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 The idea of difference sequence spaces was introduced 

by Kizmaz [1] and then this subject has been studied and 

generalized by various mathematicians. In this paper we define 

some difference sequence spaces by Orlicz space of entire 

sequences and establish some inclusion relations. Some 

properties of these spaces are studied. 
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Introduction 
A complex sequence, whose kth term is xk is denoted by {xij} or simply. Let  be the set of all 

finits sequences. A sequence x = {xij} is said to be analytic if ji1
ij

ij

|x|sup  <  . The vector space of 

all analytic sequences will be denoted by 2 . A sequence x is called entire sequence is 
ji1

ij
ji

|x|lim 


 = 0. The vector space of all entire sequences will be denoted by 2 . Throughout 

the article 2
M . 2

M  denote the orlicz space entire and analytic sequences respectively. 

Throughout m,n denotes an arbitrary positive integer. Kizmaz [1] introduced the notation 

of difference sequence spaces as follows : X( ) {x = (xij) : ( ijx ) X}; for X = 2
 , c2, 

2
0c , where x = 

( ijx ) = (xij – xi+1,j+1). Later on the notion was generalized by Et and Colak [2] as follows: X( m
n ) = {x 

= (xij) : (
m
n xij)  X} for         X= 2

 , c2, 
2
0c , where m N, m

n x=(xij) and m
n x=( m

n xij)=( 1m xij 

1m xi+1,j+1).  














v
u

v
m)1( v

u
vunm2

 for all i,j  N  
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Later on difference sequence spaces have been studied by Et [3], Et and Nuray 4], Colak et 
al [5], Isik [6], Altin and Et [7] and many others. 

Orlicz [8] used the idea of Orlicz function to construct the space (LM), Lindenstrauss and 
Tafriri [9] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz 

sequence space 2
M  contains a subspace isomorphic to 2

p  (1 p  ). Subsequently different 

classes of sequence spaces defined by Parashar and Choudhary [10]. Mursaleen et al [11], Bektas 
and Altin [12], Tripathy et al [13]. Rao and Subramanian [14] and many others. The Orlicz 
sequencespaces are the special cases of Orlicz spaces studied in Ref [15]. 

Recall ([18].[15]) an Orlicz function is a function M : [0,  ) [0,  ) which is continuous, 
non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) as x  . If convexity of 
Orlicz function M is replaced by M(x+y)M(x)+M(y), then this function is called modulus function, 
defined and discussed by Ruckle [16] and Maddox [17]. 

Let ( ,  ,  ) be a finite measure space. We denote by E( ) the space of all (equivalence 

classes of)  measurable functions x from   into [0,  ). Given an Orlicz function M, we define 
on E( ) a convex functional IM by 

IM(x) = 


d))t(x(M ,  

and an Orlicz space LM( ) by LM( ) = {x ( ) : IM( x) <+  for some  > 0}, (For detail see [8], [15]). 
Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to construct Orlicz sequence 

space 

M = 




















 





0psomefor,
P

|x|
M:wx k

1k

  

where w = {all complex sequences}. 

The space M  with the norm 

||x|| = inf




















 





1
P

|x|
M:0p k

1k

, 

Becomes a Banach space which is called an Orlicz sequence space. For M(t) = tp,         1 p < , the 

space coincide with the classical sequence space p . 

Given a sequence x = {xk} its nth section is the sequence 
x(n) = (x1, x2, …, xn, 0, 0, …) 

(n) = (0, 0, …, 1, 0, 0, …), 1 in the nth place and zero’s else where; An FK-space (Frechet coordinate 
space) is a Frechet space which is made up of numerical sequences and has the property that the 
coordinate functional pk(x) = xk (k = 1, 2, …) are continuous.  

An FK-space or a metric space X is said to have AK-property if ( (n)) is a Schauder basis for X 
or equivalently x(n) x (AK stands for Abschnitts Konvergenz or sectional convergence). The space is 
said to have AD (or be an AD space) if  is dense in X. 

We note that AK implies AD by [18]. 
If X is a sequence space, we define 

(i) X© = the continuous dual of X. 

(ii) X2 = {a = (aij) : 
Nji2 

 |aij ijxij| < , for each x X}; 

(iii) X2 = {a = (aij) : 
Nji2 

  aij ijxij is convergent for each x X}; 

(iv) X2  = {a = (aij) : 
n,m

sup ijijij
Nji2

xa 



 < , for each x X}; 
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(v) Let X be an FK-space and X . Then Xf = {f( (n)) : X©}, X2 , X2 , X2 , are called the 
,  and  dual of X, respectively.  

Note that X2  X2  X2 . If X Y then Y2  X2 , for  = , , or . 
Lemma 1.1. (See (9) Theorem 7.2.7)). Let X be an FK-space and X . Then 

(i) X  Xf, 

(ii) If X has AK, X2 = 2Xf, 

(iii) If X has AD, X2 = 2X , 

We note that 2  = 2  = 2 = 2 .  
 

Definition 1.2 : The space consisting of all those sequence x in w such that 

ji1
ijij |x|

M




















0 as 

i+j   for some arbitrary fixed  > 0 is denoted by 2
M , M being on Orlicz function. In other words 
































 ji1

ijij |x|
M  is a mill sequence. 2

M  is called the Orlicz space of entire sequences. The 

space 2
M  is a metric space with the metric d(x, y) = 

















  ji1
ijijijij

j,i

|yx|
Msup  for all x = {xij} 

and y ={yij} in 2
M . 

 

Definition 1.3. If M is a convex function and M(0) = 0, then M2(x)  M2(x) for all   with 0 <   

< 1. 

 
Definition 1.4. The space consisting of all those sequence x in w such that 
















































 ji1

ijij

j,i

|x|
Msup <  for some arbitrarily fixed  > 0 is denoted by 2 M, M2 being an 

Orlicz function. In other words 






























  ji1
ijij |x|

M  is a bounded sequences. 
2 M is called the 

Orlicz space of bounded sequence. 
 
Definition 1.5. A sequence space E is said to be solid or normal if ( ijxij) E whenever (xij) E2 and for 
all sequences of scalars ( ij) with | ij| 1, [20]. 

Let p = (pij) be a sequence of positive real numbers with 0 < pij <sup pij = G and let D = 
Max(1.2G 1). The for aijbij C, the set of complex numbers for all i,j , we have 

ijp
ijij |ba|  D ijp

ij |a|  + ijp
ij |b|                       …(1) 

In this paper, we define the following sequence spaces. 
Let M be an Orlicz function, x be locally convex Hausdroff topological linear space whose 

topology is determined by a set Q of continuous semi-norms q. The symbol 2 (X), 2 (X) denotes 
the space of all analytic and entire double sequences defined over X. We define the following 
sequence spaces: 
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2
M ),q,p,( m

n  =

















































































 0somefor,
x

qm
nm

1
sup:)X(x

ijp
ji1

ijij
m
n

nmji2n,m

2  

2
M ),q,p,( m

n  = 

















































































 0somefornmas,0
x

qm
nm

1
:)X(x

ijp
ji1

ijij
m
n

nmji2

2 . 

 
2. Main Results 

In this section we examine some topological properties of spaces 2
M  ),q,p,( m

n   and 2
M

),q,p,( m
n   and investigate some inclusion relations between these spaces. 

 

Proposition 2.1. If M is an Orlicz function, then 2
M ),q,p,( m

n   is a linear set over the 

set of complex numbers C. 
 

Proof. Let x,y M ),q,p,( m
n   and C2. In order to prove the result, we need to 

find some 3 such that  

nm

1

 nmji2 


 

ijp
ji1

3

ijijijij
m
n yx

qM




















































0 as m+n .         (2.1) 

Since x,y 2
M ),q,p,( m

n  , there exist some positive 1 and 2 such that 

nm

1

 nmji2 


 

ijp
ji1

1

ijij
m
n x

qM




















































0 as m+n  

and 

nm

1

 nmji2 


 

ijp
ji1

2

ijij
m
n y

qM




















































0 as m+n  

Since M is a non-decreasing modules function, q is semi-norm and m
n  is linear then 

nm

1

 nmji2 


 

ijp
ji1

3

ijijijij
m
n yx

qM




















































 

nm

1

 nmji2 


   

ijp
ji1

3

ji1

ijij
m
n

ji1

3

ji1

ijij
m
n

ji1 y)(x)(
qM
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nmji2 


 

ijp
ji1

3

ijijijij
m
n yx

qM
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ijp
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3
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ijij
m
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3

ji1

ijij
m
n y)(x)(
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Take 3 such that 
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1


 = min
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0 (m+n ) 

By (2.2) and (2.3). Hence 
nm

1

 nmji2 


 

ijp
ji1

3

ijij
m
nijij

m
n yx

qM




















































 

0 as 

m+n . So ( x + y) 2
M ),q,p,( m

n  . Therefore 2
M ),q,p,( m

n   is a linear space. This 

completes the proof. 
 

Proposition 2.2. 2
M ),q,p,( m

n   are paranormed spaces (not totally paranormed) with  

2g
*(x) = inf

 


















































































0,1
x

qMsup:

ijp
ji1

ijij
m
n

1j,i

Hmnp , where H =













ij

h,i

psup,1max  

Proof. Clearly 2g (x) 0, 2g (x) = 2g ( x) and )(g  = 0, where  is the zero sequence of 

X. 

Let (xij), (yij)  
2
M ),q,p,( m

n  . Let 1 and 2 > 0 be such that 
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Hence, 
2g (x+y)  inf   Nn,m:Hmnp

21   

inf
 


















































































Nn,m,0,1
x

qMsup:)( 1

ijp

1

ji1

ijij
m
n

1j,i

Hmnp
1  
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Nn,m,0,1
y

qMsup:)( 2

ijp

2

ji1

ijij
m
n

1j,i

Hmnp
2  

Thus we have 2g (x+y) 2g (x)+ 2g (y). Hence, satisfies the training inequality. 2g ( x) =  inf

 


















































































Nn,m,1
x

qMsup:

ijp
ji1

ijij
m
n

1j,i

Hmnp

 

   = inf
 
















































































Nn,m,0r,1
r

x
qMsup:)(r

ijp
ji1

ijij
m
n

1j,i

Hmnp , where r = 

|| 


 . 

Hence, 2
M ),q,p,( m

n   is a paranormed space. 

This completes the proof. 
 

Proposition 2.3. Let 2
1M  and 2

2M  be two Orlicz function. 

Then 
2

1M
 ),q,p,( m

n  
2

2M
 ),q,p,( m

n  
2

2M1M 
 ),q,p,( m

n    

 

Proof. Let x
2

1M
 ),q,p,( m

n  
2

2M
 ),q,p,( m

n  . 

Then there exist 1 and 2 such that 
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0 as m+n .           (3.1) 
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0 as m+n .       …(3.2) 

Let  = min 
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0 as m+n . 

Therefore, x  
2

2M1M 
 ),q,p,( m

n  . 

This completes the proof. 
 
Proposition 2.4. Let m,n . Then we have the following inclusions. 

(i)   
 ,q,p,1m

1n
2
M    2

M ),q,p,( m
n   

(ii) 2
m   

 ,q,p,1m
1n    2

m ),q,p,( m
n   

 
Proof. We prove the case (i) only. The other cases follows in a similar way, Let x 

  
 ,q,p,1m

1n
2
M . Then we have 

'n'm

1

 'n'mji2 


 

ijp
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ijij
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1n x
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 0 as m+n , for some > 0. 

Since M is non-decreasing convex function and q is a semi-norm, we have 
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0 as 'm + 'n . 
Therefore, 
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0 as 'm 'n . 

Hence, x 2
M ),q,p,( m
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This completes the proof. 

Proposition 2.5. Let 0 pij  rij and let 
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have 0    1. Take 0 <  < ij. 
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)1t(0
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ij
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ij
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ij
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Now it follows that 
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Hence, x 2
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n  . From (5.1), we get 2
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n  . This 

completes the proof. 
 

Proposition 2.6. (a) Let 0<inf pij pij 1. Then 2
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n  2
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n   

    (b) Let 1 pij sup pij< . Then 2
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This completes the proof. 

Proposition 2.8. 2
M ),q,p,( m

n   has AK where M is an Orlicz function. 
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Take the nth sectional sequence of x, x(n) = (x1, x2, x3, ….., xn, 0, …..). By using (8.1), 

d(x, x( 'm + 'n ))=
1nmji

sup
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'n'mji2

x
qM

'n'm

1 0 as 'm + 'n  

which implies that x( 'm , 'n ) x as 'm + 'n , implying that 2
M ),q,p,( m

n   as AK. 

This completes the proof. 
 

Proposition 2.9. 2
M ),q,p,( m

n   is solid. 
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Proof. Let ||xij|  |yij| and let y = (yij)  2
M ),q,p,( m

n  , because M is non-decreasing 
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and because y 2
M ),q,p,( m

n   

'n'm

1

 'n'mji2 

  
ijp

ji1

ijij
m
n x

qM






















































2 . 

That is, 
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0 as 'm + 'n   and  

'n'm

1
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ijij
m
n x
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0 as 'm + 'n . 

Therefore x = (xij)  2
M ),q,p,( m

n  . 

This completes the proof. 
 

Proposition 2.10.     ,q,p,m
n

2
M = 2 . 

 
Proof. Step 1. 

2 2
M ),q,p,( m

n   by Proposition 2.7, this implies that    ,q,p,m
n

2
M = 2 .  

Therefore, 

   ,q,p,m
n

2
M

2 .      …(10.1) 

Step 2. Let y 2 . Then |yij| < Ti,j for all I,j and for some constant T2 > 0. 

Let x 2
M ),q,p,( m

n  . Then 
'n'm
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0 as 'm + 'n

.  

Hence, 
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<  for given  > 0 for sufficiently large i,j. Take  = 
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1

, so that 
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1
. But then  
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, so that 
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converges. 

Therefore, 
'n'mji2 
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qM

'n'm

1
 converges. 

Hence, 
'n'mji2 

 ijxijyij converges, so that y     ,q,p,m
n

2
M . Thus  

2     ,q,p,m
n

2
M          …(10.2) 

Step 3. From (10.1) and (10.2), we obtain    ,q,p,m
n

2
M = 2 . 

This completes the proof. 
 

Proposition 2.11.    ,q,p,m
n

2
M = 2  for m = , , , f.  

 
Proof. Step 1. 

2
M ),q,p,( m

n   has AK by proposition 2.8. Hence by Lemma 1.1(ii) we get 

   ,q,p,m
n

2
M =   f ,q,p,m

n
2
M . But    ,q,p,m

n
2
M = 2 . Hence,  

  f ,q,p,m
n

2
M = 2 .                   …(11.1) 

Step 2. 

Since AK implies AD, hence by Lemm1 1.1(iii) we get    ,q,p,m
n

2
M =

   ,q,p,m
n

2
M . Therefore,    ,q,p,m

n
2
M = 2 .       …(11.2) 

Step 3.  
2
M ),q,p,( m

n   is normal by Proposition 2.9. Hence by [20, proposition 2.7], we get 

   ,q,p,m
n

2
M =    ,q,p,m

n
2
M = 2 .       …(11.3) 

From (11.1), (11.2) and (11.3), we have 

    ,q,p,m
n

2
M =    ,q,p,m

n
2
M =    ,q,p,m

n
2
M =   f ,q,p,m

n
2
M = 2 . 

This completes the proof. 
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