Volume 7, Issue 2, February 2018,
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

LORENTZIAN PARA-SASAKIAN MANIFOLD<br>Nanditha S Matad<br>New Horizon College, Marathalli, Bangalore-560103<br>Karnataka, INDIA.

Abstract: In this paper work is done on some properties of the contact CRsubmanifolds. Lorentzian para-Sasakian manifolds are D-totally geodesic and $\mathrm{D}^{\perp-}$ totally geodesic.

Classiftcation: 53C15, 53C21, 53C25, 53C50
Key words : Contact CR-submanifold, Lorentzian para-Sasakian manifold, Dtotally geodesic, $\mathrm{D}^{\perp}$-totally geodesic,

## 1 Introduction

In 1978, Bejancu introduced the notion of C.R. Submanifold of a Kaehler manifold[1],Since then several works are going on C.R. Submanifolds.
Matsumoto[2] introduced the idea of Lorentzian para- contact structure and studied its several properties. Later Mihai and Matsumoto [3] introduced the same notion independently and they obtained several results on this manifolds. Lorentzian para-Sasakian manifold have also been studied by U.C.De,A.A.Shaikh and Mihai[4] and Venkatesh, C.S.Bagewadi and Pradeep Kumar K.T.[5].
Recently Ahmet yildiz, U.C.De and Erhan Ata[6] worked on Lorentzian paraSasakian manifolds and introduced the new concept called generalized $\eta$-Einstien manifold in a Lorentzian para-Sasakian manifolds.
In this paper In this paper work is done on some properties of the contact CRsubmanifolds. Lorentzian para-Sasakian manifolds are D-totally geodesic and $\mathrm{D}^{\perp-}$ totally geodesic.

## 2. Preliminaries

Let $M$ be an ( $2 \mathrm{n}+1$ )-dimensional almost contact metric manifold with indefinite almost contact metric structure ( $\varphi, \xi, \eta, g$ ) then they satisfies

$$
\varphi^{2}=-\mathbf{I}+\eta \otimes \xi
$$

$$
\eta(\xi)=1, \quad \varphi \xi=0, \eta \circ \varphi=0
$$

2.2.
2.3. $g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)$, $\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \varphi \mathrm{Y})$,

$$
\mathrm{g}(\mathrm{X}, \xi)=\eta(X)
$$

For all vector fields $\mathrm{X}, \mathrm{Y}$ on M .

An almost metric structure ( $\varphi, \xi, \eta, g$ ) is called an Lorentzian para-Sasakian manifold if
2.4 $(\tilde{\nabla} \mathrm{X} \varphi) \mathrm{Y}=\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi+\eta(\mathrm{Y}) \mathrm{X}+2 \eta(\mathrm{X}) \eta(\mathrm{Y}) \xi$,
Where $\tilde{\nabla}$ is the Levi-Civita (L-C) connection for a semi-Riemannian metric g. Also we have
2.5

$$
\tilde{\nabla} X \xi=\varphi X
$$

Where $\mathrm{X} \in \mathrm{TM}$.
The Gauss and Weingarten formulae are as follows
2.6
$\tilde{\nabla} \mathrm{X} Y=\nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{h}(\mathrm{X}, \mathrm{Y})$,
2.7

$$
\tilde{\nabla} \mathrm{X} \mathrm{~N}=-\mathrm{A}_{\mathrm{N}} \mathrm{X}+\nabla_{\mathrm{x}}{ }^{\perp} \mathrm{N},
$$

for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$ and $\mathrm{N} \in \mathrm{T}^{\perp} \mathrm{M}$, where $\nabla{ }^{+}$is the connection on the normal bundle $\mathrm{T}^{\perp} \mathrm{M}, \mathrm{h}$ is the second fundamental form and $\mathrm{A}_{\mathrm{N}}$ is the Weingarten map associated with N via

$$
\mathrm{g}\left(\mathrm{~A}_{\mathrm{N}} \mathrm{X}, \mathrm{Y}\right)=\mathrm{g}(\mathrm{~h}(\mathrm{X}, \mathrm{Y}), \mathrm{N})
$$

The equation of Gauss is given by
$2.9 \quad R^{\sim}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, Z), h(Y, W))-g(h(X, W), h(Y$, Z)),
where $\tilde{R}$ (resp. R) is the curvature tensor of $\tilde{M}$ (resp. M).
For any $\mathrm{x} \in \mathrm{M}, \mathrm{X}_{\mathrm{x}} \in \mathrm{T}_{\mathrm{x}} \mathrm{M}$ and $\mathrm{N} \in \mathrm{T} \perp \mathrm{M}$, we write,
2.10

$$
\mathrm{X}=\mathrm{PX}+\mathrm{QX}
$$

2.11

$$
\varphi \mathrm{N}=\mathrm{BN}+\mathrm{CN}
$$

where PX (resp. BN) denotes the tangential part of X (resp. $\varphi \mathrm{N}$ ) and QX (resp. CN ) denotes the normal part of $\mathrm{X}($ resp. $\varphi \mathrm{N}$ ) respectively.

Using (2.6), (2.7), (2.10), (2.11) in (2.4) after a brief calculation we obtain on com paring the horizontal, vertical and normal parts,
2.12.

$$
\mathrm{P} \nabla_{\mathrm{X}} \varphi \mathrm{PY}-\mathrm{PA}_{\varphi \mathrm{QY}} \mathrm{X}=\varphi \mathrm{P} \nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{g}(\mathrm{PX}, \mathrm{Y}) \xi+\eta(\mathrm{Y}) \mathrm{PX}+
$$ $2 \eta(\mathrm{Y}) \eta(\mathrm{X})$,

2.13

$$
\mathrm{Q} \nabla_{\mathrm{X}} \varphi \mathrm{PY}+\mathrm{QA}_{\mathrm{pQY}} \mathrm{X}=\mathrm{Bh}(\mathrm{X}, \mathrm{Y})+\mathrm{g}(\mathrm{QX}, \mathrm{Y}) \xi+\mathrm{\eta}(\mathrm{Y}) \mathrm{QX},
$$

2.14

$$
\mathrm{h}(\mathrm{X}, \varphi \mathrm{PY})+\nabla^{\perp} \varphi \mathrm{QY}=\varphi \mathrm{Q} \nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{Ch}(\mathrm{X}, \mathrm{Y}) .
$$

From (2.5) we have
2.15

$$
\nabla_{x} \xi=\varphi P X
$$

2.16

$$
h(X, \xi)=\varphi Q X,
$$

Also we have
$2.17 \mathrm{~h}(\mathrm{X}, \xi)=0 \quad$ if $\quad \mathrm{X} \in \mathrm{D}$,
2.18

$$
\nabla_{\mathrm{x}} \xi=0,
$$

2.19

$$
h(\xi, \xi)=o,
$$

2.20

$$
\mathrm{A}_{N} \xi \in \mathrm{D}^{\perp}
$$

## 3. D-totally geodesic and $\mathbf{D}^{1}$-totally geodesic contact CR-Submanifolds of Lorentzian paraSasakian manifold

Definition: A contact CR-submanifold M of an Lorentzian paraSasakian manifold $\tilde{\mathrm{M}}$ is called D-totally geodesic (resp. $\mathrm{D}^{\perp}$-totally geodesic) if $h(X, Y)=0, \forall X, Y \in D\left(r e s p . X, Y \in D^{\perp}\right)$.

Proposition 1 Let M be a contact CR-submanifold of an Lorentzian para-Sasakian manifold. Then M is a D-totally geodesic if and only if $A_{N} X \in D^{\perp}$ for each $X \in D$ and $N$ a normal vector field to $M$.

Proof : Let M be D-totally geodesic. Then from (2.8) we get

$$
\mathrm{g}(\mathrm{~h}(\mathrm{X}, \mathrm{Y}), \mathrm{N})=\mathrm{g}\left(\mathrm{~A}_{\mathrm{N}} \mathrm{X}, \mathrm{Y}\right)=\mathrm{o} .
$$

So if

$$
\begin{aligned}
& \mathrm{h}(\mathrm{X}, \mathrm{Y})=\mathrm{o}, \forall \mathrm{X}, \mathrm{Y} \in \mathrm{D} \\
& \text { i.e., } \\
& \mathrm{A}_{\mathrm{N}} \mathrm{X} \in \mathrm{D}^{\perp} .
\end{aligned}
$$

Conversely, $\quad$ let $\mathrm{A}_{\mathrm{N}} \mathrm{X} \in \mathrm{D}^{\perp}$. Then for $\mathrm{X}, \mathrm{Y} \in \mathrm{D}$ we can obtain,

$$
\begin{array}{cc}
\mathrm{g}\left(\mathrm{~A}_{\mathrm{N}} \mathrm{X}, \mathrm{Y}\right)= & \mathrm{o}=\mathrm{g}(\mathrm{~h}(\mathrm{X}, \mathrm{Y}), \mathrm{N}), \\
\text { i.e., } & \mathrm{h}(\mathrm{X}, \mathrm{Y})=\mathrm{o}
\end{array}
$$

$\forall \mathrm{X}, \mathrm{Y} \in \mathrm{D}$, which implies that M is D-totally geodesic. Thus our proof is complete.
Proposition 2 : Let M be a contact CR-submanifold of Lorentzian paraSasakian manifold $\tilde{M}$. Then $M$ is $D^{\perp}$-totally geodesic if and only if $A_{N} X$ $\in \mathrm{D}$ for each $\mathrm{X} \in \mathrm{D}^{\perp}$ and N a normal vector field to M .
Proof: The proof follows immediately from the above proposition.
Concerning the integrability of the horizontal distribution D and vertical

International Journal of Engineering, Science and Mathematics UGC Approved Journal (46710)
Volume 7, Issue 2, February 2018,
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
distribution $\mathrm{D}^{\perp}$ on M , we can state the following theorem :
Theorem: Let M be a contact CR-submanifold of an Lorentzian paraSasakian manifold. If $\mathbf{M}$ is $\xi$-horizontal, then the distribution D is integrable iff

$$
\mathrm{h}(\mathrm{X}, \varphi \mathrm{Y})=\mathrm{h}(\varphi \mathrm{X}, \mathrm{Y}),
$$

$\forall \mathrm{X}, \mathrm{Y} \in \mathrm{D}$. If M is $\xi$-vertical then the distribution $\mathrm{D}^{\perp}$ is integrable iff
3.2

$$
\mathrm{A}_{\varphi \mathrm{X}} \mathrm{Y}-\mathrm{A}_{\varphi \mathrm{Y}} \mathrm{X}=\eta(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}, \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{D}^{\perp} .
$$

Proof: If M is $\xi$-horizontal, then using (2.14) we get,

$$
\mathrm{h}(\mathrm{X}, \varphi \mathrm{PY})=\varphi \mathrm{Q} \nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{Ch}(\mathrm{X}, \mathrm{Y})
$$

$\forall \mathrm{X}, \mathrm{Y} \in \mathrm{D}$. Therefore $[\mathrm{X}, \mathrm{Y}] \in \mathrm{D}$ iff $\mathrm{h}(\mathrm{X}, \varphi \mathrm{Y})=\mathrm{h}(\mathrm{Y}, \varphi \mathrm{X})$
Hence, if M is $\xi$-horizontal, $[\mathrm{X}, \mathrm{Y}] \in \mathrm{D}$ iff $\mathrm{h}(\mathrm{X}, \varphi \mathrm{Y})=\mathrm{h}(\varphi \mathrm{X}, \mathrm{Y})$.
Again using (2.14) we get,

$$
\nabla^{\perp} \varphi \mathrm{Y}=\mathrm{Ch}(\mathrm{X}, \mathrm{Y})+\varphi \mathrm{Q} \nabla_{\mathrm{X}} \mathrm{Y} \quad \text { for } \mathrm{X}, \mathrm{Y} \in \mathrm{D}^{\perp} .
$$

After some calculations we see that
3.3 .

$$
\begin{aligned}
& \tilde{\nabla}_{\mathrm{X}} \varphi \mathrm{Y}=\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi+\eta(\mathrm{Y}) \mathrm{X}+2 \eta(\mathrm{Y}) \eta(\mathrm{X}) \xi+\varphi \mathrm{P} \nabla_{\mathrm{X}} \mathrm{Y} \\
&+\varphi \mathrm{Q} \nabla_{\mathrm{X}} \mathrm{Y}
\end{aligned} \mathrm{Bh}(\mathrm{X}, \mathrm{Y})+\mathrm{Ch}(\mathrm{X}, \mathrm{Y}) . . ~ \$
$$

Again from (2.7) and (3.3) we get,

$$
\nabla_{X}{ }^{\perp} \varphi \mathrm{Y}=\mathrm{A}_{\varphi \mathrm{Y}} \mathrm{X}+\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi+2 \eta(\mathrm{Y}) \eta(\mathrm{X}) \xi+\varphi \mathrm{P} \nabla_{\mathrm{X}} \mathrm{Y}+\varphi \mathrm{Q} \nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{Bh}(\mathrm{X}, \mathrm{Y})+
$$ Ch(X, Y).

for $\mathrm{X}, \mathrm{Y} \in \mathrm{D}^{\perp}$. From (3.4) and (3.3) we can write,

$$
\varphi \mathrm{P} \nabla_{\mathrm{X}} \mathrm{Y}=-\mathrm{A}_{\varphi \mathrm{Y}} \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{X}-2 \eta(\mathrm{Y}) \eta(\mathrm{X}) \xi-\mathrm{Bh}(\mathrm{X}, \mathrm{Y}) .
$$

Interchanging X and Y in (3.5) we get,

$$
\varphi \mathrm{P} \nabla_{\mathrm{Y}} \mathrm{X}=-\mathrm{A}_{\mathrm{pX}} \mathrm{Y}-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{X}) \mathrm{Y}-2 \eta(\mathrm{Y}) \eta(\mathrm{X}) \xi-\mathrm{Bh}(\mathrm{X}, \mathrm{Y}) .
$$

Substracting (3.5) from (3.6) we have,

$$
\varphi \mathrm{P}[\mathrm{X}, \mathrm{Y}]=-\mathrm{A}_{\varphi \mathrm{Y}} \mathrm{X}+\mathrm{A}_{\varphi \mathrm{X}} \mathrm{Y}-\eta(\mathrm{Y}) \mathrm{X}+\eta(\mathrm{X}) \mathrm{Y} .
$$

International Journal of Engineering, Science and Mathematics UGC Approved Journal (46710)
Volume 7, Issue 2, February 2018,
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

Now since M is $\xi$-vertical, $[\mathrm{X}, \mathrm{Y}] \in \mathrm{D}^{\perp}$ iff,

$$
A_{\varphi X} Y-A_{\varphi Y} X=\eta(Y) X-\eta(X) Y
$$

So the proof is complete.

## References

[1] A.Bejancu, ‘CR-Submanifolds of a Kahler manifold’ ,Proc,Am,Math,Soc, 69 (1978) PP 135-142.
[2] K. Matsumoto, 'On Lorentzian para-Contact manifold’, Bull,of Yamagata Univ,Nat,Sci, Vol 12(1989), PP151-156.
[3] K. Matsumoto and I Mihai, ' On a certain, transformation in a Lorentzian para-sasakian manifold',Tensor,Vol47,No.2,(1988), PP 189197.
[4] I.Mihai,A.A.Shaikh and U.C.De, 'On Lorentzian para-Contact manifold', Rendiconti del Seminario Matematico di messina, no.3,(1999) PP 149-158.
[5] Venkatesha,C.S.Bagewadi and K.T.Pradeep kumar 'Some results on Lorentzian para-Contact manifold', IRSN Geometry Vol.2011.Artical I.D. 161523, Hindwai Publishers.
[6] A.Yildiz, U.C..De and Erhan Ata, 'On a type of Lorentzian para-Contact manifold', Math Reports 16 (66),1 (2014), PP 61-67.
[7] Blair.D.E., Riemannian Geometry of Contact and Symplectic Manifold, Boston,Berlin,(2002).
[8] Barnali Laha, Bandana Das, Arindam.B. 'Contact CR-submanifolds of an indefinite Lorentzian para-Contact manifold’, Acta Univ Sapientiae, Mathematica, 5, 2 (2013) 157-168.

