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AIM(1):The value of the objective function of the primal cannot exceed the value of 

dual. 

(2) To study the connectivity between the values of the objectives function of the primal 

and dual programming in direct and converse duality programming. 

Abstract In this work, we consider a new class of multitime multiobjective variational 

problems of minimizing a vector of functionals of curvilinear integral type. Based on the 

normal efficiency conditions for multitime multiobjective variational problems, we 

study duals of Mond-Weir type, generalized Mond-Weir-Zalmai type and under some 

assumptions of (ρ, b)-quasiinvexity, duality theorems are stated. We give weak duality 

theorems, proving that the value of the objective function of the primal cannot exceed 

the value of the dual. Moreover, we study the connection between values of the 

objective functions of the primal and dual programs, in direct and converse duality 

theorems. While the results in §1 and §2 are introductory in nature, to the best of our 

knowledge, the results in §3 are new and they have not been reported in literature. 

Keywords Multitime multiobjective problem · Efficient solution · Quasiinvexity · Duality 

Mathematics Subject Classification (2000) 65K10 · 90C29 26B25 · 26B25 

Introduction and statement of the problems 

Necessity conditions of optimality for scalar variational problems were introduced 

and studied by Valentine [27]. The duality of scalar variational problems involving convex 

and gen- eralized convex functions was further developed by Mond and Hanson [13], 

Mond, Chandra and Husain [14], Mond and Husain [15], Preda [21]. Mititelu developed a 

duality for the mult- itime scalar control problem with mixed constraints, using the 

invexity notion, [9]. Under various types of generalized convex functions, Mukherjee and 

Purnachandra Rao developed mixed type duality results [16], Preda and Gramatovici proved 

sufficient optimality conditions for multiobjective variational problems [23], while 

Mititelu and collaborators [7,8,10,11], Preda [22], Zalmai [28], established several weak 

efficiency conditions and developed dif- ferent types of dualities for multiobjective 

fractional variational problems. Jagannathan [5] studied several optimality and duality 

results for nonlinear fractional programming. Kim and Kim [6] used the efficiency property 

of nondifferentiable multiobjective variational problems in duality theory under 

generalized convexity assumptions. Despite of all these important advances, our 
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multitime multiobjective problem -imposed by practical reasons- had not been studied so 

far. 

Inspired and motivated by the ongoing research in this area, we introduce and 

study a new class of multitime multiobjective variational problems of minimizing a 

vector of functionals of curvilinear integral type. Using essentially the techniques of 

Ariana Pitea [18] and his research collaborators, our results establish certain new 

conditions of Mond-Weir-Zalmai duality type for multitime multiobjective variational 

problems based on the notion of (ρ, b)-quasiinvexity. 

To introduce our study problem, we need the following background, which is 

necessary for the completeness of the exposition. For more details, we address the reader 

to [19] and [20]. 

Let (T, h) and (M, g) be Riemannian manifolds of dimensions p and n, 

respectively. Denote by  t t , 1,p   , and  ix x ,i 1,n  , the local coordinates on T 

and M, respectively. Denote by J
1
 (T, M) the first order jet bundle associated to T and M. 

Using the product order relation on p
R , [10], the hyperparallelepiped 

0 1t ,t , p
R . 

with diagonal opposite points 1 p

0 0 0t (t ,..., t )  and 1 p

1 1 1t (t ,...., t ) , can be written as being 

the interval [t0, t1]. Suppose 
0 1t ,t  is a piecewise 1C  -class curve joining the points t0 and 

t1.  

 

The closed Lagrange I-forms densities of C -class.   

   1 rf f : J T,M , 1, r, 1,p.      R  

determine the following path independent curvilinear functionals (actions) 

        
t ,t0 1

F x y f t, x t , x (t); t, y(t), y (t) dt ,  



   
 

 

where 
x y

x (t) (t), y (t) (t), 1,p
t t

  

 
   
 

 are partial velocities. 

Important note: To simplify the notations, in our subsequent theory, we shall set  

 0

o o

x yx
(t) (t, x(t), x (t)), (t) (t, x (t), x (t)), (t) (t, y(t), y (t)).       

0

0 0

zy
(t) (t, y (t), y (t)), (t) (t, z(t),z (t))      

The closeness conditions (complete integrability conditions) are: 

 D f D f , , 1,p, , 1, r             , where D  is the total derivative. 

Accept that the Lagrange matrix densities  

    b 1 qs

ag g : J T,M , a 1,s, b 1,q, q n,    R  

    b 1 qs

ah h : J T,M , a 1,s, b 1,q, q n,    R  
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of C  class define the partial differential inequation (PDI) (of evolution) 

  
1x ,t ,g (t) 0, t


     

  
1y ,t ,g (t) 0, t


    

and the partial differential equations (PDE) (of evolution) 

  
1x ,th (t) 0, t .


    

 
1y ,th (t) 0, t .


    

On the set 
1,tC ( ,M)





  of all functions 
1,tx, y : M


   of C -class, we set the norm 

 
p

1

x x || x || . 


   

p

1

y y || y || . 


   

Let 

      


0 1 0 1 t ,t0 1

0 1

t ,t t ,t 0 0 0 0 1 1 1 1

x y x y t ,t

F x, y C ,M | x t x , y(t ) y , x(t ) x , y(t ) y , or x(t) | given

g( (t); (t)) 0, h( (t); (t)) 0, t



          

      

 

be the set of all feasible solutions of problem (MP), introduced right now. 

Denote by   1 rF(x( ), y( )) F (x( ), y( )).....F x( ), y( ) .        

The aim of this work is to introduce and study the variational problem of minimizing a 

vector of functional of curvilinear integral type. 

 
0 1t ,t

Min F(x, y)
(MP)

subject to x( ), y( ) F( ).




   
 

According to Chinchuluun and Pardalos [2], most of the optimization problems arising 

in practice have several objectives which have to be optimized simultaneously. This 

kind of problems, of considerable interest, includes various branches of mathematical 

sciences, engineering design, portfolio selection, game theory, decision problems in 

management science, web access problems, query optimization in databases etc. For 

descriptions of the web access problem, the portfolio selection problem and capital 

budgeting problem, see [2,3], and some references therein. 

Our study is motivated by its deep application especially in Mechanical Engineering, 

where curvilinear integral objectives are extensively used due to their physical meaning as 

mechanical work. These objectives play an essential role in mathematical modeling of 

certain processes in relation with Robotics, Tribology, Engines etc. In mathematical terms, 

in (MP) we are given a number of r sources producing mechanical work, which have to be 

minimized on a set of limited resources, namely 
0 1t ,tF( ).  

In their article [19], Ariana Pitea, C. Udris¸te and S¸ t. Mititelu established necessary 

efficiency conditions for problem (MP). The present paper is thought to be natural 
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· 

continuation of the research in [19], studying the problem of duality on the first order jet 

bundle J 
1
(T, M). The choice of this framework was imposed by physical considerations 

regarding the mechanical work. 

To state and prove our efficiency conditions and Mond-Weir-Zalmai duality for 

problem (MP), it is necessary to recall some definitions and auxiliary results which will 

be needed later in our discussion. 

Definition 1:  A feasible solution 
0 1

0 0

t ,tx ( ), y ( ) F( )     is called an efficient solution of 

problem (MP) if there is no 
0 1t ,tx( ), y( ) F( )    , 0x( ) x ( )   and 0y( ) y ( )   such that 

 
0 0F(x( ), y( )) F(x ( ), y ( )).      

Let   be a real number and 
0 1 0 1t ,t t ,tb :C ( ,M) C ( ,M) [0, )       a functional. To any 

closed I-form a (a )  we associate the path independent curvilinear functional 

 
t ,t0 1

x yA(x( ), y( )) a (t), (t) dt



      

The following definition of quasiinvexity [20], will be proved to be of paramount 

importance, helping us to state our main results included in this work. 

Definition: 2 The functional A is called [strictly] ( ,b) -quasiinvex at 0 0(x ( ), y ( ))   

if there is a vector function    
0 1 0 1

1 1 n

t ,t t ,t: J ,M J ,M    R , with 

 o 0x y
(t), (t) 0    , and the function    

0 1 0 1

n

t ,t t ,t: C ,M C ,M ,     R such that 

for any 
0 0(x( ), y( ))[x( ), y( ) x ( ), y ( )]        the following inmplication holds. 

0 0(A(x( ), y( )) A(x ), y ( )))     

 0 0b(x( ), x ( ); y( ), y ( ))      

0 0 0 0

t ,t0 1

x yx y x y

a
( (t), (t); (t), (t)), ( (t); (t))

x






         



  0 0 0 0x yx y x y

a
D (t), (t); (t), (t) , ( (t); (t)) dt

x







         

 

 

 0 0 0 0 2b(x( ), x ( ); y( ), y ( )) || (x( ), x ( ); y( ), y ( )) ||            

In the following example, we consider two functional of curvilinear integral type 

which are ( ,b) -quasiinvex, in each case providing the function . 

Example1: Let   1 2 1 2a :[0,1] C [0,1] ,x( ), y( ) (x ( ), x ( ); y ( ), y ( )).        R  As it can be 

verified, the functional 

   
1

0

A(x( ), y( )) a t, x(t); t, y(t) dt     

is ( ,1) -quasiinvex, for 0   and any  , at the point (x
0
,y

0
) with respect to  
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0 0

0 0

x yx y
( (t), (t); (t), (t)) (A(x( ), y( )) A(x ( ), y ( ))          

   0 0 0 0

1 2

a a
t, x (t); t, y (t) , t, x (t); t, y (t) .

x x

  
 
  

 

In a similar manner, the functional 

       
1

0

A(x( ), y( )) a t, x(t); t, y(t) dt     

is ( ,1) -quasiinvex, for 0   and any  , at the point (x
0
,y

0
) with respect to

0 0

0 0

x yx y
( (t), (t); (t), (t)) (A(x( ), y( )) A(x ( ), y ( ))             

0 0 0 0

1 2

a a
D (t, x (t); t, y (t)),D (t, x (t); t, y (t)) .

x x

  
 

   
 

where by D, we denoted the total derivative operator. 

It can be seen that these examples can be easily extended to n-dimensional vector 

valued functions and, also, for the multitime case (using normal coordinates). 

We underline that there is no general method for the computation of η, for given clas- 

ses of multitime multiobjective variational problems. However, the notion of quasiinvexity 

is extensively used, in appropriate forms with general η, in recent works for studies of some 

multiobjective programming problems. In [1] by Antczak, several optimality results are 

obtained for a modified ratio objective problem; in [4] by Husain and Jabeen, mixed type 

duality the- orems are stated for problems containing support functions; in [24] by 

Puglisi, the subject of generalized convexity and invexity is studied; in [17] by Nahak 

and Mohapatra, nonsmooth invexity is used to study some multiobjective programming 

problems, while in [12] and [25], Mititelu and Stancu-Minasian introduce a study of some 

multiobjective fractional variational problems via adequate assumptions on quasiinvexity. 

That is why, the present work proposes the study for our class of problems, employing a 

general η. 

In order to harmonize the new results exposed in Sect. 3 of this work with the 

assembly of our current research, we consider suitable to recall the statements from Sect. 

2. 
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Multitime multiobjective Mond-Weir type duality for (MP) 

Consider a function z( ) X   and associate to problem (MP) the multitime 

multiobjective variational problem 

 

0 1

1 r

z( )

z z z

z z z

t ,t

a

a z

max F (z( ) ,...F (z( ))

Subject to

f g h
( (t)) (t), ( (t)) (t), ( (t))

z z z

f g h
D ( (t)) (t), ( (t)) (t), ( (t))(MD)

z z z

0, 1,p, t

(t),g ( (t))




 


  

  



 

  
           

  

   
                 

   

     









0 1

a

z

t ,t

(t), h ( (t)) 0

a 1,q, 1,p, t

0.















   

    

 

 

taking into account that the function z(t) has to satisfy the boundary conditions 

z(t0)= 0 0 1 1 1(x , y ),z(t ) (x y ) , or 
t ,0 1

z(t) |
     given, the partial differential 

inequations of evolution, and the partial differential equations of evolution. 

 Denote by 
0 0(x ( ), y ( ))   the minimizing functional vector of problem (MP) at the 

point 
0 1

0 0

t ,tx ( ), y ( ) F( )    and by (z( ),z ( ) , ( ), ( ), ( ))           the maximizing functional 

vector of dual problem (MD) at  z( ),z ( ) , ( ), ( ), ( )         in  , where   is the domain of 

the problem (MD). We introduce three duality results.  

Theorem 1 (WEAK DUALITY) Let 
0 0x ( ), y ( )   be a feasible solution of problem 

(MP) and  z( ),z ( ) , ( ), ( ), ( )         be a feasible solution of problem (MD). Assume 

that the following conditions are fulfilled: 

(a) For any 1, r,  the functional F (x( ), y( )) 
 is 

r( ,b) 
-quasiinvex at the point

z( )  with respect to   and ;  

(b) for each a 1,q , the functional 

 

t ,t0 1

a a

a x y a x y(t),g ( (t); (t)) (t),h ( (t); (t)) dt 



              

is a( ,b) -quasiinvex at z( )  with respect to   and ;  

(c) at least one of the functional of (a), (b) is strictly quasiinvex; 

(d) 
q

a

a 1

0
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Then, the inequality 0 0(x ( ), y ( )) (z( ),z ( ), , ( ), ( ), ( ))               is false. 

Proof The proof uses techniques similar to those in [20]. 

 In a previous paper [19], we proved that if 
0 0x ( ), y ( )   is an efficient solution of 

problem (MP), there is a vector   in r
R  and the smooth functions 

0 1 0 1

0 qsp 0 qsp

t ,t t ,t: , : ,     R R  such that we have 

      0 0 0 0 0 0

J
0 0

j x y x y x y

f g h
(t); (t) (t), (t); (t) (t), (t); (t)

x x x


 

  
              

  
 

 0 0 0 0

j
0

j x y x y

f g
D ( (t); (t)) (t), ( (t); (t))

x x


 

 

  
             

 

0 1t ,t0, t , 1,p     (Euler-Lagrange PDEs) 

0 0
0

0

t ,tx y
(t),g( (t); (t)) 0, t , 1,p

        , 

0 (t) 0, 
0 1t ,tt , 1,p.    

If 0,   then 
0 0x ( ), y ( )  from conditions (2.1) is called normal efficient solution. 

Let 
0 0x ( ), y ( )   be a normal efficient solution of primal (MP), the scalar   in r

R

and the smooth functions 
0 1 0 1

0 qsp 0 qsp

t ,t t ,t: , :     R R , given above. 

We are in position to state a direct duality result. This is given by  

Theorem 2 (Direct Duality) Suppose that the hypotheses of Theorem 1 are satisfied. Then 
0 0 0 0 0 0 0(x ( ), x ( ); y ( ), y ( ) , ( ), ( ) ( )             is an efficient solution of dual program (MD) and 

0 0(x ( ), y ( ))     
0 0 0 0 0 0 0(x ( ), x ( ); y ( ), y ( ) , ( ( ) ( ))),            . 

 Since the notion of efficient solution of problem (MD) is similar to those given in 

Definition 1, we shall present now a result concerning the converse duality. By changing 

some of the hypotheses. 

Theorem 3 (Converse Duality) Let 
0 0 0 0 0 0 0(x ( ), x ( ); y ( ), y ( )), , ( ), ( ), ( ))            be an 

efficient solution of dual problem (MD) and suppose that the following conditions are 

fulfilled: 

(a)  0 0x ( ), y ( )   is a feasible solution of primal problem (MP); 

(b) for each 1, r , the functional F (x( ), y( ))   is ( ,b)  -quasiinvex at the point 

 0 0x ( ), y ( )   with respect to   and  ; 

(c) for each a 1,q,  the functional 

 
t ,t0 1

a x y a x y(t), t (t); (t) (t),h ( (t); (t)) dt  

 



           
   

is a( ,b) -quasiinvex at the point 0 0x ( ), y ( )   with respect to   and  ; 

(d) at lest one of the functionals of (b), (c) is strictly quasiinvex with respect to    and 

 , respectively 

(e) 
q

a

a 1

0.


     
  

Then 
0 0x ( ), y ( )   is an efficient solution of primal (MP) and 

0 0(x ( ), y ( ))     
0 0 0 0 0 0 0({x ( ), x ( ); y ( ), y ( )}, , ( ( ), ( ))),             
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3. Mond-Weir-Zalmai  duals for (MP) 

 In this section, a more general context is needed. That is why we consider the 

Lagrange matrix densities 

     b 1 qs

ag g : J T,M , a 1,s, b 1,q, q n,    R  

    b 1 qs

ah h : J T,M , a 1,s, b 1,q, q n,    R  

of C -class define the partial differential inequations (PDI) (of evolution) 

   
0 1x y t ,tg (t); (t) 0, t ,     

and the partial differential equations (PDE) (of evaluation) 

   
0 1x y t ,th (t); (t) 0, t ,     

 In order to use the idea of “grouping the resources”, consider [p0, p1, …, pq] and 

{Q0, Q1, ….Qq} partitions of the sets {1,....p}  and {1,....q}  respectively. 

 For each 1, r and 1,p   , we denote 

0 0

0 0

P Q

z z P z Q zf ( (t)) f ( (t)) (t),g ( (t)) (t),h ( (t)) ,               
 

 and 

t ,t0 1

zF (z( )) f ( (t))dt



  
 

 

 Consider a function z( ) X   and associate to (MP) the multiobjective variational 

problem 

 

0 1

k

k

1 r

z( )

z z z

z z z

t ,t

P

P

max(F (z( )),..., F (z( ))

Subject to

f g h
(t)) (t), (t) (t), ( (t))

z z z

f g h
D ( (t)) (t), ( (t)) (t), ( (t))(MZD)

z z z

0, 1,p, t

(t),g (




 


  

  



 

   
            

   

   
                 

   

 









k

k

0 1

Q

z Q z

t ,t

(t)) (t), h ( (t)) 0,

K 1,q, 1,p, t

0,















       

    

 

 

taking into account that the function y(t) has to satisfy the boundary conditions 

z(t0)=(x0,y0) z(t1) = (x1,y1), or 
t ,t0 1

z(t) |  = given, the partial differential inequations of 

evolution, and the partial differential equations of evolution. 

0 0(x ( ), y ( ))    is the value of the objective function of problem (MP) at 

0 1

0 0

t ,tx ( ), y ( ) F( )     and (z( ),z ( ), , ( ), ( ), ( ))          is the maximizing functional vector 
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of dual problem (MZD) at (z( ),z ( ), , ( ), ( ), ( )) ,           where   is the domain of 

problem(MZD). 

We introduce three duality results in the sense of Mond-Weir-Zalmai. 

Theorem 4 (Weak Duality) Let  
0 0x ( ), y ( )   be a feasible solution of problem (MP) and 

(z( ),z ( ), , ( ), ( ), ( ))          be a feasible point of problem (MZD). Assume that the 

following conditions are satisfied. 

(a) 0 0

0 0

P Q

p z Q z(t),g ( (t)) (t), h ( (t)) 0,         

(b) For each 1, r, F (x( ), y( ))( ,b)     
 -quasiinvex at the point z( )  with respect to

and  . 

(c)  The functional k

K

t ,t0 1

P

k x y Q x yP (t),g ( (t); (t)) ( (t); (t)) dt 



              

is ( ,b) 
-quasiinvex at z( )  with respect to   and  ,for each k 1,q;  

(d) At least one of the functions  of (b), (c) is strictly quasiinvex; 

(e) 
q

k

k 1

0.


     
  

Then, the inequality  0 0x ( ), y ( ) (z( ),z ( ) , ( ), ( ), ( )               is false. 

Proof: By reduction ad absurdum, suppose 0 0F (x ( ), y ( )) F (z( )), 1, r        

From these inequalities, it follows  

0 0F (x ( ), y ( )) F (z( ))    
 

0 0

t ,t0 1

P Q

0 z 0 zP (t),g ( (t)) Q (t),h ( (t)) dt 



             

And taking into account the hypothesis (a) , we get 

 0 0F (x ( ), y ( )) F (z( )), 1, r              (3.1) 

We multiply by   and we use hypothesis (b), Making the sum from 1 to r, it 

follows 

   0 0F (x ( ), y ( )) F (z( )) 0      
  

     0 0

t ,t0 l

0 0

z zx y

f
b x ( ), y ( ), z( ) (t), (t), (t) , (t)

z





  
            




  

 0 0 z zx y

f
D ( (t), (t), (t)), ( (t)) dt

z







        

 



  

    
2

0 0 0 0b x ( ), y ( ),z( ) θ x ( ), y ( ),z( ) ρ


         


    (3.2) 
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Hypothesis c), regarding the  kρ ,b  quasiinvexity property of each functional, implies 

(k 1,q)  

 0 k
0 0 0 0

t ,t0 1

P Q

0 kx y x y
P (t),g ( (t); (t)) Q (t),h ( (t); (t)) dt 




            
 


  

 0 k

t ,t0 1

P Q

0 z k zP (t),g ( (t)) Q (t),h ( (t)) dt 




            


  

 0 0b(x ( ), y ( ),z( ))     

k

0 0

t ,t0 1

P

z 0 k zx y

g
( (t), (t), (t)), P (t), ( (t))

z



        

  

k

0 0
k

Q

Q z y zx y

h
(t), ( (t)) D ( (t), (t), (t)).

z



          


 

k k

k

P Q

k z Q z

g h
P (t), ( (t)) (t), ( (t)) dt

z z



 

 

 
        

 
 

 0 0 0 0 2

Kb x ( ), y ( ),z( )) || (x ( ), y ( ),z( )) ||           .   (3.3) 

Now, we make the sum of implications (3.2) and (3.3) side by side and from k=1 to k =q. It 

follows 

   0 0F (x ( ), y ( )) F z( )     
  

0 0 0 0

t ,t0 1

x y x y
(t),g( (t); (t)) (t),h( (t); (t)) dt 



            
   

  
t ,t0 1

z z(t),g( (t)) (t),h( (t)) dt 0

 




          



  

00

t ,t0 1

0 0

zyx

f
B(x ( ), y ( ), z( ) ( (t); (t); (t)),

z





 
         
 





  

      z z

g
(t) (t), ( (t))

z



     



 0 0z y z xx y

fh
(t), ( (t)) D ( (t), (t), (t)), ( (t))

z z







            

 



  

 z z

g h
(t), ( (t)) (t), ( (t)) dt

z z



 

 

 
         

 
 

 
q

0 0 0 0 2

k

k 1

b(x ( ), y ( ), z( ) || (x ( ), y ( ), z( ) || .


 
               

 


    (3.4) 

Since 
0 0b(x ( ), y ( ),z( )) 0,    we obtain 
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 0 0

t ,t0 1

z zx y

V
( (t), (t), (t)), ( (t), , ( ), ( ), ( )

z






             


  

 0 0 z zx y

V
D ( (t), (t), (t)), ( (t)), , ( ), ( ), ( ) dt

z







               

 

q
0 0 2

k

k 1

|| (x ( ), y ( ), z( ) || ,


 
           

 


       (3.5) 

Where  

 z zV (t,z( ),z ( ), , ( ), ( ), ( ) f ( (t)) (z(t)),g( (t))                  
  

     
z(t),h( (t)) ,      

With 
0 1t ,tt ,  and 1,p   

The following relation holds 

 0 0 z zx y

V
D ( (t), (t), (t)), ( (t), , (t), (t), (t))

z







          


 

 0 0 z zx y

V
D ( (t), (t), (t)), ( (t), , (t), (t), (t))

z







            


 

0 0 z zx y

V
( (t), (t), (t)),D ( (t), , (t), (t), (t)) .

z






 
             

  (3.6) 

 By replacing relations (3.6) and by using Euler-Lagrange PDE, relation (3.5) 

becomes 

 0 0

t ,t0 1

z zx y

V
D ( (t), (t), (t)), ( (t), , (t), (t), (t)) dt

z







          

  

 
q

0 0 2

k

k 1

|| (x ( ), y ( ), z( )) || .


 
           

 


      (3.7) 

For , 1,p   ,let us denote by 

 0 0 z zx y

V
Q (t) ( (t), (t), (t)), ( (t), , (t), (t), (t) ,

yz

 





          


 

and 
t ,t0 1

I D Q (t)dt . 

 


   

 According to [26], §9, a total divergence is equal to a total derivative. 

Consequently, there exists Q(t), with Q(t0) = 0 and Q(t1) = 0, such that D Q (t) D Q(t)

    

and 

t ,t0 1

1 0I D Q(t)dt Q(t ) Q(t ) 0.





     

Replacing into inequality (3.7), it follows that 

  
q

0 0 2

k

k 1

0 || (x ( ), y ( ), z( )) ||


 
           

 


 . 

From hypothesis e), the previous relation becomes 0 < 0, that is false. From relation (3.4), 

it follows 
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   0 0

t ,t0 1

0 0

x y
0 F (x ( ), y ( )) F (z( )) (t),g( (t); (t)



           


 


 0 0

t ,t0 1

z zx y
(t),h( (t); (t)) ]dt (t),g( (t)) (t),h( (t)) dt . 

  



                 

 According to the constraints of problems (MP) and (MZD), the above-mentioned 

relation becomes 0 0(F (x ( ), y ( )) F (z( )) 0      
 . Hence, there is an index 0i

0 0i i0 0F (x ( ), y ( )) F (z( )).     

We conclude that    1 0 0 r 0 0 1 rF (x ( ); y ( )),...,F (x ( ); y ( )) F (z( )...,F (z( )) .        

Therefore, the inequality 
0 0(x ( ), y ( )) (z( ),z ( ) , ( ), ( ), ( ))              contradicts relations 

(3.1) and this completes the proof. 

The notion of efficient solution of problem (MZD) is similar to those given in Definition 1. 

Let x
0
(·), y

0
(·)  be a normal efficient solution of primal (MP), the scalar  in r

R  and the 

smooth functions 
0 1 0 1

0 qsp 0 qsp

t ,t t ,t: , : ,     R R from relations (2.1). 

Theorem 5 (direct duality) If the hypotheses of Theorem 4 are satisfied, then 
0 0 0 0 0 0(x ( ),(x ( ), y ( ), y ( ) , ( ), ( ), ( ))            is an efficient solution of dual program (MZD) 

and we have the equality 
0 0 0 0 0 0 0 0 0(x ( ), y ( )) (x ( ), x ( ); y ( )y ( ), , ( ), ( ), ( )).                  

Proof: According to relation (2,1), Sect, 2, 
0 0 0 0 0 0 0(x ( ), x ( ), y ( ), y ( ), , ( ), ( ), ( )            ) is a 

feasible point of problem (MZD) and we have 
0 0 0 0F (x ( ), y ( )) F (x ( ), y ( ))     

. From 

theorem 4, Sect. 3, the inequality 
0 0 0 0 0 0 0 0 0(x ( ), y ( )) (x ( ), x ( ), y ( ), y ( ) , ( ), ( ), ( ))                  is false. Therefore, it follows

0 0 0 0 0 0 0 0 0(x ( ), y ( )) (x ( ), x ( ), y ( ), y ( ), , ( ), ( ), ( ))                  The efficiency of 

0 0 0 0 0 0 0(x ( ),(x ( ), y ( ), y ( ), , ( ), ( ), ( ))             is implied also by the weak duality theorem. 

We shall give now a converse duality theorem, by changing some of the hypotheses. 

Theorem 6: (Converse Duality) Let 
0 0 0 0 0 0 0(x ( ),(x ( ), y ( ), y ( ), , ( ), ( ), ( ))            be an 

efficient solution to dual (MZD) and suppose satisfied the following conditions:   

(i)  x( ), y( )   is an efficient solution of primal(MP). 

(ii) The hypotheses of Theorem 4 hold at 
0 0 0 0 0 0 0(x ( ),(x ( ), y ( ), y ( ), , ( ), ( ), ( ))             

The 0 0x ( ), y ( )   is an efficient solution to (MP). Moreover, we have the equality 

  
0 0 0 0 0 0 0 0 0(x ( ), y ( )) (x ( ), x ( ), y ( ), y ( ), , ( ), ( ), ( ))                  

 The proof follows from the weak duality theorem. 

4 Conclusions 

We introduced a new class of multitime multiobjective variational problems of minimizing 

a vector of functionals of curvilinear integral type. Based on the normal efficiency 

conditions for multitime multiobjective variational problems, we studied duals of Mond-

Weir type, generalized Mond-Weir-Zalmai type and under some assumptions of ( ,b) -

quasiinvexity, duality theorems are stated. We gave weak duality theorems, proving that 

the value of the objective function of the primal cannot exceed the value of the dual. 

Moreover, we studied the connection between values of the objective functions of the 

primal and dual programs, in direct and converse duality theorems. To the best of our 

knowledge, the results in §3 are new and they have not been reported in literature. 
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