Semi-symmetric Metric Connection on a LP-Sasakian Manifold

* Prabhat Narayan Singh
**S. K. Dubey

Key words :

Semi-symmetric metric connection, LP-Sasakian manifold, Curvature tensor, Ricci tensor.

Abstract

In this paper we have introduced a type of semi-symmetric metric connection on a LP-Sasakian manifold and obtained the expression for curvature tensor. We have also studied conformal curvature tensor, conharmonic curvature tensor, concircular curvature tensor and projective curvature tensor for this connection.

Copyright © 201x International Journals of Multidisciplinary Research Academy. All rights reserved.

Author's

*Department of Mathematics, St. Andrew's College, Gorakhpur, India
**Department of Mathematics ,ITM, GIDA, Gorakhpur, India

1. Introduction

Let $\left(V_{n}, g\right)$ be a n-dimensional Riemannian manifold of class C^{∞} with metric tensor ' g ' and ' D ' be Levi-Civita connection on V_{n}. A linear connection ' E ' on $\left(V_{n}, g\right)$ is said to be semi-symmetric ([2]) if the torsion tensor T of the connection ' E ' satisfy

$$
\begin{equation*}
T(X, Y)=\pi(Y) X-\pi(X) Y \tag{1.1}
\end{equation*}
$$

where π is a 1 -form on V_{n} with ' ρ ' as associated vector field, i.e.

$$
\begin{equation*}
\pi(X)=g(X, \rho) \tag{1.2}
\end{equation*}
$$

for arbitrary vector field X on V_{n}.

A semi-symmetric connection ' E ' is called semi-symmetric metric connection ([4]) if it further satisfies

$$
\begin{equation*}
E_{X} g=0 . \tag{1.3}
\end{equation*}
$$

Let V_{n} is a ' n ' dimension C^{∞} manifold. On V_{n} there exist a tensor ' F ' of type (1,1), a vector field U, a 1form ' u ' and Lorentzian metric ' g ' such that

$$
\begin{gather*}
\overline{\bar{X}}=X+u(X) U, \tag{1.4}\\
u(\bar{X})=0, \tag{1.5}\\
g(\bar{X}, \bar{Y})=g(X, Y)+u(X) \cdot u(Y), \tag{1.6}\\
g(X, U)=u(X), \tag{1.7}\\
\left(D_{X} F\right) Y=g(X, Y) \cdot U+u(Y) \cdot X+2 u(X) \cdot u(Y) U, \tag{1.8}\\
D_{X} U=\bar{X}, \tag{1.9}
\end{gather*}
$$

where $F(X) \stackrel{\text { def. }}{=} \bar{X}$ for arbitrary vector field X, Y. Then V_{n} satisfying above equations is called LP-Sasakian manifold and $\{F, u, U, g\}$ is called LP-Sasakian structure on V_{n}. Here ' D ' is Levi-Civita connection with respect to ' g '.

In LP-Sasakian manifold, we have

$$
\begin{gather*}
u(U)=-1, \tag{1.10}\\
\operatorname{rank}(F)=n-1, \tag{1.11}\\
g(\bar{X}, Y)=g(X, \bar{Y}) . \tag{1.12}
\end{gather*}
$$

Let us define fundamental 2-form ' F on a LP-Sasakian manifold as below

$$
\begin{equation*}
' F(X, Y)=g(\bar{X}, Y) \tag{1.13}
\end{equation*}
$$

then, we have

$$
\begin{align*}
& \prime F(X, Y)=\text { ' } F(Y, X), \tag{1.14}\\
& \prime F(\bar{X}, \bar{Y})=\text { ' } F(X, Y), \tag{1.15}
\end{align*}
$$

and

$$
\begin{equation*}
' F(X, Y)=\left(D_{X} u\right) Y \text {, } \tag{1.16}
\end{equation*}
$$

On a LP-Sasakian manifold, we can easily verify

$$
\begin{gather*}
\left(D_{X}^{\prime} F\right)(Y, Z)=g(X, Y) \cdot u(Z)+g(X, Z) \cdot u(Y)+2 u(X) \cdot u(Y) \cdot u(Z), \tag{1.17}\\
\left(D_{X}^{\prime} F\right)(Y, U)=-g(\bar{X}, \bar{Y}), \tag{1.18}\\
g(K(X, Y, Z), U)=u(K(X, Y, Z))=g(Y, Z) \cdot u(X)-g(X, Z) \cdot u(Y), \tag{1.19}\\
K(X, Y, U)=u(Y) X-u(X) Y, \tag{1.20}\\
K(U, X, Y)=g(X, Y) \cdot U-u(Y) X, \tag{1.21}\\
K(U, X, U)=X-u(X) \cdot U, \tag{1.22}\\
\operatorname{Ric}(X, U)=(n-1) u(X) . \tag{1.23}
\end{gather*}
$$

2. Semi-symmetric metric connection

On V_{n}, we define a connection ' E ' satisfying

$$
\begin{gather*}
E_{X} Y=D_{X} Y+u(Y) \cdot X-g(X, Y) U \tag{2.1}\\
E_{X} g=0 \tag{2.2}
\end{gather*}
$$

then torsion ' T ' of ' E ' is given by

$$
\begin{equation*}
T(X, Y)=E_{X} Y-E_{Y} X-[X, Y]=u(Y) X-u(X) Y \tag{2.3}
\end{equation*}
$$

Here E is called semi-symmetric metric connection on LP-Sasakian manifold V_{n}.
Let ' R ' is curvature tensor of E and ' K ' is curvature tensor of connection D, then

$$
\begin{gather*}
R(X, Y, Z)=K(X, Y, Z)+\{g(\bar{Y}, \bar{Z})-g(\bar{Y}, Z)\} X-\{g(\bar{X}, \bar{Z})-g(\bar{X}, Z)\} Y \\
+u(X) \cdot g(Y, Z) \cdot U-u(Y) \cdot g(X, Z) \cdot U+g(X, Z) \bar{Y}-g(Y, Z) \bar{X} \tag{2.4}
\end{gather*}
$$

where

$$
K(X, Y, Z)=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z
$$

Contracting (2.4) with respect to X

$$
\begin{align*}
\operatorname{Ric}(Y, Z) & =\operatorname{Ric}(Y, Z)+(n-1)\{g(\bar{Y}, \bar{Z})-g(\bar{Y}, Z)\} \\
& -g(Y, Z)-u(Y) \cdot u(Z)+g(\bar{Y}, Z) \tag{2.5}
\end{align*}
$$

i.e.

$$
\operatorname{Ric}(Y, Z)=\operatorname{Ric}(Y, Z)+(n-2)\{g(\bar{Y}, \bar{Z})-g(\bar{Y}, Z)\} .
$$

Contracting (2.5), we get

$$
R Y=R Y+(n-1)\{\overline{\bar{Y}}-\bar{Y}\}-Y-u(Y) \cdot U+\bar{Y}
$$

i.e.

$$
\begin{equation*}
\mathcal{R}^{\prime} Y=R Y+(n-2)\{\overline{\bar{Y}}-\bar{Y}\}, \tag{2.6}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\mathcal{R}^{R} Y=(n-1) Y+(n-2)\{Y+u(Y) \cdot U-\bar{Y}\} . \tag{2.7}
\end{equation*}
$$

Contracting above equation with respect to ' Y '

$$
\begin{equation*}
f /=r+(n-1)(n-2), \tag{2.8}
\end{equation*}
$$

where $\mathcal{F} /$ and ' r ' are scalar curvature with respect to E and D in V_{n}.

3. Properties of Semi-symmetric Metric Connection

Theorem 3.1. In V_{n}, we have
(i) $\quad\left(E_{X} F\right) Y=\{g(X, Y)-g(X, \bar{Y})\} \cdot U+u(Y)(X-\bar{X})+2 u(X) \cdot u(Y) \cdot U$
(ii) $\quad E_{X} U=\bar{X}-\overline{\bar{X}}$
(iii) $\quad\left(E_{X} u\right) Y=g(X, \bar{Y})-g(\bar{X}, \bar{Y})$

Proof. As we know that
(i) $\quad\left(E_{X} F\right) Y=E_{X} \bar{Y}-\overline{E_{X} Y}$

$$
\begin{aligned}
& =D_{X} \bar{Y}+0-g(X, \bar{Y}) U-\overline{D_{X} Y}-u(Y) \bar{X}+0=\left(D_{X} F\right) Y-g(X, \bar{Y}) \cdot U-u(Y) \bar{X} \\
& =g(X, Y) \cdot U+u(Y) X+2 \cdot u(X) \cdot u(Y) \cdot U-g(X, \bar{Y}) \cdot U-u(Y) \bar{X} \\
& =\{g(X, Y)-g(X, \bar{Y})\} \cdot U+u(Y)(X-\bar{X})+2 u(X) \cdot u(Y) \cdot U .
\end{aligned}
$$

From (2.1), we have
(ii) $\quad E_{X} U=D_{X} U+u(U) \cdot X-g(X, U) U$

$$
=\bar{X}-X-u(X) \cdot U=\bar{X}-\overline{\bar{X}}
$$

(iii) Taking covariant derivative of $u(Y)$ with respect to connection ' E ' and ' D ', we get

$$
X(u(Y))=\left(E_{X} u\right) Y+u\left(E_{X} Y\right)
$$

and

$$
X(u(Y))=\left(D_{X} u\right) Y+u\left(D_{X} Y\right)
$$

from above two equations, we have

$$
\begin{aligned}
0=\left(E_{X} u\right) Y- & \left(D_{X} u\right) Y+u\left(E_{X} Y-D_{X} Y\right) \\
& \left(E_{X} u\right) Y=\left(D_{X} u\right) Y-u(X) \cdot u(Y)-g(X, Y)=g(X, \bar{Y})-g(\bar{X}, \bar{Y}) .
\end{aligned}
$$

Theorem 3.2. In V_{n}, we have

$$
\begin{equation*}
R(X, Y, Z)+R(Y, Z, X)+R(Z, X, Y)=0 . \tag{3.4}
\end{equation*}
$$

Proof. By cyclic rotation of X, Y, Z in equation (2.4), we get three equations. Adding these three equations and using

$$
K(X, Y, Z)+K(Y, Z, X)+K(Z, X, Y)=0 .
$$

We get the required result.
Theorem 3.3. In V_{n}, the conformal curvature tensor Q^{c} with respect to semi-symmetric metric connection E is same the conformal curvature tensor with respect to Levi-Civita connection D.

Proof. Conformal curvature tensor with respect to connection ' E ' and ' D ' denoted by Q^{\prime} and Q are defined as

$$
\begin{align*}
Q(X, Y, Z)= & R(X, Y, Z)-\frac{1}{n-2}\left\{\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y+g(Y, Z) R^{\prime} X\right. \\
& \left.-g(X, Z) R^{R} Y\right\}+\frac{F \%}{(n-1)(n-2)}\{g(Y, Z) X-g(X, Z) Y\}, \tag{3.5}\\
Q(X, Y, Z)= & K(X, Y, Z)-\frac{1}{n-2}\{\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y+g(Y, Z) R X \\
& -g(X, Z) R Y\}+\frac{r}{(n-1)}\{g(Y, Z) X-g(X, Z) Y\}, \tag{3.6}
\end{align*}
$$

where $R(X, Y, Z)$ and $K(X, Y, Z)$, Ric and Ric, β^{\prime} and R, Fland r are curvature tensor, Ricci tensor, Ricci map and scalar curvature with respect to connection E and D, respectively.

Using (2.4), (2.5), (2.6), (2.7) and (2.8) in equation (3.5), we get

$$
\begin{equation*}
\mathscr{Q}(X, Y, Z)=Q(X, Y, Z) . \tag{3.7}
\end{equation*}
$$

Corollary 3.3. If V_{n} is a LP-Sasakian space form then it is conformally flat with respect to E.

Proof. If V_{n} is a LP-Sasakian space form, then we have

$$
K(X, Y, Z)=g(Y, Z) X-g(X, Z) Y
$$

In this manifold, we have

$$
Q(X, Y, Z)=0
$$

Using this fact in (3.7), we get the result.

Theorem 3.4. In V_{n}, the conharmonic curvature tensor E^{2} with respect to connection E is given as

$$
\begin{equation*}
\mathscr{L}(X, Y, Z)=L(X, Y, Z)-\{g(Y, Z) X-g(X, Z) Y\} \tag{3.8}
\end{equation*}
$$

where ' L ' is conharmonic curvature tensor with respect to connection D.
Proof. As we know that conharmonic curvature tensor ℓ^{ℓ} with respect to semi-symmetric metric connection ' E ' is given as

$$
\begin{equation*}
\mathscr{L}(X, Y, Z)=R(X, Y, Z)-\frac{1}{n-2}\left\{\operatorname{Ric}(Y, Z) X-\operatorname{Ric} \operatorname{ic}(X, Z) Y+g(Y, Z) R^{R} X-g(X, Z) R^{R} Y\right\} . \tag{3.9}
\end{equation*}
$$

Using (2.4), (2.5), (2.6) and (2.7) in (3.9), we get the required result.
Corollary 3.4. If V_{n} is a LP-Sasakian space form, then we have

$$
\begin{equation*}
\mathscr{L}(X, Y, Z)=-\frac{2(n-1)}{(n-2)} K(X, Y, Z) \tag{3.10}
\end{equation*}
$$

Proof. If V_{n} is a LP-Sasakian space form, then we have

$$
\begin{gather*}
K(X, Y, Z)=g(Y, Z) X-g(X, Z) Y \tag{3.11}\\
L(X, Y, Z)=\frac{n}{n-2}\{g(Y, Z) X-g(X, Z) Y\} . \tag{3.12}
\end{gather*}
$$

Using (3.11) and (3.12) in (3.8), we get the required result.
Theorem 3.5. The concircular curvature tensor $C^{8 \prime}$ with respect to semi-symmetric metric connection ' E ' is given by in V_{n}, the conharmonic curvature tensor ℓ^{2} with respect to connection E is given as

$$
\begin{align*}
\mathcal{E}(X, Y, Z)= & C(X, Y, Z)+\{g(\bar{Y}, \bar{Z})-g(\bar{Y}, \bar{Z})\} X-\{g(\bar{X}, \bar{Z})-g(\bar{X}, Z)\} Y-g(Y, Z) \bar{X}+g(X, Z) \bar{Y} \\
& +g(Y, Z) u(X) U-g(X, Z) u(Y) \cdot U-\frac{(n-2)}{n}\{g(Y, Z) X-g(X, Z) Y\} \tag{3.13}
\end{align*}
$$

Proof. As we know that conharmonic curvature tensor $\varepsilon^{\ell /}$ with respect to E is define as

$$
\begin{equation*}
\mathcal{E}(X, Y, Z)=R(X, Y, Z)-\frac{\not \%}{n(n-1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{3.14}
\end{equation*}
$$

Putting the value of $R(X, Y, Z)$ and $\not / /$ from equation (2.4) and (2.8) in (3.14), we get the required result.

Corollary 3.5. If V_{n} is a LP-Sasakian space form, then concircular curvature tensor $\ell^{\ell /}$ with respect to E can also be given by equation

$$
\begin{align*}
\mathcal{E}(X, Y, Z)= & \frac{2}{n} K(X, Y, Z)+u(Z) \cdot K(X, Y, U)-K(\bar{X}, Y, Z) \\
& -K(X, \bar{Y}, Z)+u(K(X, Y, Z)) \cdot U \tag{3.15}
\end{align*}
$$

Proof. In LP-Sasakian space form V_{n}, we know that

$$
\begin{aligned}
& K(X, Y, Z)=g(Y, Z) X-g(X, Z) Y, \\
& K(\bar{X}, Y, Z)=g(Y, Z) \bar{X}-g(\bar{X}, Z) Y \\
& K(X, \bar{Y}, Z)=g(\bar{Y}, Z) X-g(X, Z) \bar{Y}, \\
& K(X, Y, U)=u(Y) \cdot X-u(X) Y \\
& u(K(X, Y, Z))=g(Y, Z) u(X)-g(X, Z) u(Y), \\
& g(\bar{X}, \bar{Y})=g(X, Y)+u(X) u(Y), \\
& C(X, Y, Z)=0 .
\end{aligned}
$$

Using these results in (3.13), we can easily get (3.15).
Theorem 3.6. The projective curvature tensor β^{\prime} in V_{n} with respect to connection E is given by

$$
\begin{gather*}
P(X, Y, Z)=P(X, Y, Z)+\frac{1}{n-1}[\{g(\bar{Y}, \bar{Z})-g(\bar{Y}, Z)\} X+\{g(\bar{X}, \bar{Z})-g(\bar{X}, Z)\} Y]-g(Y, Z) \bar{X} \\
+g(X, Z) \bar{Y}+g(Y, Z) u(X) U-g(X, Z) u(Y) \cdot U \tag{3.16}
\end{gather*}
$$

Proof. Projective curvature tensor β^{\prime} with respect to connection E is given by

$$
\begin{equation*}
\mathcal{P}(X, Y, Z)=R(X, Y, Z)-\frac{1}{n-1}[\mathcal{R} \operatorname{ic}(Y, Z) X-\operatorname{Ric}(X, Z) Y] . \tag{3.17}
\end{equation*}
$$

Using (2.4) and (2.5) in above, we get the required result.

References

1. De, U. C. : On type of semi - symmetric metric connection on a Riemannian manifolds, An. Stiint. Univ. "Al I. Cuza" Iasi Sect. I Math., 38 (1991), 105-108.
2. Fridmann, A. and Schouten, J. A. : Über die Geometric der holbsymmetrischen, Übertragurgen Math. Z 21 (1924), 211-233.
3. Mishra, R. S. and Pandey, S. N. : On quarter-symmetric metric F connections, Tensor, N. S., 34 (1980), 1-7.
4. Sharfuddin, A. and Hussain, S. I. : Semi-symmetric metric connection in almost contact manifold.
