Neighbourhood Polynomials Derived Through Binary Operations on Graphs.

G.Suresh Singh ${ }^{1}$, Sreedevi. S. L. ${ }^{2 *}$
${ }^{1}$ Professor and Head,
${ }^{2 *}$ Research Scholar (corresponding author),
Department of Mathematics, University of Kerala, Thiruvananthapuram, India.

Abstract

Binary operations on graphs are studied widely in graph theory ever since each of these operations has been introduced. The neighbourhood polynomial plays a vital role in describing the neighbourhood characteristics of the vertices of a graph. In this study neighbourhood polynomial of graphs arising from the operations like conjunction, join and symmetric difference of certain classes of graphs are calculated and tried to characterize the nature of neighbourhood polynomial.

Key words: Conjunction, Join, Symmetric difference Neighbourhood Polynomial

Introduction

The neighbourhood polynomials of the graphs resulting from Cartesian product have been studied and some properties have been established in [3].

1.1. The operations on graphs in this study

The operation of conjunction (\wedge) on graphs was introduced by Weichsel in 1963. For any two graphs G_{1} and G_{2}, it is denoted as $G=G_{1} \wedge G_{2}$ and is defined as $V(G)=V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$, two vertices $\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)$ are adjacent if u_{i} adjacent to u_{k} in G_{1} and v_{j} adjacent to v_{l} in G_{2}. Join of two graphs G_{1} and G_{2} is denoted as $G=G_{1} \vee G_{2}$. In join, $V(G)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$, edge set consists of edges of G_{1} and G_{2} together with all edges joining every vertex of G_{1} to every vertices of G_{2}. The symmetric difference (\oplus)
between any two graphs G_{1} and G_{2}, it is denoted as $G=G_{1} \oplus G_{2}$ and is defined as $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$, two vertices $\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)$ are adjacent if either u_{i} adjacent to u_{k} in G_{1} or v_{j} adjacent to v_{l} in G_{2}, but not the both. For notations and terminology we follow [2].

1.2. Neighbourhood complex and polynomial

A complex on a finite set \mathcal{X} is a collection \mathcal{C} of subsets of \mathcal{X}, closed under certain predefined restriction. Each set in \mathcal{C} is called the face of the complex. In the neighbourhood complex $\mathcal{N}(G)$ of a graph $G, \mathcal{X}=V(G)$, and faces are subsets of vertices that have a common neighbour. In [1] the neighbourhood polynomial of a graph G, is defined as

$$
\operatorname{neigh}_{G}(x)=\sum_{u \in \mathcal{N}(G)} x^{|u|} .
$$

For example consider C_{4} with vertices $\{a, b, c, d\}$. The neighbourhood complex $\mathcal{N}\left(C_{4}\right)$ of C_{4} is $\{\phi,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{b, d\}\}$ Since the empty set trivially has a common neighbour, each of the single vertices has a neighbour, the sets $\{a, c\},\{b, d\}$ has two common neighbours (one is sufficient), but no three vertices have a common neighbour. The associated neighbourhood polynomial of C_{4} is $n e i g h_{C_{4}}(x)=1+4 x+2 x^{2}$.

Similarly, the neighbourhood polynomials of certain standard graphs are as follows:

1. $K_{n}-\operatorname{neigh}_{K_{n}}(x)=(1+x)^{n}-x^{n}$.
2. $P_{n}-\operatorname{neigh}_{P_{n}}(x)=1+n x+(n-2) x^{2}$.
3. $C_{n}-$ neigh $_{C_{4}}(x)=\left\{\begin{array}{l}1+n x+n x^{2}, n \neq 4 \\ 1+n x+2 x^{2}, n=4\end{array}\right.$.

In this paper, neighbourhood polynomials for the graphs resulting from the binary operations of conjunction, join, and symmetric difference are calculated. Also tried to characterize some properties of the neighbourhood polynomial of the graph G so formed.

2. Main Results

2.1 Conjunction of two graphs and their Neighbourhood Polynomials

Lemma 2.1.1 The neighbourhood polynomial of mesh graph is
$1+m n x+[4 m n-6(m+n)+8] x^{2}+(m-2)(n-2)\left(4 x^{3}+x^{4}\right)$.

Proof.Consider the mesh graph $G=P_{n} \wedge P_{m}$. In $P_{n} \wedge P_{m}$ there are $m n$ vertices. The empty set trivially has a neighbour and each of the $m n$ single vertices has a neighbour.

Now consider the figure $1, P_{5} \wedge P_{4}$

Figure 1
The two element subsets $\{\{a, k\},\{j, \tau\},\{b, \iota\},\{l, s\},\{c, m\},\{h, r\},\{d, x\},\{g, q\},\{e, o\}$, $\{f, p\}\}[m(n-2)=5(4-2)=10] ;\{\{a, c\},\{b, d\},\{c, e\},\{j, h\},\{i, g\},\{h, f\},\{k, m\}$, $\{l, n\},\{m, o\},\{t, r\},\{s, q\},\{r, p\}\}[n(m-2)=4(5-2)=12] ; \quad$ and $\quad\{\{j, r\},\{a, m\}$, $\{i, q\},\{b, n\},\{h, p\},\{c, o\},\{c, k\},\{d, l\},\{h, t\},\{e, m\},\{g, s\},\{f, r\}\}[2(m-2)(n-$ 2)]; have at least one common neighbour. The three element subsets having at least one common neighbour are $\{\{c, e, m\},\{c, e, o\},\{c, m, o\},\{e, m, o\},\{b, d, l\},\{b, d, n\}$, $\{b, l, n\},\{d, l, n\},\{a, c, k\},\{a, c, m\},\{a, k, m\},\{c, k, m\},\{h, j, r\},\{h, j, t\},\{h, r, t\}$, $\{j, r, t\},\{g, i, q\},\{g, i, s\},\{g, q, s\},\{i, q, s\},\{f, h, p\},\{f, h, r\},\{f, p, r\}$, $\{h, p, r\}\}[4(m-2)(n-2)=4(5-2)(4-2)=24] \quad$ and $\quad\{\{c, e, m, o\},\{b, d, l, n\}$,
$\{a, c, k, m\},\{h, j, r, t\},\{g, i, q, s\},\{f, h, p, r\}\}[(m-2)(n-2)=(5-2)(4-2)=6]$
are the four element subsets having at least one common neighbour.
Thus for $G=P_{5} \wedge P_{4}$, the neighbourhood polynomial is
$n e i g h_{G}(x)=1+20 x+34 x^{2}+24 x^{3}+6 x^{4}$.
Generally, for $G=P_{m} \wedge P_{n}$,
$\operatorname{neigh}_{G}(x)=1+m n x+[4 m n-6(m+n)+8] x^{2}+(m-2)(n-2)\left(4 x^{3}+x^{4}\right)$.

Corollary 2.1.2 The neighbourhood polynomial of $P_{m} \wedge K_{2}$ is $1+2 m x+(2 m-4) x^{2}$.

Proof. We have,
$\operatorname{neigh}_{P_{m} \times P_{n}}(x)=1+m n x+[4 m n-6(m+n)+8] x^{2}+(m-2)(n-2)\left(4 x^{3}+x^{4}\right)$.
When $n=2$, we get, $n e i g h_{P_{m} \times K_{2}}(x)=1+2 m x+(2 m-4) x^{2}$.

Lemma 2.1.3 The neighbourhood polynomial of $C_{m} \wedge C_{n}$ is,
$1+m n x+4 m n\left(x^{2}+x^{3}\right)+m n x^{4}, m \neq n \neq 4$.

Proof. Consider, $G=C_{m} \wedge C_{n}, m \neq n \neq 4$. From the definition of conjunction, for every $v_{j} \in V(G)$, we have $d\left(v_{j}\right)=4$. That is, there corresponds 4 neighbours to every vertex v_{j} of G

To find set of vertices having at least one common neighbour, say v_{j}, we compute, $\binom{4}{2},\binom{4}{3},\binom{4}{4}$, of the four neighbouring vertices of v_{j}. Since in G, there are $m n$ vertices, in the neighbourhood complex of G we have null set, $m n$ single vertices, $m n\binom{4}{2}=6 m n$, two element subsets, 4 mn three element subsets and 4 mn four element subsets.

On considering $C_{m} \wedge C_{n}$, for different m and n, it is verified that there are only
 neighbour.

Hence, $\operatorname{neigh}_{G}(x)=1+m n x+4 m n\left(x^{2}+x^{3}\right)+m n x^{4}, m \neq n \neq 4$.

Corollary 2.1.4 The neighbourhood polynomial of $C_{m} \wedge C_{4}$ is,

$$
1+4 m x+10 m x^{2}+8 m x^{3}+2 m x^{4}, m \neq 4
$$

Proof.Let $G=C_{m} \wedge C_{n} .|V(G)|=m n$. Each of the $m n$ vertices has 4 neighbours. When $n=4$, the neighbours of first $m n / 2$ vertices is same as that of later $m n / 2$ vertices. That is, we have to consider the neighbours of only $4 m / 2=2 m$, vertices are only needed to be
considered(since, we are finding the distinct set of vertices having common neighbours).
Following the same argument as in lemma 2.1.3, we get

$$
\operatorname{neigh}_{C_{m} \wedge C_{4}}(x)=1+4 m x+10 m x^{2}+8 m x^{3}+2 m x^{4}, m \neq 4
$$

Remark. The neighbourhood polynomial of $C_{4} \wedge C_{4}$ is $1+16 x+24 x^{2}+16 x^{3}+4 x^{4}$.
Consider figure 2, $G=C_{4} \wedge C_{4}$

Figure 2

Here, the each vertex of the set $\left\{v_{1}, v_{3}, v_{9}, v_{11}\right\}$ have same set of neighbours as that of $\left\{v_{2}, v_{4}, v_{10}, v_{12}\right\}$ and vice versa. Also for the vertices $\left\{v_{5}, v_{7}, v_{13}, v_{15}\right\}$ and $\left\{v_{6}, v_{8}, v_{14}, v_{16}\right\}$.

The neighbourhood polynomial is is $1+16 x+24 x^{2}+16 x^{3}+4 x^{4}$.
Lemma 2.1.5 The neighbourhood polynomial of $P_{m} \wedge C_{n}$ is

$$
1+m n x+(4 m n-6 n) x^{2}+4 n(m-2) x^{3}+n(m-2) x^{4}, n \neq 4
$$

Proof. Let $G=P_{m} \wedge C_{n}$. Ghasmn vertices, 2 vertices of P_{m} is of degree 1 and ($m-2$) vertices of P_{m}, and n vertices of C_{n} are of degree 2 . Hence in $G=P_{m} \wedge C_{n}, 2 n$ vertices are of degree 2 , and $(m-2) n$ vertices are of degree 4 . The neighbourhood complex of G consists of null vertex along with $m n$ single vertices. The number of two element simplexes are
$(n-2) m+(m-2) n+2 m+2 n(m-2)=(4 m n-6 n)$, the three element simplexes count to $4 n(m-2)$ and there are $n(m-2)$ four element simplexes. Also there is no set of five more vertices having a common neighbour in $P_{m} \wedge C_{n}$.

Hence the neighbourhood polynomial of $P_{m} \wedge C_{n}$ is,
$n e i g h_{P_{m} \wedge C_{n}}(x)=1+m n x+(4 m n-6 n) x^{2}+4 n(m-2) x^{3}+n(m-2) x^{4}, n \neq 4$.
Corollary 2.1.6 The neighbourhood polynomial of $P_{m} \wedge C_{4}$ is, $1+4 m x+(10 m-16) x^{2}+8(m-2) x^{3}+2(m-2) x^{4}$.

Proof. Let $G=P_{m} \wedge C_{4}$. Then G has $4 m$ vertices, of which 8 vertices are of degree 2 and $(4 m-8)$ vertices are of degree 4.In $P_{m} \wedge C_{n}$, there are $(n-2) m+(m-2) n+2 m+$ $2 n(m-2)$, two element subsets of vertices having at least a common neighbour. When $n=4$, first subset of $n(m-2)$ two element vertices coincides with later $n(m-2)$ two element subsets of vertices and $2 m$ subsets with two elements coincides with $n(m-2)$ subsets of vertices.

Thus we have,

$$
\begin{gathered}
(4 m n-6 n)-n(m-2)-2 m=3 m n-4 n-2 m \\
=10 m-16(\text { since } n=4)
\end{gathered}
$$

two simplexes. Also when $n=4$, the neighbours of first $2 m$ set of vertices are same as that of later $2 m$ set of vertices. Hence the number of three and four element subsets are $8(m-2)$ and $2(m-2)$ respectively.

Thus for $G=P_{m} \wedge C_{4}$,
$n e i g h_{G}(x)=1+4 m x+(10 m-16) x^{2}+8(m-2) x^{3}+2(m-2) x^{4}$.
Theorem 2.1.7 If $G=G_{1} \wedge G_{2}$, then, $\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)=\Delta\left(G_{1}\right) \times \Delta\left(G_{2}\right)$.

Proof. Let $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\} \in V\left(G_{1}\right)$ and $\left\{v_{1}, v_{2}, v, \ldots, v_{n}\right\} \in V\left(G_{2}\right)$. For any vertex, $w_{i}=\left(u_{k}, v_{j}\right)$, in G,
$d\left(w_{i}\right)=d\left(u_{k}\right) \times d\left(v_{j}\right)$, which follows from the definition of $G_{1} \wedge G_{2}$.
$d\left(w_{i}\right)$ is maximum, only if $d\left(u_{k}\right)=\Delta\left(G_{1}\right)$ and $d\left(v_{j}\right)=\Delta\left(G_{2}\right)$. Consider the neighbourhood complex $\mathcal{N}(G)$ of G. The $d\left(w_{i}\right)$, vertices adjacent to w_{i}, forms complexes with one element, two elements, three elements, $\ldots, d\left(w_{i}\right)$ elements (since, these $d\left(w_{i}\right)$ vertices have at least a common neighbour $\left.w_{i}\right)$ and also no $\left[d\left(w_{i}\right)+1\right]$ vertices can have w_{i} as a common neighbour. Thus in G, there exists a maximal face with respect to a vertex with maximum degree.
Also we have, $\operatorname{neigh}_{G}(x)=\sum_{u \in \mathcal{N}(G)} x^{|u|}$, which implies, $\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)$, is the maximum cardinality of the face in the neighbourhood complex. Thus if $w_{i} \in V(G)$, with
$d\left(w_{i}\right)=\Delta\left(G_{1}\right) \times \Delta\left(G_{2}\right)$,
$\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)=\Delta\left(G_{1}\right) \times \Delta\left(G_{2}\right)$.

2.2 Join of two graphs and their Neighbourhood Polynomials.

Lemma 2.2.1 The neighbourhood polynomial of fan graph F_{n} is
$1+(n+1) x+\left(\binom{n}{2}+n\right) x^{2}+\left[\binom{n}{3}+(n-2)\right] x^{3}+\binom{n}{4} x^{4}+\cdots+x^{n}$.
Proof. The fan graph $F_{n}=P_{n} \vee K_{1} . F_{n}$ consists of P_{n}, along with edges joining every vertex $v_{i}, i=1,2, \ldots n$, of P_{n}, to the single vertex u of K_{1}. Thus F_{n} has $(n+1)$ vertices.

The neighbourhood complex $\mathcal{N}\left(F_{n}\right)$, of F_{n} is,

$$
\begin{aligned}
& \mathcal{N}\left(F_{n}\right)= \\
& \left\{\varnothing,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}, \ldots,\left\{v_{n}\right\},\{u\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}, \ldots,\left\{v_{1}, v_{n}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}, \ldots,\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{v_{2}, v_{n}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{1}, u\right\},\left\{v_{2}, u\right\}, \ldots,\left\{v_{n}, u\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\}, \ldots,\left\{v_{1}, v_{2}, v_{n}\right\}, \ldots, \\
& \left\{v_{n-2}, v_{n-1}, v_{n}\right\},\left\{v_{1}, v_{3}, u\right\},\left\{v_{2}, v_{4}, u\right\}, \ldots,\left\{v_{n-2}, v_{n}, u\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, \ldots, \\
& \left.\left\{v_{n-3}, v_{n-2}, v_{n-1}, v_{n}\right\}, \ldots,\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}\right\} .
\end{aligned}
$$

From the neighbourhood complex of F_{n} we get,

$$
\operatorname{neigh}_{F_{n}}(x)=1+(n+1) x+\left(\binom{n}{2}+n\right) x^{2}+\left[\binom{n}{3}+(n-2)\right] x^{3}+\binom{n}{4} x^{4}+\cdots+x^{n} .
$$

Example

Consider $F_{4}=P_{4} \vee K_{1}$,

\mathbf{K}_{1}

P_{4}

F_{4}

$$
F_{4}
$$

Figure 3

$$
\begin{aligned}
& \mathcal{N}\left(F_{n}\right)=\left\{\emptyset,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\{u\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\right. \\
&\left\{v_{3}, v_{4}\right\},\left\{v_{1}, u\right\},\left\{v_{2}, u\right\},\left\{v_{3}, u\right\},\left\{v_{4}, u\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\}, \\
&\left.\left\{v_{1}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}, u, v_{3}\right\},\left\{v_{2}, u, v_{4}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right\}
\end{aligned}
$$

From the definition of neighbourhood polynomial we have $\operatorname{neigh}_{F_{n}}(x)=\sum_{u \in \mathcal{N}\left(F_{n}\right)} x^{|u|}$. Hence, $\operatorname{neigh}_{F_{4}}(x)=1+5 x+10 x^{2}+6 x^{3}+x^{4}$.

Lemma 2.2.2 The neighbourhood polynomial of W_{n} is

$$
1+(n+1) x+\left(\begin{array}{l}
n \\
2
\end{array}+n\right) x^{2}+\left(\binom{n}{3}+n\right) x^{3}+\binom{n}{4} x^{4}+\cdots+x^{n}, n>3
$$

Proof. We have $W_{n}=C_{n} \vee K_{1}$. Let $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right) \in V\left(C_{n}\right)$ and $V\left(K_{1}\right)=u$. In W_{n}, one vertex of the $(n+1)$ vertices, has n neighbours and others has three neighbours each.
The neighbourhood complex $\mathcal{N}\left(W_{n}\right)$ of W_{n} is,
$\mathcal{N}\left(W_{n}\right)=$
$\left\{\varphi,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}, \ldots,\left\{v_{n}\right\},\left\{v_{1}, u\right\},\left\{v_{2}, u\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\}, \ldots,\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}\right\}$.
That is, the neighbourhood complex consists of empty set, which trivially having a common neighbour and subsets of vertices with one element, two elements, three elements, etc. up to n elements, with cardinalities $(n+1),\left(\begin{array}{l}n \\ 2\end{array}+n\right),\left(\binom{n}{3}+n\right),\binom{n}{4}, \ldots, 1(=$ $\binom{n}{n}$, respectively.

Hence, the neighbourhood polynomial of W_{n} is,

$$
n e i g h_{W_{n}}(x)=1+(n+1) x+\left(\begin{array}{l}
n \\
2
\end{array}+n\right) x^{2}+\left(\binom{n}{3}+n\right) x^{3}+\binom{n}{4} x^{4}+\cdots+x^{n}, n>3
$$

Example

Consider $W_{3}=C_{3} \vee K_{1}$,

W_{3}
Figure 4

$$
\begin{aligned}
& \mathcal{N}\left(W_{3}\right)=\left\{\varphi,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{1}, u\right\},\left\{v_{2}, u\right\},\right. \\
& \left.\left\{v_{3}, u\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, u\right\},\left\{v_{1}, v_{3}, u\right\},\left\{v_{2}, v_{3}, u\right\}\right\} . \\
& \text { neigh }_{W_{3}}(x)=1+4 x+6 x^{2}+4 x^{3} .
\end{aligned}
$$

Lemma 2.2.3 Let G_{1} be a r-regular graph and G_{2} be a s-regular graph of orders m and n respectively. Then $G=G_{1} \vee G_{2}$ is regular if and only if, $r+n=s+m$.

Proof. Assume G is regular. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{m} \in V\left(G_{1}\right)$ and $v_{1}, v_{2}, v_{3}, \ldots, v_{n} \in V\left(G_{2}\right)$. In $G=G_{1} \vee G_{2}$, each vertex u_{i} of G_{1} is joined to every vertex of v_{j} of G_{2}, in addition to the edges of G_{1} and G_{2}. Also since G_{1} and G_{2} are r-regular and s-regular respectively, every vertex u_{i} and v_{j} of G are of degree $r+n$ and $s+m$, respectively. Since G is regular $r+n=s+m$.

Conversely assume, $r+n=s+m$.
$\Rightarrow \operatorname{deg}\left(u_{i}\right)+n=\operatorname{deg}\left(v_{j}\right)+m$, since G_{1} is $r-$ regular and G_{2} is $s-$ regular
\Rightarrow degree of any vertex u of $G=$ degree of any vertex v of G.
$\Rightarrow G$ is regular.
Theorem 2.2.4 Let G_{1} and G_{2} be any two graphs of order m and n respectively.
If $G=G_{1} \vee G_{2}$ is a $s-$ regular graph, then,
$\operatorname{neigh}_{G}(x)=1+(m+n) x+\left(\binom{m}{2}+m n+\binom{n}{2}\right) x^{2}+\left(\binom{m}{3}+\binom{m}{2}\binom{n}{1}+\binom{m}{1}\binom{n}{2}+\right.$
$\left.\binom{n}{3}\right) x^{3}+\left(\binom{m}{4}+\binom{m}{3}\binom{n}{1}+\binom{m}{2}\binom{n}{2}+\binom{m}{1}\binom{n}{3}+\binom{n}{4}\right) x^{4}+\cdots+\left(\binom{m}{s}+\binom{m}{s-1}\binom{n}{1}+\cdots+\right.$
$\left.\binom{m}{1}\binom{n}{s-1}+\binom{n}{s}\right) x^{s}$.

Proof. Since, G_{1} and G_{2} are any two graphs of order m and n respectively, in $G=G_{1} \vee G_{2}$, there are $m+n$ vertices, such that every vertex of G_{1} is joined to every vertex of G_{2} through an edge, in addition to the edges of G_{1} and G_{2}. Thus for every $u_{i} \in V(G), u_{i}$ has n more neighbours in addition to that which u_{i} has in G_{1} and for every $v_{j} \in V(G), v_{j}$ has m more neighbours in addition to that which v_{j} has in G_{2}.

By definition the neighbourhood complex of G consists of the null set, $(m+n)$ single vertices, since each has a neighbour. Also since $G=G_{1} \vee G_{2}$, any two vertices either in G_{1} or in G_{2} has a common neighbour, also any combination of u_{i} and v_{j} has a common neighbour. Thus the number of two element simplexes are $\left(\binom{m}{2}+m n+\binom{n}{2}\right)$.

On considering the number of simplexes with three elements, any 3 vertices of both G_{1} and G_{2} has a common neighbour, any 2 vertices of G_{1} and any 1 vertex of G_{2} has a common neighbour. Similarly any 1 vertex of G_{1} and any 2 vertices of G_{2} has a common neighbour. Thus there exists $\left(\binom{m}{3}+\binom{m}{2}\binom{n}{1}+\binom{m}{1}\binom{n}{2}+\binom{n}{3}\right) 3-$ simplexes.

Similarly, the number of four simplexes are $\left.\binom{m}{4}+\binom{m}{3}\binom{n}{1}+\binom{m}{2}\binom{n}{2}+\binom{m}{1}\binom{n}{3}+\binom{n}{4}\right)$, since any 4 vertices of both G_{1} and G_{2} has a common neighbour, any 3 vertices of either G_{1} or G_{2} and any 1 vertex of either G_{2} or G_{1} has a common neighbour any two vertices of G_{1} any two vertices of G_{2} also have a common neighbour, for $G=G_{1} \vee G_{2}$ is a regular graph.

The argument continues for all simplexes of length $s=\operatorname{deg}(G)$.

Hence the neighbourhood polynomial of $G=G_{1} \vee G_{2}$ is,

$$
\begin{aligned}
\operatorname{neigh}_{G}(x)= & 1+(m+n) x+\left(\binom{m}{2}+m n+\binom{n}{2}\right) x^{2} \\
& +\left(\binom{m}{3}+\binom{m}{2}\binom{n}{1}+\binom{m}{1}\binom{n}{2}+\binom{n}{3}\right) x^{3} \\
& +\left(\binom{m}{4}+\binom{m}{3}\binom{n}{1}+\binom{m}{2}\binom{n}{2}+\binom{m}{1}\binom{n}{3}+\binom{n}{4}\right) x^{4}+\cdots \\
& +\left(\binom{m}{s}+\binom{m}{s-1}\binom{n}{1}+\cdots+\binom{m}{1}\binom{n}{s-1}+\binom{n}{s}\right) x^{s} .
\end{aligned}
$$

Theorem 2.2.5 The neighbourhood polynomial of $K_{m} \vee K_{n}$ is of degree $m+n-1$.

Proof. Let $G=K_{m} \vee K_{n}$. In K_{m}, every vertex is of degree $(m-1)$ and that in K_{n} is ($n-1$). Also these m vertices of K_{m} are joined to every n vertices of K_{n}. Hence in G the degree of each vertex belonging to K_{m} is $(m-1+n)$ and that belonging to K_{n} is $(n-1+$ $m)$. Thus G is $(m+n-1)$ regular graph of order $(m+n)$. Thus the neighbourhood complex of G consists of the simplexes as described in the theorem 2.19, and since the maximum degree of G is $(m+n-1)$, no set of $(m+n)$ vertices have a common neighbour, the maximal simplex is $m+n-1$. Hence the deg(neigh ${K_{m} \vee K_{n}}$) is $m+n-1$.

Remark

It follows from the observations and theorems that, if $G=G_{1} \vee G_{2}$ where G_{1} and G_{2} are any two graphs of order m and n respectively,

$$
\max (m+2, n+2) \leq \operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right) \leq m+n-1 .
$$

2.3 Symmetric difference of two graphs and their Neighbourhood Polynomials.

Theorem 2.3.1 The $\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)=m$, where G is the symmetric difference of any graph G_{1} of order m and K_{2}.

Proof. Let $G=G_{1} \oplus K_{2}$. Then following the definition of symmetric difference of any two graphs G_{1} and G_{2}, of orders m and n respectively, the degree of any vertex $u=\left(u_{i}, v_{j}\right)$ (where $u_{i} \in V\left(G_{1}\right)$ and $v_{j} \in V\left(G_{2}\right)$) in G is,

$$
\operatorname{deg}(u)=n \times \operatorname{deg}\left(u_{i}\right)+m \times \operatorname{deg}\left(v_{j}\right)-2 \operatorname{deg}\left(u_{i}\right) \times \operatorname{deg}\left(v_{j}\right) .
$$

Hence if $G=G_{1} \oplus K_{2}$, for any vertex, $w=\left(u_{i}, v_{j}\right)$ in G, we have,

$$
\operatorname{deg}(w)=2 \times \operatorname{deg}\left(u_{i}\right)+m \times 1-2 \times \operatorname{deg}\left(u_{i}\right) \times 1 .\left(\text { Since, } v_{j} \in K_{2}, \operatorname{deg}\left(v_{j}\right)=1\right)
$$

Thus $(w)=m$.

Hence on considering the neighbourhood complex $\mathcal{N}(G)$ of G, there exists no simplex of length $(m+1)$, as every vertex is of degree m, there exists simplexes of length $1,2,3, \ldots, m$. Since, $n e i g h_{G}(x)=\sum_{u \in \mathcal{N}(G)} x^{|u|}$, the degree of $\operatorname{neigh}_{G}(x)$ is equal to the length of maximal simplex. Hence, $\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)=m$, where $G=G_{1} \oplus K_{2}$.

Theorem 2.3.2 The $\left(\operatorname{neigh}_{G}(x)\right)=m+n-2$, if $G=K_{m} \oplus K_{n}$.

Proof. Let $G=K_{m} \oplus K_{n}$. Then degree of any vertex $w=\left(u_{i}, v_{j}\right)$ (where $u_{i} \in$ $V\left(K_{m}\right)$ and $\left.v_{j} \in V\left(K_{n}\right)\right)$ in G is,

$$
\begin{aligned}
\operatorname{deg}(w)= & (m-1) n+(n-1) m-2(m-1)(n-1) \\
& =m+n-2
\end{aligned}
$$

Also, we have $\operatorname{neigh}_{G}(x)=\sum_{u \in \mathcal{N}(G)} x^{|u|}$. The elements of the neighbourhood complex $\mathcal{N}(G)$ of G, consists of the zero simplex, $m n-$ single vertices as each has a neighbour, $2-$ simplexes, 3 - simplexes, etc. to $(m+n-2)$-simplexes and there exists no simplex of length ($m+n-1$) or more. Hence the degree of neighbourhood polynomial of $G=K_{m} \oplus K_{n}$, is $(m+n-2)$.

Theorem 2.3.3 If $G=K_{m} \oplus K_{n}$, then $\operatorname{neigh}_{G}(x)=1+(m n) x+\binom{m n}{2} x^{2}+$ $\left[n\binom{m}{3}+n\binom{m}{2}(m-2)(n-1)+m\binom{n}{2}(n-2)(m-1)+m\binom{n}{3}\right] x^{3}+\cdots+$ $m n\binom{s}{i} x^{i}+\cdots+m n x^{s}, s=m+n-2, s / 2 \leq i \leq s$.

Proof. $G=K_{m} \oplus K_{n}$, has $m n$ vertices, each of these vertices have $(m+n-2)$ neighbours, (which follows from the definition of symmetric difference of two graphs). The neighbourhood complex of G consists of zero simplex, 1 - simplexes, since each of the $m n$ vertices has a neighbour. Any two of $m n$ vertices in $G=K_{m} \oplus K_{n}$ has a common neighbour, for consider vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{k}, v_{l}\right)$ of G, where $u_{i} \in V\left(K_{m}\right)$ and $v_{j} \in V\left(K_{n}\right)$. Then there exists at least one vertex $\left(u_{i}, v_{l}\right)$ of G which is common to both $\left(u_{i}, v_{j}\right)$ and $\left(u_{k}, v_{l}\right)$, by the definition of $K_{m} \oplus K_{n}$. Thus the number of two element simplexes in the neighbourhood complex of G are $\binom{m n}{2}$. The three element simplexes are calculated as $n\binom{m}{3}+n\binom{m}{2}(m-2)(n-1)+m\binom{n}{2}(n-2)(m-1)+m\binom{n}{3}$ (taking $m, n>3$). Continuing the same process, we get i-simplexes to be $m n\binom{s}{i}$, where $s=m+n-2$ and $s / 2 \leq i \leq s$, and since the maximal simplex of $G=K_{m} \oplus K_{n}$, is of length $m+n-2$, as there are $m n-$ simplexes of length $m+n-2$. Thus we get

$$
\begin{aligned}
\operatorname{neigh}_{G}(x)= & 1+(m n) x+\binom{m n}{2} x^{2} \\
& +\left[n\binom{m}{3}+n\binom{m}{2}(m-2)(n-1)+m\binom{n}{2}(n-2)(m-1)\right. \\
& \left.+m\binom{n}{3}\right] x^{3}+\cdots+m n\binom{s}{i} x^{i}+\cdots+m n x^{s}, \quad s=m+n-2, \\
& s / 2 \leq i \leq s .
\end{aligned}
$$

Example

Consider figure 5, $G=K_{5} \oplus K_{4}$

$$
G=K_{5} \oplus K_{4}
$$

Figure 5

The neighbourhood complex of G consists of the null simplex, 20,1 - simplexes of single vertex. Every pair of vertices arbitrarily taken has a common neighbour, consider the vertices $\left(v_{1}, a\right)$ and $\left(v_{5}, c\right)$ which has a common neighbour $\left(v_{1}, c\right)$. Thus there are
$\binom{20}{2}=190$ two simplexes. Considering the neighbours of each vertex and finding out the possible

3 - simplexes, and on cancelling the repetitions we get the number of 3 - simplexes, in $K_{5} \oplus K_{4}$ to be 660 . (In $K_{5} \oplus K_{4}$ each vertex has $5+4-2=7$ neighbours and $7 / 2=$ 3.5).

There are $20 \times\binom{ 7}{4}=700,4-$ simplexes, $20 \times\binom{ 7}{5}=420,5-$ simplexes, $20 \times\binom{ 7}{6}=$ 140,6 - simplexes and 7 - simplexes count to 20 , for the simplexes $i=4,5,6,7$, $i>7 / 2$, and there is no repetition of the same simplex. Thus,

$$
\operatorname{neigh}_{G}(x)=1+20 x+190 x^{2}+660 x^{3}+700 x^{4}+420 x^{5}+140 x^{6}+20 x^{7}
$$

3. Conclusion and further scope

The neighbourhood polynomials on different binary operations on graphs are obtained and neighbourhood polynomials of other binary operations on graphs are still to be obtained

Reference

[1] Jason I. Brown, Richard J. Nowakowski, "The neighbourhood polynomial of a graph", Australian journal of Combinatorics, Volume 42(2008), Pages 55-68.
[2] G.Suresh Singh, "Graph Theory", PHI Learning Private Limited, New Delhi, 2010.
[3] G. Suresh Singh, Sreedevi S.L. ‘Cartesian product and Neighbourhood Polynomial of a Graph, International Journal of Mathematics Trends and Technology (IJMTT) - Volume 49 Number 3 September 2017.

