
International Journal of Engineering, Science and Mathematics 
Vol. 7Issue 1, January 2018,  
ISSN: 2320-0294 Impact Factor: 6.765 
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind 

Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: 
Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A 

  

467 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

Estimation for ISB p-dim Rayleigh distribution under progressive type-II 
censored data using different loss functions 

 
  

Ranjita Pandey 
Neera Kumari* 

 

  Abstract 

 
 

In this paper, the Bayesian estimation procedures for the 
unknown parameter as well as the reliability function of the 
inverse size biased (ISB) p-dimensional (p-dim) Rayleigh 
distribution under progressive Type-II censoring scheme are 
estimated. We consider the maximum likelihood estimator 
(MLEs) of the unknown parameter. Further, Bayesian 
estimation of the unknown parameters under Lindley’s 
Approximation (L-Approximation) method and Markov Chain 
Monte Carlo (MCMC) techniques are used. The Hartigan prior 
with squared error and general entropy loss functions are 
considered for Bayesian analysis. Simulation study is 
performed to compare the proposed estimates. 
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1. Introduction 

In this article, we consider the progressive type-II censoring scheme. The progressive censoring is 
useful in industrial life testing applications and clinical settings; it allows the removal of surviving 
experimental units before the termination of the test. Cohen (1963) introduced a general 
censoring scheme known as progressive type-II censoring in which removal of the experimental 
units is allowed in between the experiment, hence become very popular in the reliability and life 
testing experiments. Several authors have investigated different inference problem with 
progressively censored samples namely, Mann (1971), Thomas and Wilson (1972). The estimation 
of the parameters of various lifetime distribution based on the progressive Type-II censoring 
scheme is done by Cohen and Norgaard (1977), Davis and Feldstein (1979). Balakrishnan et al. 
(2000, 2007) and provides a comprehensive reference on the subject of progressive censoring and 
its applications. Some recent studies on progressive censoring are initiated by Lee et al. (2011), 
Krishna and Kumar (2011), Rastogi et al. (2012), Krishna and Malik (2012), Krishna and Kumar 
(2013), Abou-Elheggag (2013), Singh and Sharma et al. (2013) and Rastogi and Tripathi (2014). 

Here, we discuss the progressive type II censoring. Suppose n independent and identically 
distributed units taken from a continuous distribution are placed on a life test experiment. Let a 
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censoring scheme  mRRR  .....21  be prefixed in such a manner that immediately after the 

first failure, 1R items are randomly removed from n-1 surviving items and, at the time of 

occurrence of the second failure, the 2R out of 21  Rn surviving units are withdrawn from the 

experiment. The test is continued units at the time of mth (1≤ m ≤ n) failure, the remaining 

surviving units mR where 121 .....  mm RRRmnR  are removed from the experiment. 

The usual type-II censoring scheme is a particular case of this scheme with

mnRRRR mm   ,0..... 121 . Also, the complete sampling corresponds to the case 

when 0..... 121   mm RRRR . 

We discuss the estimation problem, when the progressive censored samples are drawn from the 
ISB p-dim Rayleigh distribution (see Pandey and Kumari, 2016). The probability density function 
and cumulative distributionfunction of the ISB p-dim Rayleigh distribution is defined as follows: 

 
















 







y
yyp

pyf
p

p

0;
1

exp
1

2

1

2
),;(

22
2/)1( 



   (1.1) 

 0;
1

,
2

1

2

1

1
)(

2








 









 


 t
t

p

p
tF


     (1.2) 

The cumulative density function is an upper incomplete gamma function. The reliability function is 
given by 
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It is assumed that parameter α is unknown and p is a positive known quantity. The reliability 
function is lower incomplete gamma function. Classical and Bayesian estimation of the unknown 
parameter are studied for ISB p-dim Rayleigh distribution under progressive Type-II censoring. It is 
observed that the MLE of the unknown parameter cannot be obtained in closed form, hence 
approximate MLE has been proposed in explicit form. The performance of the MLE and the 
approximate MLE is very close to each other. Bayes estimates of the unknown parameter based 
on different symmetric and asymmetric loss functions such as squared error and general entropy, 
and it is observed that they cannot be obtained in explicit form; hence L-Approximation and 
MCMC technique has been incorporated. 

By symmetricity, it is implied that overestimation and underestimation are equally serious. 
Squared error loss or quadratic loss function (SELF) classified as a symmetric function associates 
equal importance to the losses due to overestimation and underestimation of equal magnitude 
and is evaluated as 

 2ˆ)ˆ,(  L         (1.4) 

The asymmetric loss function, GELF due to Calabria and Pulcini (1994) is defined as 

  1
ˆ

;1)(log)(  qandqL e

q




     (1.5) 

and is useful in the situations where it is worse to underestimate (or overestimate) the potential 
of an event than to overestimate (or underestimate) the unknown parameter. 

The aim of this paper is to discuss the inverse size biased p-dimensional Rayleigh distribution with 
MLEs and Bayes estimation procedures for one parameter and reliability function under 
progressive type-II censored data with SELF and GELF. We present the derivation of the maximum 
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likelihood estimation (MLE) of the unknown parameter and reliability function in section 2. In 
Section 3, we obtain Bayesian estimation under L-Approximation Method and MCMC technique 
with SELF and GELF. The simulation study is provided in section 4. The conclusion is given in 
section 5. 
 
2.  Maximum Likelihood Estimators 

In this section, the maximum likelihood estimation (MLE) of the unknown parameter α and 
reliability function of ISB p-dim Rayleigh distribution using progressive type-II censored samples 
are derived. The asymptotic confidence interval of the parameter is constructed. 

Suppose that nmmnmnm YYYY ::::2::1 ,......,,  is a progressive type-II censored sample of size m from a 

sample of size n taken from ISB p-dim Rayleigh distribution with pdf in equation (1.1) and

 mRRRR ,.....,, 21 denote the corresponding numbers of units removed from the test. The 

likelihood function based on the progressive type-II censored sample (see Balakarishana and 
Aggarwala, 2000) is given by 

   i

nminmi
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where, )1....(....)2)(1( 11211   mRRnRRnRnnA m  is a constant. 

 
Using equations (1.1) and (1.2) the likelihood function (2.1) can be expressed as 
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where, ),......,,( ::::2::1 nmmnmnm yyyy  . Natural logarithmic of the likelihood function of equation 

(2.2) is taken and after simplification, the log likelihood function is given as 
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The MLE of α is obtained by the setting the first partial derivatives of equation (2.3) equal to zero 
with respective to α, respectively, these simultaneous equations is, 
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where, 
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Subsequently, the MLEs of the reliability function, at a given time t are given, respectively, by 
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where, 
ML̂  is the MLE of α. Since, equation (2.4) cannot be solved analytically; therefore, we 

used Newton Raphson iterative algorithm method. 
 
2.1 Asymptotic Confidence Interval 

To obtain the asymptotic confidence interval (ACI), we consider Fisher information matrix I(α) 
which is given by: 
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Now, the ACI of α is given by 
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The exact mathematical expression for the expectation of Fisher Information Matrix does not 

exist thus, using the concept of large sample theory we have obtained ACI. 0
0
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confidence interval of the unknown parameter α is given by 

  )ˆvar(ˆ]ˆ,ˆ[ 2/ MLMLUL Z    

where, 2/Z is the upper th)2/( percentile of the standard normal distribution. 

 
3. Bayesian Estimation  

This section deals with Bayes estimate for unknown parameter α and reliability function of ISB p-
dim Rayleigh distribution under SELF and GELF on progressive type-II censored data. In Bayesian 
analysis, the parameter of interest is to be considered as a random variable and follows the prior 
distribution. We assume the asymptotically invariant prior, proposed by Hartigan (1964) whose 
form is as follows: 
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Now the joint posterior density function   y  as from equation (2.2) and (3.1) we get, 
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where, 
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To find the Bayes estimate of any parametric function, we need the posterior distribution in 
closed form. But for the distribution we have used, it is not possible to obtain the closed form of 
marginal, hence, we have used L-Approximation and MCMC technique. These techniques are 
discussed in the next section. 
 
3.1 L-Approximation Method 

This approach is developed by Lindley in 1980 and provides a simplified form of bayes estimator 

which is easy to use in practice. Now using the L-Approximation method )(yI  can be 

approximated as 
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where, 
p(α) = function of α, 

)( yl  = the log likelihood function, 

  , = log of prior distribution of α. 
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The following forms are used to estimate Bayes under SELF for α and reliability function which is 
given as: 

(i) Bayes estimate of α under SELF 

If p(α)=α, then 0,1   pp , the Bayes estimate of α under SELF is given by 

          ˆˆˆˆ5.0ˆˆˆ2ˆ5.0ˆ~ lpppyE MLBS   
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(ii) Bayes estimate of reliability function under SELF 

If 
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SELF from equation (2.5) is given by 
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Next, we estimate Bayes under the GELF for parameter α and reliability function using equation 
(3.4). 

(iii) Bayes estimate of α under GELF 

If qp   )( , then )2()1( )1(,   qq qqpqp   , the Bayesian estimate of α under 

GELF loss function is given by 
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(iv) Bayes estimate of Reliability function under GELF 
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under GELF loss function is given by 
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In the next subsection, we use the Markov Chain Monte Carlo technique to compute the Bayes 
estimates for the parameter α and reliability function. 
 
3.2 MCMC Techniques 
 
The MCMC technique provides the flexibility of extracting the posterior samples from its 
respective posterior distribution. Metropolis-Hastings algorithm is used to generate samples from 
the full conditional posterior distributions and then compute the Bayes estimates (Smith and 
Gelfand (1990), Hastings (1970), Upadhyaya and Gupta (2010)). The marginal posterior 
distribution is 
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Following is the MCMC procedure to generate the sample from above equation: 
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Step 1: Start with initial value of α say 0 .  

Step 2: Set i=1. 

Step 3: Generate i from )(1 y . 

Step 4: Repeat Step 2-3, N times. 

Bayes estimates under SELF for unknown parameter α and reliability function is given by: 
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Under GELF, the Bayes estimates for parameter α and reliability function is given by: 

  
qN

Mi

q

iBGMC

qN

Mi

q

iBGMC tR
MN

tRand
MN

1

1

1

1

)(
1

)(
~1~

































   

 
4. Simulation Study 
 
In this section, maximum likelihood and Bayes estimators for unknown parameter and reliability 
function under progressive type-II censoring are considered and hence, compared the 
performances of these estimators with Monte Carlo simulation, numerically. 

We have generated a random sample from ISB p-dim Rayleigh distribution for α=1.5 and p=2. The 
progressive Type-II Censored Samples are generated using algorithm given by Balakrishnan and 
Sandhu. Three samples of size n=20, 30, 50 are taken and corresponding effective sample sizes 
are chosen in such a way that the observed samples are 50% and 80% censored. The mean square 
error (MSE) criterion is considered for comparison of the estimators. MLE of the parameter is 
obtained by using Newton Raphson method and corresponding reliability function is obtained 
using invariance property. 

Bayes estimate of the parameter α and reliability function are obtained under Hartigan prior using 
squared error and general entropy loss functions. The Bayes estimates are computed with the 
help of L-Approximation and Markov Chain Monte Carlo technique. The reliability estimates are 
evaluated for t = 4, where, actual reliability R(t)=0.2371. Further, Bayes estimators are also 
derived with respect to asymmetric invariant prior distribution. From the extensive study of 
simulation, we see that the estimates obtained by MCMC have less variability as compared to the 
other methods. 

The average estimates and corresponding MSE are reported in Tables 1-2. We observed that from 
the tables the mean square error of all estimators decreases when the sample size n and effective 
sample size m increases. Under two approximation techniques, the mean square error of Bayes 
estimates of the parameter under informative prior following patterns is noticed: 

MSEs(MCMC) <MSEs(Lindley) < MSEs(MLE) 
The mean square error of Bayes estimates of the reliability function under two approximation 
techniques are obtained and suggest that: 

MSEs(MCMC) <MSEs(Lindley) < MSEs(MLE) 
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Table-1. Average values and MSEs (in Bracket) of all estimates of  for different value of n and m. 

 
n 

 
m 

 
CS ML̂  

L-Approximation MCMC technique 

BSL~
 LBG1

~  LBG2

~  
BSMC~  MCBG1

~  MCBG2
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20 

 
 
 

10 

(10,0*9) 
 

(2*5,0*5) 
 

(0*5,2*5) 
 

(0*9,10) 
 

1.5267 
(0.0723) 
1.5636 

(0.0663) 
1.5808 

(0.0632) 
1.6425 

(0.0614) 

1.5526 
(0.0583) 
1.5895 

(0.0513) 
1.6162 

(0.0476) 
1.6671 

(0.0426) 

1.4782 
(0.0513) 
1.5246 

(0.0476) 
1.5468 

(0.0443) 
1.6343 

(0.0394) 

1.5723 
(0.0644) 
1.5948 

(0.0571) 
1.6549 

(0.0495) 
1.6957 

(0.0457) 

1.5139 
(0.0566) 
1.5368 

(0.0502) 
1.5758 

(0.0439) 
1.6136 

(0.0403) 

1.4426 
(0.0454) 
1.3248 

(0.0413) 
1.5036 

(0.0388) 
1.5973 

(0.0356) 

1.5236 
(0.0607) 
1.5676 

(0.0532) 
1.6165 

(0.0444) 
1.6558 

(0.0417) 

20 (0*20) 1.6153 
(0.0577) 

1.2957 
(0.0393) 

1.1524 
(0.0327) 

1.3285 
(0.0435) 

1.1257 
(0.0346) 

1.0736 
(0.0305) 

1.2158 
(0.0407) 

 
 
 
 
 
 
 

30 

 
 
 

15 

(15,0*14) 
 

(3*5,0*10) 
 

(0*10,3*5) 
 

(0*14,15) 

1.4674 
(0.0674) 
1.5277 

(0.0631) 
1.5823 

(0.0597) 
1.6597 

(0.0476) 

1.5257 
(0.0453) 
1.5765 

(0.0412) 
1.6298 

(0.0366) 
1.6648 

(0.0308) 

1.4356 
(0.0412) 
1.4645 

(0.0386) 
1.4756 

(0.0339) 
1.5227 

(0.0284) 

1.5653 
(0.0496) 
1.6289 

(0.0447) 
1.6458 

(0.0387) 
1.6925 

(0.0357) 

1.5082 
(0.0426) 
1.5247 

(0.0372) 
1.5765 

(0.0317) 
1.6238 

(0.0283) 

1.4176 
(0.0265) 
1.4536 

(0.0237) 
1.4836 

(0.0201) 
1.5172 

(0.0193) 

1.5159 
(0.0461) 
1.5628 

(0.0431) 
1.5747 

(0.0335) 
1.6435 

(0.0312) 

 
 
 

24 

(6,0*23) 
 

(0*22,3*2) 
 
(2*3,0*21) 

 
(0*23,6) 

1.4452 
(0.0690) 
1.4751 

(0.0576) 
1.5077 

(0.0521) 
1.5232 

(0.0415) 

1.4723 
(0.0455) 
1.5457 

(0.0372) 
1.5762 

(0.0346) 
1.6324 

(0.0297) 

1.4437 
(0.0416) 
1.4175 

(0.0327) 
1.4935 

(0.0276) 
1.5548 

(0.0247) 

1.5276 
(0.0485) 
1.5876 

(0.0419) 
1.6373 

(0.0456) 
1.6723 

(0.0321) 

1.4457 
(0.0426) 
1.5365 

(0.0382) 
1.5658 

(0.0358) 
1.6083 

(0.0257) 

1.4236 
(0.0388) 
1.5164 

(0.0306) 
1.5463 

(0.0257) 
1.5387 

(0.0215) 

1.4843 
(0.0454) 
1.5664 

(0.0415) 
1.6125 

(0.0346) 
1.6427 

(0.0307) 

30 (0*30) 1.5433 
(0.0657) 

1.5857 
(0.0478) 

1.5436 
(0.0427) 

1.6258 
(0.0484) 

1.5486 
(0.0426) 

1.5235 
(0.0372) 

1.5765 
(0.0441) 

 
 
 
 
 
 
 

50 

 
 
 

25 

(25,0*24) 
 

(5*5,0*20) 
 

(0*20,5*5) 
 

(0*24,25) 

1.5153 
(0.0572) 
1.5519 

(0.0516) 
1.5845 

(0.0476) 
1.6433 

(0.0431) 

1.5465 
(0.0373) 
1.5762 

(0.0357) 
1.6192 

(0.0318) 
1.6635 

(0.0253) 

1.5034 
(0.0324) 
1.5435 

(0.0286) 
1.5796 

(0.0258) 
1.6246 

(0.0226) 

1.5749 
(0.0435) 
1.6265 

(0.0408) 
1.6546 

(0.0383) 
1.6867 

(0.0326) 

1.5134 
(0.0343) 
1.5438 

(0.0315) 
1.5776 

(0.0289) 
1.6292 

(0.0244) 

1.4686 
(0.0286) 
1.5076 

(0.0263) 
1.5224 

(0.0228) 
1.5734 

(0.0214) 

1.5356 
(0.0367) 
1.5673 

(0.0327) 
1.6152 

(0.0272) 
1.6525 

(0.0255) 

 
 
 

40 
 
 

(10,0*39) 
 

(2*5,0*35) 
 

(0*35,2*5) 
 

(0*39,10) 

1.3862 
(0.0496) 
1.4455 

(0.0413) 
1.4745 

(0.0365) 
1.5018 

(0.0314) 

1.4484 
(0.0322) 
1.5386 

(0.0264) 
1.5654 

(0.0237) 
1.6274 

(0.0206) 

1.4242 
(0.0259) 
1.5046 

(0.0222) 
1.5356 

(0.0207) 
1.5846 

(0.0192) 

1.4786 
(0.0334) 
1.57463 
(0.0284) 
1.6189 

(0.0259) 
1.6576 

(0.0238) 

1.4137 
(0.0272) 
1.5046 

(0.0245) 
1.5453 

(0.0216) 
1.5886 

(0.0182) 

1.4063 
(0.0227) 
1.4764 

(0.0210) 
1.5023 

(0.0194) 
1.5684 

(0.0163) 

1.4636 
(0.0282) 
1.5368 

(0.0259) 
1.5879 

(0.0238) 
1.6235 

(0.0217) 

50 (0*50) 1.5143 
(0.0381) 

1.5387 
(0.0267) 

1.5072 
(0.0225) 

1.5543 
(0.0307) 

1.5169 
(0.0232) 

1.4863 
(0.0204) 

1.5427 
(0.0275) 
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Table-2. Average values and MSEs (in Bracket) of all estimates of R(t) for different values of n and 
m at time t=4. 

 
n 

 
m CS 

 
MLR̂  

L-Approximation MCMC technique 

BSLR
~

 LBGR
1

~
 LBGR

2

~
 

BSMCR
~

 MCBGR
1

~
 MCBGR

2

~
 

 
 
 

20 

 
 
 

10 

(10,0*9) 
 

(2*5,0*5) 
 

(0*5,2*5) 
 

(0*9,10) 
 

0.2757 
(0.0296) 
0.3113 

(0.0239) 
0.3460 

(0.0209) 
0.3804 

(0.0181) 

0.3245 
(0.0246) 
0.3426 

(0.0207) 
0.3764 

(0.0175) 
0.4153 

(0.0157) 

0.2873 
(0.0212) 
0.3177 

(0.0175) 
0.3305 

(0.0154) 
0.3731 

(0.0141) 

0.3563 
(0.0272) 
0.3727 

(0.0215) 
0.3943 

(0.0182) 
0.4371 

(0.0168) 

0.2936 
(0.0226) 
0.3269 

(0.0184) 
0.3627 

(0.0167) 
0.4086 

(0.0132) 

0.2595 
(0.0185) 
0.2825 

(0.0157) 
0.3159 

(0.0132) 
0.3325 

(0.0114) 

0.3259 
(0.0232) 
0.3406 

(0.0198) 
0.3773 

(0.0178) 
0.4122 

(0.0145) 

20 (0*20) 0.2460 
(0.0248) 

0.2729 
(0.0212) 

0.2386 
(0.0176) 

0.3058 
(0.0234) 

0.2457 
(0.0182) 

0.2094 
(0.0127) 

0.2658 
(0.0227) 

 
 
 
 
 
 
 

30 

 
 
 

15 

(15,0*14) 
 

(3*5,0*10) 
 

(0*10,3*5) 
 

(0*14,15) 

0.2708 
(0.0128) 
0.3424 

(0.0110) 
0.3691 

(0.0097) 
0.4351 

(0.0085) 

0.3235 
(0.0102) 
0.3682 

(0.0093) 
0.3927 

(0.0086) 
0.4628 

(0.0081) 

0.3074 
(0.0095) 
0.3574 

(0.0084) 
0.3784 

(0.0081) 
0.4117 

(0.0078) 

0.3595 
(0.0117) 
0.3870 

(0.0096) 
0.4236 

(0.0089) 
0.4743 

(0.0084) 

0.3121 
(0.0097) 
0.3415 

(0.0091) 
0.3640 

(0.0083) 
0.4151 

(0.0076) 

0.2743 
(0.0091) 
0.3214 

(0.0219) 
0.3528 

(0.0214) 
0.3847 

(0.0015) 

0.3324 
(0.0108) 
0.3624 

(0.0092) 
0.4055 

(0.0081) 
0.4436 

(0.0076) 

 
 
 

24 

(6,0*23) 
 

(0*22,3*2) 
 
(2*3,0*21) 

 
(0*23,6) 

0.2866 
(0.0156) 
0.3245 

(0.0127) 
0.3324 

(0.0112) 
0.3518 

(0.0106) 

0.3134 
(0.0125) 
0.3463 

(0.0097) 
0.3632 

(0.0092) 
0.4158 

(0.0090) 

0.2827 
(0.0105) 
0.3327 

(0.0093) 
0.3528 

(0.0088) 
0.3841 

(0.0082) 

0.3302 
(0.0133) 
0.3734 

(0.0101) 
0.4025 

(0.0096) 
0.4474 

(0.0093) 

0.2851 
(0.0122) 
0.3276 

(0.0089) 
0.3354 

(0.0085) 
0.3876 

(0.0083) 

0.2449 
(0.0101) 
0.2836 

(0.0086) 
0.3307 

(0.0082) 
0.3467 

(0.0076) 

0.3124 
(0.0131) 
0.3424 

(0.0093) 
0.3785 

(0.0091) 
0.4272 

(0.0087) 

30 (0*30) 0.3236 
(0.0108) 

0.3574 
(0.0096) 

0.3152 
(0.0085) 

0.3857 
(0.0098) 

0.3476 
(0.0092) 

0.2964 
(0.0073) 

0.3625 
(0.0095) 

 
 
 
 
 
 
 

50 

 
 
 

25 

(25,0*24) 
 

(5*5,0*20) 
 

(0*20,5*5) 
 

(0*24,25) 

0.2640 
(0.0134) 
0.3284 

(0.0112) 
0.3517 

(0.0105) 
0.3744 

(0.0092) 

0.3243 
(0.0121) 
0.3536 

(0.0103) 
0.3853 

(0.0097) 
0.4185 

(0.0086) 

0.3024 
(0.0107) 
0.3376 

(0.0096) 
0.3571 

(0.0087) 
0.3786 

(0.0075) 

0.3845 
(0.0132) 
0.4196 

(0.0121) 
0.4624 

(0.0104) 
0.4663 

(0.0093) 

0.3152 
(0.0118) 
0.3365 

(0.0112) 
0.3686 

(0.0086) 
0.3935 

(0.0075) 

0.2636 
(0.0106) 
0.2985 

(0.0087) 
0.3152 

(0.0084) 
0.3436 

(0.0076) 

0.3662 
(0.0143) 
0.3925 

(0.0124) 
0.4246 

(0.0092) 
0.4421 

(0.0084) 

 
 
 

40 

(10,0*39) 
 

(2*5,0*35) 
 

(0*35,2*5) 
 

(0*39,10) 

0.2674 
(0.0184) 
0.2984 

(0.0156) 
0.3217 

(0.0125) 
0.3944 

(0.0097) 

0.3326 
(0.0173) 
0.3617 

(0.0128) 
0.4125 

(0.0102) 
0.4437 

(0.0092) 

0.2717 
(0.0132) 
0.3125 

(0.0105) 
0.3516 

(0.0087) 
0.4053 

(0.0081) 

0.3527 
(0.0181) 
0.3876 

(0.0162) 
0.4514 

(0.0138) 
0.4758 

(0.0112) 

0.2853 
(0.0121) 
0.3214 

(0.0102) 
0.3681 

(0.0089) 
0.3725 

(0.0815) 

0.2125 
(0.0105) 
0.2763 

(0.0090) 
0.3141 

(0.0083) 
0.3616 

(0.0075) 

0.3014 
(0.0162) 
0.3458 

(0.0135) 
0.3724 

(0.0118) 
0.4325 

(0.0097) 

50 (0*50) 0.2796 
(0.0172) 

0.3257 
(0.0147) 

0.2919 
(0.0112) 

0.3525 
(0.0162) 

0.3127 
(0.0123) 

0.2636 
(0.0104) 

0.3271 
(0.0140) 
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From Tables 1-2, the Bayes estimates based on progressive Type-II censored data relative to SELF 
and GELF are better than their corresponding maximum likelihood, for most cases of n and m. 
When the effective sample sizes (n, m) increases, the MSEs of the all estimates based on 
progressive Type-II censored data decreases. 

 
5. Conclusion 

In this paper, we proposed the bayes estimates of the unknown parameter and reliability function 
of the ISB p-dim Rayleigh distribution under progressive type-II censored data. The Bayes 
estimates of the parameter and reliability function are computed under SELF and GELF with 
respect to Hartigan prior using L-Approximation method and MCMC technique. It is observed that 
the approximation techniques works well and we noticed that the performances of Bayes 
estimates obtained under asymmetric invariant prior using L-Approximation have smaller mean 
square error as compared to rest of the methods, while the MSEs of the Bayes estimators are 
quite similar under MCMC methods. 
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