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Abstract 

Forecasting volatility is one of the fundamental areas of research in Financial Mathematics, and thus has been 

the focus of many researchers; also, financial markets are known to be far from deterministic but stochastic 

and hence random models tend to perfectly model the markets.This study used appropriate Discrete-time 

Markov models to predict the multivariate stochastic Autoregressive volatility of an equity portfolio on a 

stock market. Therefore, the idea of modelling volatility as a stochastic process for an accurate forecast using 

the Markov chain on the financial data sets are based on the risks that often affect investment opportunities 

and the risk factors for prices changing that investors are most concerned about making decisions. The results 

provided more accuracy on forecasting price volatility on stock markets. We used a 3-state Discrete-Time 

Markov Chain (DTMC) for a portfolio of two stocks for the same sector and we compared the used model 

(fitted on a portfolio) to the multivariate GARCH models using real data from a stock market. The modified 

model provided better volatility smiles compared to the Multivariate Generalized Autoregressive Conditional 

Heteroscedasticity (MGARCH) models. 

 

1. Introduction 

Changes in volatility over time can be modelled using the approach based on Discrete time Markov chain 

(DTMC). The main characteristic of any financial asset is its return, which is typically considered to be a 

random variable. The asset’s volatility that describes the spread of outcomes of this variable, plays the 

principal role in numerous financial applications. We often use it to estimate the value of market risk and we 

will use it in this work for portfolio management. Then, the main purpose of our research is to allow financial 

institutions not only to know the current value of the volatility of the managed assets, but also to be able to 

estimate their future values.  However, the generalizations to multivariate series can be difficult to estimate 

and interpret. Another approach is to model volatility as an unobserved stochastic process. Although it is not 

easy to obtain the exact likelihood function for such stochastic volatility models, they tie in closely with 

developments in finance theory and have certain statistical attractions.  A number of papers have documented 

the advantage of modelling stochastic volatility including Harvey et Al (1994) who used the Quasi Maximum 

Likelihood (QML) methods. Although there have been already many practical and successful applications of 

multivariate GARCH models, the theoretical literature on multivariate stochastic volatility (MSV) models 

has developed significantly over the last few years. Nevertheless, compared to the MGARCH literature, the 

literature on MSV is much more limited, reflected by much fewer published papers on the topic to date. 

Yet the MSV models remain more difficult to estimate, although estimation is already an issue for the 

MGARCH models, it is believed that estimation is more of an issue for MSV models. Moreover, as a result 

of difficulties with parameter estimation, the computation of model comparison criteria becomes extensive 

and demanding. Also, compared to the multitude alternative specifications in MGARCH models, only a 

handful of MSV model specifications have been studied; this may be among the multiple reasons why the 

MSV models have had fewer empirical applications. 

http://www.ijesm.co.in/
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Our interests in Stochastic Volatility models stem from their popularity in analysis of macroeconomic and 

financial market data. It has been shown by Boscher et Al (2000) and Hol and Koopman (2002) that in some 

empirical studies Stochastic Volatility models make better forecasts than GARCH models do. In GARCH-

type models the conditional variance of returns is assumed to be a deterministic function of past returns, 

whereas in stochastic volatility (SV) models the volatility process is random. There are both economic and 

econometric reasons why multivariate volatility models are important. One of the advantages of multivariate 

stochastic volatility (MSV) models over GARCH models is parsimony. The knowledge of correlation 

structures is very important in many financial applications, such as asset pricing, optimal portfolio, risk 

management and asset allocation, so that multivariate volatility models are useful for making financial 

decisions.  Two classes of models ARCH and Stochastic Volatility have emerged as the dominant approaches 

for modelling financial volatility. Volatility should be modelled as a stochastic process. Several real 

situations can be modelled by stochastic processes including our case, time series are stochastic processes 

that illustrate the daily closing values of the stock market. One of the main objectives of the study of time 

series is therefore, the forecasting of future realizations very often for economic reasons, namely to predict 

the evolution of a financial market. 

We use discrete time Markov chain (DTMC) methods to develop a new class of stochastic volatility models 

in which volatility has a discrete support. The method developed in our work for estimation of the MSV 

model is simulated maximum likelihood (SML). The model will be easy to estimate. It implies that volatility 

follows a low-order Autoregressive (AR) process. 

Our model has a low dimension of the state space, and is parameterized such that volatility follows a low-

order Autoregressive (AR) process, and does not incorporate any type of underlying component structure; see 

(Calvet and Fisher, 2004). 

In SML estimation, the latent variable is simulated conditional on available information and the simulated 

value is used to construct an unbiased estimate of the marginal density of the observable variable. The SML 

method has been used by Danielsson (1994a) and Adriana $ Kirby (2014) in estimating a univariate SV 

model and the technique is extended here to allow for estimation of the MSV model. Simulated likelihood 

(SL) has several advantages in estimation of stochastic volatility models, since it is a likelihood method; the 

classical theory of maximum likelihood (ML) carries over to the simulated likelihood (SL) case. Likelihood 

methods are more efficient than approximation techniques like quasi maximum likelihood (QML) 

(Danielsson, 1994a.) 

The data used in this study is daily Equity Group and KCB Group Ltd prices data from 2010-2016. 

 

2. Research Method 
 

2.1. Modelling Volatility 

In this paper, we developed a discrete multivariate stochastic autoregressive volatility model. Stochastic 

modelling is a form of financial modelling that includes one or more random variables. Among the stochastic 

models, one kind of process called Markov process is a specific type of a mathematical object known as a 

stochastic or random process, this has been studied by several independent researchers. Two related 

modelling strategies are typically followed in specifying the dynamics of the volatilities; the volatilities can 

be assumed to be a non-linear function of past returns, as shown in the ARCH type models also, the volatility 

process is a function of an exogenous shock as well as past volatilities as shown below. The stochastic 

volatility model can easily be parsimoniously extended to include multiple assets. The standard SV model is 

defined as 

t t tr v  1,..., , (0,1)tt T N   

where tr  is the return for the interval 1t   to t , 0tv   is the return volatility for period t , and t  is a 

white-noise error that is independent of 
t jv 

 for all 0j  . 

http://www.ijesm.co.in/
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A discrete time stochastic process is a family of random variables  ,tv t N  defined on a given 

probability space and indexed by the parameter  0,1,2,t N   . We can assume that 1tv   follows a 

first-order Markov process, i.e. 

1 1 1

1

Pr ( / , , , )

Pr ( / ) t

t k h t i t j

t k t j

v v v v

v v

   

 

 



   

   


 

where   is the standard deviation, and also that the transition probabilities for this process are time 

invariant, that is: 

1

1

Pr ( / )

Pr ( / ) , t

t n k t n i

t k t i

v v

v v n

 

 

  



 

   
 

That means we model volatility as a time-homogeneous, first-order Markov Chain with 3m  states. 

Volatility is here, associated with the sample standard deviation of returns over some period of time. We can 

compute it using the following formula:  
2

1

1

1
ˆ

T

t

t

r
T







  . As mentioned before, tr  is the return 

of an asset over period t  and   is an average return over T  periods. We could also use the variance, 
2 , 

as a measure of volatility but variance and standard deviation are already connected by a simple relationship.   

From that, suppose 
'

1( , , )kS S S  denotes a vector of log-prices for k  financial assets, and 

1

'( , , )t ktt r r r  denotes a vector of the observed log- returns for k  financial assets at time t  for 

1, ,t T  . We assume that the conditional mean of r  is zero for expositional purposes. Note that the 

conventional first-order Markov Chain model for k financial data sets of m  states has 
km states. 

Let 1( , , )t t kt   , 1( , , )t t ktv vV   . A Multivariate model of returns is then defined as:  

 2.1Vt t tr   

 where 
' V V tt t   is the k k  volatility matrix of tr , and ε t  is a 1k  vector of White-noise error 

which are independent of 
t jV  for all 0j  , and k  the number of assets. The model of returns has to 

focus both the distribution of the shocks t  and the functional form of the volatilities t . In order to 

illustrate the key elements of our strategy, we assume that the dynamics of volatility is governed by a first-

order Markov chain properly parameterized.  

Let’s assume that 
1t  follows a first-order Markov process, i.e. 

 1 1 1/ , , ,P     V V V Vt k h t i t j     

1P( / ),   V Vt jt k
t   

In fact, we assume here that the volatilities that will be effective in a period depends only on the current 

volatilities for a period. 

http://www.ijesm.co.in/
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Commonly the return shocks ε t  are assumed to be normal and tr  is conditionally normal, while the 

unconditional distribution of r  is non-normal, and can exhibit the expected stylized facts about returns, such 

as fat tails and volatility clusters. The variance of the shock returns is not constant over time or the volatility 

is clustering. 

In the SV case, the volatilities are a dynamic latent variable and estimation is nontrivial since the volatilities 

have to be integrated out of the joint density for returns and volatilities. The stochastic volatility specification 

has several advantages over the GARCH class of models e.g. they are much more closely integrated with 

microeconomic theory (Anderson,1994). 

The expression of the volatility is: 

 1 1
2.2'

 
V

t t
 x  

 and  

 1 1
2.3P'

 
 tt t

x x e  

where tx  is the state of today and '  an 1k  vector of m  that specifies the volatilities mass points and 

where each  1 2

'
, , ,m M     . 

We can represent an M-states Markov chain in terms of a M 1  vector tx  whose each 
thj  element equals 

1 if the process is in state  1,2. ,Mj   at time t  and 0 otherwise; see Hamilton (1994). We have the 

state-transitions described by a VAR (1) process as below: 

1 1
P' tt t 

 x x e  

where P  is a M×M  transition matrix with 1 / ) k, j M      P V V
k j t k t j=P(   and 1te  is a 

vector martingale difference sequence, i.e., 
1 1 1E( / , , , ) 0tt t  e x x x . 

Our model allows for leverage effects and time varying correlation. Hence, it is more flexible than those 

others models, the estimated model should be the same as the Multivariate model of Danielson (1998) and 

Harvey et Al (1994).  

Assume that in the equation of the multivariate model of returns, the return shocks ε t  are multivariate 

normal. From the definition of the k k  matrix of volatilities t , where the covariance matrix, 
t  is 

defined by: 

'
t t t    

where  is the matrix of correlation coefficient defined by 
'E t t

 
 
   and: 

 1 1i j i j      

 1i j i j     

The covariance matrix will always be positive definite since   is positive definite. In the MSV model, 

variances and correlations are instantaneous stochastic variables. 

http://www.ijesm.co.in/
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In the discrete state-space framework, the autocorrelation function of volatility is determined by how we 

parameterize the transition matrix of the Markov chain. The most transparent way to obtain a multivariate 

first order autoregressive model is to specify P  such that it is immediately apparent. We have: 

 1 1 2.4       t t t  

This is an AR (1) model of volatility, where   is the first order autocorrelation coefficient of volatility and, 

1 1't te    is white noise. We can set 

   P = I 1 1 ' 2.5   M M  

where  0,1 , MI  denotes an M M  identity matrix, M1  is the M 1  vector of 1’s and   is the 

M 1  vector of ergodic probability with  tE x  , with 
tx  denoting the state. 

By substitution and simplification, we obtain the volatility process in equation [2.4] with 

 1 '     . This is a straightforward approach for formulating multivariate first order discrete 

stochastic volatility model. 

 Therefore, we will refer equations [2.2], [2.3] and [2.5], as a DMSARV (1, M) model, this designator 

conveys its two most important features. Volatility follows a discrete AR (1) process, and allows for M  

different realizations of volatility.  We then assume that the distribution of volatility has discrete support for 

achieving the computational tractability of our approach. 

The choice of N  and M  controls the degree of approximation error, if we wanted to approximate a 

continuous stochastic AR volatility process in which the marginal distribution of volatility is log normal, we 

could parameterize   and   by specifying the mean an variance of the log normal distribution. 

Formulating a multivariate higher-order of the previous DMSARV model will require some modifications to 

the methods developed above and this is an interesting avenue for future research. 

 

2.2. Parameterization Strategies  

Since M  is small ( i.e. 3 ), the multivariate stochastic volatility specifications developed below are 

slightly parameterized because each 
k  and 

k  have M  elements for k 1,2 ; we will impose two 

additional restrictions on the parameter space for more specifications. Let parameterize 
k  and 

k  as: 

 jk k k j, k 1,2 and j 1,2, ,M 2.6        

where each 0 and      

Volatility mass points are evenly spaced along a line. Now,  
k  can be parameterized as 

 
   

   
M jj 1

jk k k

M 1 !
1 2.7

j 1 ! M j !
  


 

 

 

j 1, , M with M 3 and k 1,2   , where  0,1 . 

http://www.ijesm.co.in/
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By imposing these two restrictions, we obtain a class of models that have only 8 parameters regardless the 

size of the state space. 

By extending this approach to a log linear specification, this yields 

 jk k klog j j 1, ,M 2.8       

where 0   and the value of   is unrestricted, one in which the mass points of the log of volatility are 

evenly spaced along a line. Changing how to parameterize   has no effect on the basic time series of 

volatility, t  still follow a discrete AR (1) process. 

Therefore, knowing that parameterization strategies of   is an important factor for the approximation of the 

marginal distribution of volatility, however, the evidence from the realized-volatility literature suggested that 

the marginal distribution of volatility is much closer to log normal than to normal. Then, we use the 

parameterization which is more in line with log-normality and expect it to better fit the data. 

Another parameterization of   that offers greater flexibility in the positioning of the volatility mass points 

is done by replacing the linear functions in the previous equations with polynomials of any order less than 

M , That is  

 2

jk k k klog j j 2.9       

where 0   and the values of   and   are unrestricted, allowing the mass points of log-volatility to take 

on a quadratic configuration, provided that M 3 . 

The normal distribution has the fourth moment equal to 3, although some papers have shown that the 

distribution of market returns have sample fourth moments larger than 3. Also, prices movements are 

negatively correlated with volatility, this means that the volatility of shock tends to increase when the stocks 

prices fall, decrease when the stock prices rise and null when the stock prices are stable, since the stock 

market prices are highly fluctuating.  

The simplest way to estimate volatility is taking daily squared returns, Unfortunately, this method gives an 

inaccurate estimation of volatility (Taylor, 1986); we then calculate daily returns using the closing price of 

each asset in the end of a trading session. 

 

2.3.  Models with Asymmetric Volatility  

There is an asymmetric relation between stock prices changes and the volatility of future stock returns as 

shown previously. Therefore, the source of this asymmetry has been explained in the literature; the common 

explanations are known as the leverage hypothesis and the volatility feedback hypothesis. 

It is known that the leverage hypothesis asserts that a fall in the stock market price leads to an increase in 

financial leverage, which makes the stock a riskier investment and that can create a decreasing need to invest, 

and causes its volatility to increase, while the volatility feedback hypothesis asserts that the risk premium 

demanded by investors increases whenever they expect volatility to increase, and this increase in the risk 

premium immediately causes a decrease of the stock prices. 

In that case, in order to capture these effects, we may allow the transition probability for the volatility process 

to be variant over the time. 

http://www.ijesm.co.in/
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Let consider the following model 

t 1 t 1

t 1 t t t 1

'x

x P 'x e

 

 

 

 


 

with 
tP  a time varying transition matrix, denoted by 

 t M M tP I 1 1 '      

Here 
t  is no more  tE x  but  it it 1 i1f r , r , , r with i 1, ,k   . The time-varying transition 

probability still requires some parameterization decisions and since its well-known that the volatility follows 

a discrete AR (1) process, and that 
tP  depends on exogenous variables and predetermined. The transition 

probabilities for 
t 1  are a function of only the lagged returns which are those predetermined variables. 

Let, 

t 1 t t t 1         

This model is described by a discrete AR (1) process with T-varying intercept, where  t t1 '    

. This process can capture asymmetric volatility effects because it allows the expected value of 
t 1  

knowing 
t  to be correlated with 

tr  and 
t 1 t 2 1r ,r , ,r   . The correlation between returns and volatility 

like that implied by the leverage and volatility-feedback hypothesis, is generated by having negative returns 

in periods t  and earlier to be associated with changes in 
t  that increase the value of 

t . Another 

parameterization of 
t  is 

 
   

   
j 1 M j

k k k

jt t t

M 1 !
1

j 1 ! M j !
  

 
 

 
j 1, ,M   

Let’s specify a binomial inspired parameterization for 
t  

 
   

 
M jj 1

jt t t

M 1 !
1 j 1, ,M

j 1 ! M j !
  


  

 
  

where the time varying parameter 
t  is: 

 
 

2 t 1

t t 1 t 2 1

t 2 t 1

t t 1 t 2 1

exp r r r r

1 exp r r r r

    


    



 



 

       


        




 

with  0,1  

In this case, the sign of   controls the strength and direction of the asymmetric volatility effect. If we set 

0  , that means, it gives us a model in which negative returns are associated with increases in expected 

future volatility. On the other side,   controls the rate at which this asymmetric volatility response 

diminishes with time. If at time t , a negative return tells us that the volatility is expected to increase in the 

http://www.ijesm.co.in/
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future, then this expected increase could be entirely transitory if     , if     then it could be 

moderately persistent and highly persistent of and only if it is close to one i.e.     

 

2.4.  Model with time varying volatility persistence 

We would like to formulate a model that displays time-varying volatility persistence, allowing for time-

varying transition probabilities, we therefore allow the transition probabilities matrix for the volatility process 

to vary over the time by assuming it is selected in a stochastic manner for each t If we suppose that  t t 1
y




 

is a stochastic process with discrete support such that  tY 1,2  for all t  and  t 1t 2ty y , y '  a 

k 1  vector. If we let 
tY  be generated by a time-homogenous ergodic and irreducible 3-state Markov 

chain, then we can express the transition probabilities for 
t 1Y 

 as 

 

         
t j

t 1 t

b

Pr Y j / Y

1 1 2 j 3 j j 1 j 2 1   




 
 



        
 

where  0,1  and  0,1  

Let 
 y

tx  denotes a 3 1  vector whose 
thj  element equals one if  

tY j  and zero otherwise. 

To obtain a general multivariate stochastic volatility model for volatility that displays time-varying  volatility 

persistence, we assume that the joint transition probabilities of 
t 1  and 

t 1Y 
 are given by 

 

      
t k

t 1 k t 1 t t

j k j t 1 t

Pr ,Y j / ,Y

1 1 Pr Y j / Y


  

 

 

   

   


 

with  j 0,1   for  j 1,2,3 , and 
1 2 3    . 

 

2.5. Estimation Method 

We used the Simulated Maximum Likelihood method introduced by Danielson and Richard (1993) which 

depends on Monte Carlo integration,in order to evaluate the likelihood. The likelihood function of 

multivariate stochastic volatility models involves high-dimensional integration, which is difficult to calculate 

numerically. Nevertheless, estimation of the parameters can be based on evaluating high-dimensional 

integrals with simulation methods and then maximizing the likelihood function, resulting in the so-called 

SML estimators. There are several ways to perform SML estimation for multivariate stochastic volatility 

models, the most usual approach to SML is the importance sampling method. The basic idea of this method is 

to approximate first the integrand by a multivariate normal distribution using the so-called Laplace 

approximation and then draw samples from this multivariate normal distribution.    
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Let  t 1 t 1 tf R / , ;  I   be the joint probability density function of 
t 1R 

 conditional on observing both 

t 1  and  t t t 1 1R ,R , ,R I , with   a vector of unknown parameters which is estimated by 

maximum likelihood. In order to fit our model in equation [3.2], [3,3], and [3.5], let’s assume that  

 2

t 1 t 1 t t 1R / , N 0,   I  where 
t 1 t 1 t 1where V' V     

And 
t 1 t 1V 'x   

  t 1 N N t t 1x I 1 1 ' 'x e        

 , '    since the normal distribution is determined by its mean and variance, in the case where   is 

parameterized as j j   , j 1, ,M  . 

Now, let  t 1/ t t 1 tx E x /  I  denotes the expectation of the M 1  vector 
t 1x 

 given the period t  

information set. Hamilton (1989) show that 
t 1/tx 

 is given by 

 
t / t 1 t

t 1/t

N t/t 1 t

x
x P'

1' x










 
   

 




 

where  t 1t Mt, , '     is a M 1  vector with 
thj  element, 

 jt t t j t 1f R / , ;    I  

Then we can write the log likelihood function as  

   
T

N t/ t 1 t

t 1

L log1' x 



   

where   contains both parameters that determine the transition probabilities and those contained in  , with 

P  parameterized as in equation [3.5] and  is as in equation [3.7]. We then use a quasi-Newton method to 

find the value of   that maximizes  L   and we compute standard errors using the second-derivative 

estimate of the information matrix. In order to select the model that fit better the data, we measure the 

performance of the out-of-sample variance forecasts produced by various models, and we require a proxy for 

the unobserved variance of daily returns. 

For example, if we want to evaluate one-step ahead forecasts, we might fit a regression of the following form 

2

t 1 t 1/t t 1
ˆa b     R ε  

where t 1R  is the realized variance joint variance for period t 1  and 
2

t 1/ t̂   is constructed using 

maximum likelihood estimates of the model parameters, and models are rank using the regression R-squared. 

 To conduct formal comparisons of the various models under study, we used either AIC or BIC tests. 
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3. Data Analysis and Results 

In this section, we assess the empirical performance of the proposed DMSARV models by fitting a number of 

different specifications to a portfolio of daily data on stock indices. We begin with a description of the data, 

where the general statistical features of the NSE data are investigated and the rest of the sections discuss the 

application of benchmark models together with DMSARV models in real life data. 

 

3.1.  The data 

The data sequences are generated by the same source. Daily closing prices of NSE Equity and KCB shares 

data over a period of 7 years extending from 01/01/2010 to 31/12/2016 with 1756 observations were used. 

The Equity and KCB shares are the most traded and most profitable companies trading in NSE market. They 

track the daily performance of the most capitalized companies in the sector of Banking among the eight (08) 

segments listed on the NSE. In order to make forecasts, the full sample was divided into two parts, in sample 

and out-of-sample observations. 

3.1.1. Assets returns 

Most financial studies involve returns instead of prices of assets to forecast volatility. This is because the 

return of an asset is a complete and scale-free summary of the investment opportunity for average and aware 

investors, and returns series are easier to handle than price series because return series have more attractive 

statistical properties. (Giot and Laurent, 2001). We used the daily percentage returns for the stock indices 

namely Equity and KCB stocks, in order to fit the discrete MSARV models. 

Let P
t
 and 

1
P

t
 denote the closing asset prices of NSE assets at the current (t) and previous (t-1) day 

respectively. The rate of returns on an asset price is defined as 

1

P
r = log

P

t

t

t

 
 
 

 

3.1.2. Summary statistics of NSE returns series data 
In order to describe the behaviour of NSE return series, we drawn descriptive statistics table for the returns. 

The data are in log-difference form. The skewness, kurtosis, Kolmogorov test for normality, and correlation 

coefficients are used as the diagnostic tools under this study. They are defined as in table 1. 

This is implemented by using the estimated mean,   and the standard deviation,   . The null hypothesis of 

normality is rejected if the p-valued of the Kolmogorov statistic is less than the significance level. 

The summary of the descriptive statistics for the NSE returns series are shown in table 2. As it is expected for 

a time series of returns the mean is close to zero. The return series are both negatively skewed, an indication 

that the NSE data used have symmetric returns. The kurtosis is greater than three for the normal distribution, 

this indicates that the underlying distribution of the returns are leptokurtic or heavy tailed. The series fail the 

Kolmogorov normality test statistic which rejects normality at the 1% confidence level in both cases; that 

means they have positive excess kurtosis which confirms that the returns are effectively leptokurtic or heavy 

tailed. 
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3.2.  Benchmark Models 

We used two multivariate GARCH modelswhich have been revealed to fit better the data. The firstis the CCC 

model introduced for the first time by Bollerslev, the conditional correlation matrix in this class of models is 

time invariant. We then choose a GARCH-type model for each conditional variance and we model the 

conditional correlation matrix, based on the conditional variances. 

Since the conditional correlation matrix is time invariant, the conditional covariances are therefore 

proportional to the product of the corresponding conditional standard deviations. Hence, 

Definition 3.1 

The CCC (p, q) process is a martingale difference sequence X
t
, relative to a given filtration F

t
, whose 

conditional covariance matrix  1
H cov X / F

t t t
  satisfy 

   t t t ij iit jjtH D RD 3.1     

where             t 11t kktD diag , , 3.2    

and                       ijR 3.3   

is a symmetric positive definite matrix with 
ii 1  , i  then off diagonal elements of the conditional 

covariance matrix are defined as  t it jt ijij
H     for i j , 1 i, j k  . 

2

iit  is defined as 

univariate GARCH (p, q) model 

 
qP

2 2 2

t i t i i t i

i 1 i 1

A X B 3.4   

 

     

where   is k 1  vector, 
iA  and 

iB  are diagonal k k  matrices. See Francq and Zakoian (2010) for 

more details. The DCC Model is a generalization of the CCC model was proposed by Engle (2002), the so-

called DCC is a new class of multivariate models which conditional correlation matrix is time-dependent. 

These models are flexible like the previous univariate GARCH and parsimonious parametric models for the 

correlations. 

Definition 3.2 

The DCC process is a martingale difference sequence X
t
, relative to a given filtration F

t
, whose 

conditional covariance matrix  1
H cov X / F

t t t
  satisfy 

 t t t tH D R D 3.5  

where  

   t 1t ktD diag , , 3.6    

and 
tR  is k k  time varying correlation matrix of X

t
, 

2

it  is defined as univariate GARCH (p, q) 

model. 
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i ip q
2 2 2

it i ij t j ij t j

j 1 j 1

X     

 

     

where 
i , ij , and ij  are non-negative parameters for i 1, ,k  , with the usual GARCH restriction for 

non-negativity and stationary being imposed, such as non-negativity of variances and 

i ip q

ij ij

j 1 j 1

1 
 

   . 

In a bivariate case, the number of parameters to be estimated equals   k 1 k 4 / 2  . Note that 
tH , 

being a covariance matrix has to be positive definite, 
tD  is positive definite since all the diagonal elements 

are positive, this ensure 
tR  to be positive definite. Also, all the elements in the correlation matrix 

tR  have 

to be equal or less than one by definition; See Engle (2002) for more details. 

3.3. Empirical Results  

We used the DCC and CCC models as benchmarks Multivariate models which have been revealed to fit 

better the data. To address the issue of model selection, we measured the performance of the in-sample and 

the out of sample variance forecasts produced by the various models. We required a proxy for the unobserved 

variance of daily returns. Fitting Mincer and Zarnowitz regressions is a common strategy for evaluating the 

forecasting performance of volatility models (Calvet and Fisher, 2004) and (Fleming and Kirby, 2013). If we 

are evaluating one-step-ahead forecasts for example, we might fit a regression of the form 

 2

t 1 0 1 t 1 t 1
ˆR 3.7     V e  

where t 1R V  is the realized variance for period t 1  variance based on the period t  information set. 

Unbiased forecasts correspond to the hypothesis 0 0   and 1 1  . And 
2

t 1̂   is constructed using 

maximum likelihood estimates of the model parameters and models are ranked using the regression R-

squared. We used the Diebold and Mariano test of equal predictive accuracy to conduct formal comparisons. 

For example to compare model i  and j  under a specified loss function  2 2

t 1 t 1
ˆL ,   . Our null 

hypothesis is 
  i

t 1E 0 
j

e . Where,  

       i 2 2 2 2

t 1 t 1 t 1 t 1 t 1
ˆ ˆL , L , 3.8        

j

i je  

denotes the loss differential for period t 1 . To implement the test, we used the MSE loss function, we 

fitted to daily percentage returns, the regressions are estimated via OLS and the forecasts are for one-day 

horizon.     

Let’s start with the linear discrete SARV model. Results from estimation of DSARV (1, M) model of the data 

are presented in table 3. We fitted first-order discrete SARV models to daily percentage returns for the two 

stocks first individually with T=1756. All the specifications employ the linear parameterization of   given 

by j j     with j 1, 2, , M  . Table 3.a and 3.b report maximum likelihood parameter estimates 
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for M=3 and M=10. And table 3.c reports the in-sample and out-of-sample model selection criteria for all 

values of M from 3 to 10. 

The former is the BIC obtained by fitting the model and the latter is the R-squared for a regression of daily 

realized variances on the variance forecasts produced by the fitted model. The parameter estimates for the 

M 3  display the expected characteristics, the estimates of   and   provide clear evidence of time-

varying volatility for both stocks while the estimate of   the ergodic probability of the high volatility state 

are all below 0.5. This implies that the process spends more time in the low-volatility state, and the estimates 

of   is high for both stocks, this indicates a strong persistence in volatility. Increasing the volatility mass 

point to M 3  changes all the estimates and the BIC decreases monotonically with M in each case; this 

suggests that it is suitable to work with M 3 . 

The question is whether first-order discrete MSARV models capture the dynamics of volatility.  

From table 4, we see how changing the parameterization of   affects the performance of the model. We 

fitted the linear parameterization in equation [2.6], the log-linear parameterization in equation [2.8] and the 

log quadratic in [2.9], then we notice that from M 3  the BIC values are decreasing and the 

parameterization for log volatility values lower than those for the volatility itself for every M 3 , this is 

because there is gain in moving to log parameterization. BIC values match with higher R-squared values, and 

the R-squared values are increasing with M. Moreover, we notice that almost all the values of R-squared are 

closed to one, this suggests that the model fits the data well; for example with M 3 , the R-squared 

improves from linear to log quadratic parameterization. It is worth noting that, since the BIC values diminish 

quickly as the value of M increases, this means there is benefit of increasing the number of states. We can 

conclude that the parameterization   impacts on the performance of the discrete multivariate SARV and 

shows the advantage of working with a portfolio of stocks instead of a single stock. 

Finally, the model selection criteria suggest that there is more benefit fitting the log quadratic 

parameterization for the bivariate model, since for every number of state chosen from M 3  the BIC 

decreases. 

To conduct suitable pairwise comparison for the selected multivariate models, we used Diebold and Mariano 

to evaluate the forecast accuracy of the models by comparing the out-of-sample forecasting performance of 

selected first-order discrete multivariate model to that of the two benchmarks models above. We considered 

the discrete MSARV (1, 10) model, our benchmarks are a DCC and CCC models which are nonlinear 

combinations of univariate GARCH models. 

Therefore, table 5 reports the results of t-statistics for pairwise tests of equal predictive accuracy under MSE 

loss. We considered forecast horizons one day and one week; this is 5 trading days and the loss differentials 

for day t 1  are computed as follow: 

     
2 2ij 2 2

t 1,H t 1,H it 1,H t 1,H jt 1,H
ˆ ˆR R        V Ve  

With  H 1,5 , the forecast horizon,  i 1,2  and  j 1,2  indicates the benchmark models. The 

null hypothesis for the test is  ij

t 1,HE 0 e . The t-statistics are based on robust standard errors that are 
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constructed using Newey and West (1987) weight. The lag length for the weights is 10 for the one-day 

horizon and 20 for the 5-day horizon, and a negative or positive t-statistic indicates that the model produces a 

lower or higher loss on average than the benchmark model.  

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

The empirical analysis highlights the promise of our approach. Ultimately, volatilities and correlations 

among market returns are widely used in asset pricing. Although researchers have built many multivariate 

models, the multivariate stochastic volatility models remain the least mentioned in the literature. The 

multivariate volatility of NSE returns has been modelled and forecasted for a period of 1/01/2010 to 

31/12/2016 using different GARCH-type model and by building on well-established techniques for 

constructing Markov chains with a specified autocorrelation function, we developed a multivariate stochastic 

volatility model in which volatility follows a low-order autoregressive process; the model specifications 

assume that volatility has discrete support,and we used SML estimation to estimate the models. One of the 

main findings is that volatility forecasts produced by first order discrete MSARV models outperform those 

produced by multivariate GARCH-type models; these findings hold for the stock indices on the NSE. 

Therefore, we can conclude that, there is a number of interesting directions in which our analysis could be 

extended. One possibility is to investigate the performance of higher-order discrete MSARV models in assets 

returns context and this should be relatively straightforward. 

 

                                         Test Statistics 

 

Skewness 3

3
1

1 r

T

T

t

t





 
  

 
  

Kurtosis 4

4
1

1 r

T

T

t

t





 
  

 
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Appendix A. 

Table 1. Test Statistics 

 

Table 2.  Summary statistics of NSE return series 

Statistics Equity Group KCB Group Ltd

Observations 1757 1757

Max 0.0946 0.0878

Min -0.1022 -0.1121

Mean 0.00043 0.00022

Variance 0.00037 0.00031

SD 0.0192 0.0176

Skewness -0.093 -0.402

Kurtosis 7.3388 7.541

P-normal        < 5%     < 5%

correlation coef

 corr coef for squared returns

0.2409

0.2803
 

Table 3. Estimation results for linear discrete SARV (1, M) models 

Table 3.a:DSARV (1, 3) parameters estimates 

Est. Std. E Est. Std. E

ꙍ 0.22 0.046 0.24 0.03

Ᵹ        -0.131 0.041         -0.392 0.066

ɣ 1.63 0.051 1.78 0.069

ɸ 0.91 0.014 0.922 0.015

Equity KCB

Parameters

 

Table 3.b:DSARV (1, 10) parameters estimates 

Corr. Coefficient  
r r

cov r r

it jt

it jt

 
  

Kolmogorov 

(Reject 
0

H ) 
   

1

1
F r , F rmax

 

 
   

 
t t

t T

t t

N N
 

F is a cumulative distribution 
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Est. Std. E Est. Std. E

ꙍ 0.12 0.012 0.23 0.015

Ᵹ 0.51 0.023 0.121 0.028

ɣ 0.56 0.015 0.53 0.018

ɸ 0.93 0.009 0.938 0.009

Equity KCB

Parameters

 

Table 3.c: BIC and 
2R of volatility forecasts 

BIC BIC

DSARV (1, 3) 4921.67 0.442 5090.51 0.4331

DSARV (1, 4) 5002.58 0.5512 5025.16 0.5606

DSARV (1, 5) 4928.4 0.6713 4977.65 0.658

DSARV (1, 6) 5034.72 0.7374 5055.28 0.743

DSARV (1, 7) 4987.67 0.802 4989.12 0.8149

DSARV (1, 8) 4957.72 0.844 4956.42 0.8403

DSARV (1, 9) 4859.71 0.8487 5021.37 0.87

DSARV (1, 10) 4985.99 0.8695 5000.37 0.8907

Equity KCB

Model
2R

2R

 
Table 4. Model selection criteria for linear, log linear and log-quadratic discrete MSARV 

(1, M) models 

BIC BIC BIC

DMSARV(1, 3) 10073.74 0.4078 10054.82 0.897 10016.83 0.971

DMSARV(1, 4) 9984.37 0.5818 9957.53 0.941 9915.89 0.985

DMSARV(1, 5) 9977.49 0.6806 9947 0.961 9897.388 0.989

DMSARV(1, 6) 9971.65 0.748 9935.94 0.973 9897.115 0.993

DMSARV(1, 7) 9969.22 0.8 9924.11 0.98 9897.065 0.995

DMSARV(1, 8) 9967.643 0.841 9907.74 0.9838 9850.042 0.997

DMSARV(1, 9) 9925.37 0.8685 9889.73 0.987 9824 0.997

DMSARV(1, 10) 9916.64 0.8933 9842.88 0.989 9816.065 0.997

Linear Log-linear Log quadradic

Model 2R 2R 2R

 

Table 5. Pairwise Comparison-Diebold Mariano test for stock indices 

1-day 5-day 1-day 5-day

DMSARV(1,3)       -0.84          -0.38          -0.95           -0.58

DMSARV(1,10)       -1.80          -1.61          -1.90           -1.70

DCC CCC

Model
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