vertices of 𝐺2 has a common neighbour. 

Thus there exists   𝑚
3
 +  𝑚

2
  𝑛

1
 +  𝑚

1
  𝑛

2
 +  𝑛

3
  3 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠. 

Similarly, the number of four simplexes are   𝑚
4
 +  𝑚

3
  𝑛

1
 +  𝑚

2
  𝑛

2
 +  𝑚

1
  𝑛

3
 +  𝑛

4
  , 

since any 4 vertices of both 𝐺1 and 𝐺2 has a common neighbour, any 3 vertices of either 

𝐺1 or 𝐺2 and any 1 vertex of either 𝐺2 or 𝐺1 has a common neighbour any two vertices of 

𝐺1 any two vertices of 𝐺2 also have a common neighbour, for 𝐺 = 𝐺1 ∨ 𝐺2 is a regular 

graph. 

The argument continues for all simplexes of length 𝑠 = 𝑑𝑒𝑔(𝐺). 

Hence the neighbourhood polynomial of 𝐺 = 𝐺1 ∨ 𝐺2 is, 

𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 +  𝑚 + 𝑛 𝑥 +   
𝑚

2
 + 𝑚𝑛 +  

𝑛

2
  𝑥2

+   
𝑚

3
 +  

𝑚

2
  
𝑛

1
 +  

𝑚

1
  
𝑛

2
 +  

𝑛

3
  𝑥3

+   
𝑚

4
 +  

𝑚

3
  
𝑛

1
 +  

𝑚

2
  
𝑛

2
 +  

𝑚

1
  
𝑛

3
 +  

𝑛

4
  𝑥4 + ⋯

+   
𝑚

𝑠
 +  

𝑚

𝑠 − 1
  
𝑛

1
 + ⋯+  

𝑚

1
  

𝑛

𝑠 − 1
 +  

𝑛

𝑠
  𝑥𝑠 . 

Theorem 2.2.5 The neighbourhood polynomial of 𝐾𝑚 ∨ 𝐾𝑛  is of degree 𝑚 + 𝑛 − 1. 

Proof. Let 𝐺 = 𝐾𝑚 ∨ 𝐾𝑛 . In 𝐾𝑚 , every vertex is of degree  𝑚 − 1  and that in 𝐾𝑛  is 

 𝑛 − 1 . Also these 𝑚 vertices of 𝐾𝑚  are joined to every 𝑛 vertices of 𝐾𝑛 . Hence in 𝐺 the 

degree of each vertex belonging to 𝐾𝑚  is  𝑚 − 1 + 𝑛  and that belonging to 𝐾𝑛 is  𝑛 − 1 +

𝑚 . Thus 𝐺 is  𝑚 + 𝑛 − 1  regular graph of order  𝑚 + 𝑛 . Thus the neighbourhood 

complex of 𝐺 consists of the simplexes as described in the theorem 2.19, and since the 

maximum degree of 𝐺is  𝑚 + 𝑛 − 1 , no set of  𝑚 + 𝑛  vertices have a common 

neighbour, the maximal simplex is 𝑚 + 𝑛 − 1. Hence the deg(𝑛𝑒𝑖𝑔𝐾𝑚∨𝐾𝑛 ) is 𝑚 + 𝑛 − 1. 
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Remark 

It follows from the observations and theorems that, if 𝐺 = 𝐺1 ∨ 𝐺2where 𝐺1 and 𝐺2are any 

two graphs of order 𝑚 and 𝑛 respectively, 

𝑚𝑎𝑥 𝑚 + 2,𝑛 + 2 ≤ deg 𝑛𝑒𝑖𝑔𝐺 𝑥  ≤ 𝑚 + 𝑛 − 1. 

2.3 Symmetric difference of two graphs and their Neighbourhood Polynomials. 

Theorem 2.3.1 The 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝐺 𝑥  = 𝑚, where 𝐺 is the symmetric difference of any 

graph 𝐺1 of order 𝑚 and 𝐾2. 

Proof. Let 𝐺 = 𝐺1 ⊕𝐾2. Then following the definition of symmetric difference of any two 

graphs 𝐺1 and 𝐺2, of orders 𝑚 and 𝑛 respectively, the degree of any vertex 𝑢 =  𝑢𝑖 ,𝑣𝑗   

(where 𝑢𝑖 ∈ 𝑉 𝐺1  𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑉 𝐺2  ) in 𝐺 is, 

 𝑑𝑒𝑔 𝑢 = 𝑛 × 𝑑𝑒𝑔 𝑢𝑖 +  𝑚 × 𝑑𝑒𝑔 𝑣𝑗 − 2𝑑𝑒𝑔 𝑢𝑖 × 𝑑𝑒𝑔 𝑣𝑗 . 

Hence if 𝐺 = 𝐺1 ⊕𝐾2, for any vertex,  𝑤 =  𝑢𝑖 , 𝑣𝑗  in 𝐺, we have,  

 𝑑𝑒𝑔 𝑤 = 2 × 𝑑𝑒𝑔 𝑢𝑖 +  𝑚 × 1 − 2 ×  𝑑𝑒𝑔 𝑢𝑖 × 1. (Since,𝑣𝑗 ∈ 𝐾2, 𝑑𝑒𝑔 𝑣𝑗  = 1) 

Thus  𝑤 = 𝑚 . 

Hence on considering the neighbourhood complex 𝒩 𝐺  of 𝐺, there exists no simplex of 

length (𝑚 + 1), as every vertex is of degree 𝑚, there exists simplexes of length 

1, 2, 3,… ,𝑚. Since, 𝑛𝑒𝑖𝑔𝐺 𝑥 =  𝑥  𝑢 𝑢∈𝒩(𝐺) , the degree of 𝑛𝑒𝑖𝑔𝐺 𝑥  is equal to the 

length of maximal simplex. Hence, 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝐺 𝑥  = 𝑚, where 𝐺 = 𝐺1 ⊕𝐾2. 

Theorem 2.3.2 The  𝑛𝑒𝑖𝑔𝐺 𝑥  = 𝑚 + 𝑛 − 2 , if 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 . 

Proof. Let 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 . Then degree of any vertex 𝑤 =  𝑢𝑖 , 𝑣𝑗 (where 𝑢𝑖 ∈

𝑉 𝐾𝑚   𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑉 𝐾𝑛  ) in 𝐺 is,  

𝑑𝑒𝑔 𝑤 =  𝑚 − 1 𝑛 +  𝑛 − 1 𝑚 − 2 𝑚 − 1  𝑛 − 1  

    = 𝑚 + 𝑛 − 2.  
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Also, we have 𝑛𝑒𝑖𝑔𝐺 𝑥 =  𝑥  𝑢 𝑢∈𝒩(𝐺) . The elements of the neighbourhood complex 

𝒩 𝐺  of 𝐺, consists of the zero simplex, 𝑚𝑛 - single vertices as each has a neighbour, 2 − 

simplexes, 3 − simplexes, etc. to  𝑚 + 𝑛 − 2 −simplexes and there exists no simplex of 

length  𝑚 + 𝑛 − 1  or more. Hence the degree of neighbourhood polynomial of 

 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , is  𝑚 + 𝑛 − 2 . 

Theorem 2.3.3 If 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , then 𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 +  𝑚𝑛 𝑥 +  𝑚𝑛
2
 𝑥2  +

 𝑛  𝑚
3
  + 𝑛  𝑚

2
   𝑚 − 2   𝑛 − 1 + 𝑚  𝑛

2
   𝑛 − 2   𝑚 − 1 + 𝑚  𝑛

3
  𝑥3 + ⋯+

𝑚𝑛  𝑠
𝑖
  𝑥 𝑖 + ⋯+ 𝑚𝑛𝑥𝑠 , 𝑠 = 𝑚 + 𝑛 − 2, 𝑠 2 ≤ 𝑖 ≤ 𝑠. 

Proof. 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , has 𝑚𝑛 vertices, each of these vertices have (𝑚 + 𝑛 − 2) 

neighbours, (which follows from the definition of symmetric difference of two graphs). 

The neighbourhood complex of  𝐺 consists of zero simplex,  1 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, since each of 

the 𝑚𝑛 vertices has a neighbour. Any two of 𝑚𝑛 vertices in 𝐺 = 𝐾𝑚 ⊕𝐾𝑛  has a common 

neighbour, for consider vertices  𝑢𝑖 , 𝑣𝑗  and  𝑢𝑘 ,𝑣𝑙  of 𝐺, where 𝑢𝑖 ∈ 𝑉(𝐾𝑚 ) and  

𝑣𝑗 ∈ 𝑉(𝐾𝑛). Then there exists at least one vertex  𝑢𝑖 , 𝑣𝑙  of 𝐺 which is common to both 

 𝑢𝑖 ,𝑣𝑗   and  𝑢𝑘 , 𝑣𝑙 , by the definition of 𝐾𝑚 ⊕𝐾𝑛 . Thus the number of two element 

simplexes in the neighbourhood complex of 𝐺 are  𝑚𝑛
2
 . The three element simplexes are 

calculated as 𝑛  𝑚
3
  + 𝑛  𝑚

2
   𝑚 − 2   𝑛 − 1 + 𝑚  𝑛

2
   𝑛 − 2   𝑚 − 1 + 𝑚  𝑛

3
  (taking 

𝑚,𝑛 > 3). Continuing the same process, we get 𝑖 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 to be 𝑚𝑛  𝑠
𝑖
 , where 

𝑠 = 𝑚 + 𝑛 − 2 and 𝑠 2 ≤ 𝑖 ≤ 𝑠, and since the maximal simplex of 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , is of 

length 𝑚 + 𝑛 − 2, as there are 𝑚𝑛 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠  of length 𝑚 + 𝑛 − 2. Thus we get  

𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 +  𝑚𝑛 𝑥 +  
𝑚𝑛

2
 𝑥2  

+  𝑛  
𝑚

3
  + 𝑛  

𝑚

2
   𝑚 − 2   𝑛 − 1 + 𝑚  

𝑛

2
   𝑛 − 2   𝑚 − 1 

+ 𝑚  
𝑛

3
  𝑥3 + ⋯+ 𝑚𝑛  

𝑠

𝑖
  𝑥 𝑖 + ⋯+ 𝑚𝑛𝑥𝑠 , 𝑠 = 𝑚 + 𝑛 − 2,

𝑠
2 ≤ 𝑖 ≤ 𝑠. 
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Example  

Consider figure 5,  𝐺 = 𝐾5 ⊕𝐾4 

 

 

 

 

The neighbourhood complex of 𝐺 consists of the null simplex, 20, 1 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 of 

single vertex. Every pair of vertices arbitrarily taken has a common neighbour, consider 

the vertices  𝑣1,𝑎  and   𝑣5, 𝑐  which has a common neighbour  𝑣1, 𝑐 . Thus there are 

𝐺 = 𝐾5 ⊕𝐾4  

Figure 5 
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 20
2
 = 190 two simplexes. Considering the neighbours of each vertex and finding out the 

possible 

 3 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, and on cancelling the repetitions we get the number of 3 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, in 

𝐾5 ⊕𝐾4 to be 660 .( In 𝐾5 ⊕𝐾4 each vertex has 5 + 4 − 2 = 7 neighbours and 7
2 =

3.5). 

There are 20 ×  7
4
 = 700 , 4 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, 20 ×  7

5
 = 420, 5 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, 20 ×  7

6
 =

140, 6 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 and 7 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 count to 20, for the simplexes 𝑖 = 4, 5, 6, 7, 

𝑖 > 7
2 , and there is no repetition of the same simplex. Thus, 

 𝑛𝑒𝑖𝑔𝐺 𝑥 = 1 + 20𝑥 + 190𝑥2 + 660𝑥3 + 700𝑥4 + 420𝑥5 + 140𝑥6 + 20𝑥7. 

3.Conclusion and further scope 

The neighbourhood polynomials on different binary operations on graphs are obtained and  

neighbourhood polynomials of other binary operations on graphs are still to be obtained  
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