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1-Introduction:

It is well known [1] that a non-flat Riemannian manifold is called a recurrent manifold if

its curvature tensor R satisfies the relation:
1.1)  (VxR)(Y,2)W = AX)R(Y, )W,

whereV denotes the operator of covariant differentiation with respect to the metric tensor g

and A is a non zero 1-form defined as:

12) g(X,p) = A(X).

The object of this paper is to study a non-flat Riemannian manifold such that its curvature

tensor R satisfies the relation:

1.3) (VxR)(Y, )W = A(X)S(Z, W)Y,

whereV and A as stated above and S denote the Ricci tensor such that,
1.4) S(X,Y) = g(LX,Y).

Such a manifold shall be called pseudorecurrent manifold. As in recurrent Riemannian
manifold if in particular the 1-form A vanishes identically then the manifold will reduce to

symmetric manifold. This will justify the definition (1.3) and the name for it. Also exact
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justification will be byproducing a concrete example for the manifold as we will see in
section 3.

It is known [1] that Bianchi second identity on a Riemannian manifold is as such:

1.5) (VxR)(Y,Z, W, U) + (VywR)(Y,Z U, X) + (VyR)(Y,Z, X, W) = 0

It is also known [1] that on a Riemannian manifold the Ricci tensor is of Codazzi type if,
1.5) (VxS (Y, 2) — (Vz5)(Y,X) =0,

and a Riemannian manifold is of cyclic Ricci tensor if,

1.6) (VxS)Y,Z) + (VyS)X,Z) + (V89 (Y,X) = 0.

In section2 it is shown that every pseudorecurrent manifold is Einstein manifold, and if
pseudorecurrent manifold is of Codazzi type Ricci tensor then r and 1 are Eigen value of
the Ricci tensor S corresponding to the Eigen vector p.But if pseudorecurrent manifold is
of cyclic Ricci tensor then %T is an Eigen value of the Ricci tensor S and p is an Eigen

vector corresponding to the Eigen value. Alsoit is shown that on a conformally flat
pseudorecurrent manifold the scalar curvature must not be constant.
2-Pseudorecurrent manifold:

Substituting (1.3) on Bianchi second identity we get,

2.1) A(X)S(Z,W)g(Y,U) + A(W)S(Z,U)g(Y,X) + A(U)S(Z,X)g(Y,W) =0.
Contracting with respect to Y and U we get,

2.2) NA(X)S(X,W) + 2A(W)S(Z,X) = 0.

Again contracting with respect to X and Z yield,

2.3) A(LW) =-2 A(W).

Contracting (2.2) otherwise we have,

a2
2.4) A(LX) = ——A(W).
Thus we can state,

_n2
Theorem?2.1)Onpseudorecurrent manifold-2 and % are Eigen values of the Ricci tensor S

corresponding to the Eigen vectorp.

Now contracting (1.3) we get,

2.5) (VxS)(Y,U) = nAX)S(Y, V).

It is clear that pseudorecurrent manifold is Ricci symmetric iff it is Ricci flat.
Contracting (1.3) otherwise we get,

2.6) (VxS)(Z, W) =rAX)g(Z,W),

where r is the scalar curvature of the manifold.

From (2.5) and (2.6) we can have,

2.3) S(Z,W) =~g(Z,W).

Thus we can state,

Theorem?2.2)Every pseudorecurrent manifoldis an Einstein manifold.

If the manifold is of Codazzi type Ricci tensor then by virtue of (1.5) and (2.1) we have,
2.7) AX)S(Y,Z) — A(Z)S(Y,X) = 0.

Contracting with respect to Y and Z we get,

2.8) A(LX) = rAX).

Thus we can state,

57 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com



http://www.ijesm.co.in/

ISSN: 2320-0294[E Impact Factor: 6.765

Theorem?2.3)Ifpseudorecurrent manifold is of Codazzi type Ricci tensor then r is an Eigen
value of the Ricci tensor S and p is an Eigen vector corresponding to the Eigen value.
Also by virtue of (1.5) and (2.5) we have,

2.9) AX)g(Y,Z) — A(Z)g(Y,X) =0

Contracting with respect to Y and Z we get,

2.10) A(LX) = A(X).

Thus we can state,

Theorem?2.4) If pseudorecurrent manifold is of Codazzi type Ricci tensor then the Ricci
tensor S have Eigen value 1 corresponding to the Eigen vectorp.

Now if the manifold of cyclic Ricci tensor then from (1.6) and (2.5) we have,

2.11) AX)S(Y,Z) + A(Y)S(X,Z) + A(Z)S(Y,X) = 0.

Contracting with respect to Y and Z we get,

2.12) A(LX) = —-A(X).

Thus we can state,

Theorem?2.5)Ifpseudorecurrent manifold is of cyclic Ricci tensor then _TT is an Eigen value

of the Ricci tensor S and p is an Eigen vector corresponding to the Eigen value.
It is known [1] that in a conformally flat (M", g) (n=3),
1

213)(VxH(¥, 2) = (Vz)(¥, X) = 5= [dr(X)g (¥, 2) — dr(Z)g(X,Y)].

Using (2.6) on this equation we get,

2.140r[AX)g(Y,2) — A(2)g(Y,X)] =

Contracting we get,
1

2.15) AX) = D)

Thus we can state,

Theorem?2.6)On a conformally flat pseudorecurrent manifold the scalar curvature cannot

1
2(n—-1)

[dr(X)g(Y,Z) — dr(Z)g(X,Y)].

dr(X).

be constant.

3- Example of pseudorecurrent manifold:
Let us consider R endowed with the Riemannian metric [2],

3.1)d?* = gydx'dx) = (1 + 2q)[(dx")* + (dx?)* + (dx*)? + (dx*)?] ,

xl
(i, 3 =1,2,3,4) where q=€k—2 and k is non-zero constant.

Then it is known [2] that the only non vanishing christoffel
symbols, Ricci tensors, scalar curvature, curvature tensors,

and the covariant derivatives of the curvature tensors are,

q 1 3 4 q
oyt =rt=rt=-2_ . pl=r3=r4=-1_
ey =l =lu=00 7 In=lhy=ha =77

3
3.3)S 1 =——— ; Sy =S33=Syu=——,

(142¢)2 1+2q
_ 6q(1+q)
3.4) = iz’
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2
3.5) Ri221 = Ri331 = Riga1

14

q
= - R = R = R = -
1+2q ' 2332 2442 4334 1+2¢q

q(1-4q)

_ _ _ _ _ _2q%(1-q)
3.6)Riz211 = Ri331,1 = Ryaa11 = Az’ Rj3301 = Rogan 1 = Ruzzan = -5

(1+2q)% °
Let us define A; and as follows:

(1-4q)

3.7) Ai: 2q(1—-q) ., . .. :
(14+29)2 I’fl' FJ]in Rjklm i

To verify the definition by (1.3) we have to verify only the

following relations:

3.8) Riz11 = A1522911+

3.9)  Rizz11 = 41533911

3.10) Riga11 = A15449114

3.11) Ry3321 = A1533922

3.12) Ryaz1 = A141544922,

3.13) Ry334,1 = A141533944 -

Using (3.1), (3.3) and (3.6) on (3.8) we get,
R.H.S. = 415911

_ (-4 . «q
© (14292 (1+2q)(1 +24)

_oq(l-4q)
= G L.H.S.

Similarly we can show (3.9), (3.10). (3.11), (3.12) and
(3.13) are true, whereas the other cases are trivially true.
Hence R* along with the metric g defined by (3.1) is

pseudorecurrent manifold. Thus we can state,

Theorem3.1) A Riemannian manifold (M4,g) endowed with the
metric (3.1) is a pseudorecurrent manifold with non constant

scalar curvature.
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