International Journal of Engineering, Science and Mathematics

Vol. 7 Issue 1, January 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

"Convolution of an integral equation with the H-function as its kernel"

Ram Niwas Meghwal

Department of mathematics Govt. College Sujangarh, Rajasthan (India).

Abstract The object of this paper is to solve an integral equation of convolution form having H-function of two variable as it's kernel. Some known results are obtained as special cases

Keywords - integral equation, convolution, generalized type geometric function of two variables

AMS Subject classification No. 45E10

1. Definition and Introduction

The following definition and results will be required in this paper

(i) The Laplace Transform if

$$F(P) = L[f(t); p] = \int_{0}^{\infty} e^{-pt} f(t)dt$$
, $Re(p) > 0$

1.1)

Then F(p) is called the Laplace transform of f(t) with parameter p and is represented by F(p) = f(t) Erdelyi [(3) pp.129-131]

(ii)
$$L[f(t);p]=F(P)$$
 then $L[e^{-at}f(t)]=Fig(p+aig)$...(

And if
$$f(0) = f'(0) = f''(0) = \dots = f^{m-1}(0) = 0$$
, $f^{n}(t)$

Is continuous and differential, then

$$L[f^n(t); p] = P^n F(p)$$

....(1.3)

(iii) If
$$L\left[\,f_1(t)
ight]\,=F_1(p)$$
 then $L\left[\,f_2(t)
ight]\,=F_2(p)$

Then convolution theorem for Laplace transform is

$$L\{\int_{0}^{1} f_{1}(t) f_{2}(t-u) du\} = L\{f_{1}(t)\} L\{f_{2}(t)\} = F_{1}(p) \cdot F_{2}(p)$$
...(1.4)

(iv) The H-Function Defined by Saxena and kumbhat [1] is an extension of Fox's H-Function on specializing the parameters , H-Function can be reduced to almost all the known special function as well as unknown

The Fox's H-Function of one variable is defined and represented in this Paper as follows [see Srivastava et al [2] ,pp 11-13]

$$H[x] = H_{P,Q}^{M,N} \left[x / {\binom{a_{j},\alpha_{j}}{\binom{b_{j},\beta_{j}}{\binom{1}{N}}}} \right] = \frac{1}{2\pi\omega} \int_{\theta=N-1}^{\infty} \theta(\xi) x^{\xi} d\xi$$
...(1.5)

$$\theta(\xi) = \frac{\prod_{i=1}^{n} \Gamma b_{j} - \beta_{j} \xi \prod_{j=1}^{N} \Gamma 1 - a_{j} - \alpha_{j} \xi}{\prod_{i=M=1}^{Q} \Gamma 1 - b_{j} + \beta_{j} \xi \prod_{j=N+1}^{P} \Gamma a_{j} - \alpha_{j} \xi} \qquad \dots (1.6)$$
For condition of the H-

Function of one variable (1.5) and on the contour L we refer to srivastava et al [2]

(V) The H-Function of two variable occurring in this paper is defined and represented as follows [see Srivastava et al [2],pp 83-85]

$$H[x,y] = H_{p_{1},q_{1},p_{2},q_{2},p_{3},q_{3}}^{0,n_{1},m_{2},n_{2},m_{3},n_{3}} \left[x_{y} \Big|_{(b_{j},\beta_{j},B_{j})_{1,q_{1}}}^{(a_{j},\alpha_{j},A_{j})_{1,p_{1}}} \Big|_{(c_{j},z_{j})_{1,p_{2}}}^{(c_{j},z_{j})_{1,p_{2}}} \Big|_{(f_{j},F_{j})_{1,q_{3}}}^{(e_{j},E_{j})_{1,p_{3}}} \right]$$

 $\dots(1.7)$ $\mathcal{E}(n) x(\mathcal{E}) y(n) d\mathcal{E} dn$

$$= -\frac{1}{4\pi^2} \int_{L_1} \int_{L_2} \phi_1(\xi, \eta) \psi_2(\xi) \psi_3(\eta) x(\xi) y(\eta) d\xi d\eta \quad \text{Where}$$

$$\phi_{1}(\xi,\eta) = \prod_{j=1}^{n_{1}} \Gamma(1-a_{j}+\alpha_{j}\xi+A_{j}\eta)$$

$$\times \left[\prod_{j=n+1}^{p_{1}} \Gamma a_{j} - \alpha_{j}\xi - A_{j}\eta \prod_{j=1}^{q_{1}} \Gamma 1 - b_{j} - \beta_{j}\xi + B_{j}\eta \right] \dots (1.8)$$

Where the $\psi_2(\xi)$ and $\psi_3(\eta)$ are defined as (1.6) and for conditions of existence etc. of the H(x,y) we refer to srivastava et al [2]

2 Main Result

Result I
$$L\left\{t^{\alpha}H_{P,Q}^{M,N}\left[at^{\alpha}/_{(b_{j},\beta_{j})_{1,Q}}^{(a_{j},\alpha_{j})_{1,P}}\right],P\right\}$$

$$=P^{-1-\alpha}H_{P+1,Q}^{M,N+1}\left[at^{-\lambda}/_{(b_{j},\beta_{j})_{1,Q}}^{(-\alpha,\lambda)(a_{j},\alpha_{j})_{1,P}}\right]$$

Provided Re(p) >0 $1 \ge \lambda > a$ and Re(1+ \propto)>0

Result II

$$\int_{0}^{1} \left\{ x^{\alpha-1} (1-x)^{\beta-1} H_{P_{1}, Q_{1}}^{M_{1}, N_{1}} \left[z_{1} x^{\lambda} /_{(b_{j}, \beta_{j})_{1, Q_{1}}}^{(a_{j}, \alpha_{j})_{1, P_{1}}} \right] H_{P_{2}, Q_{2}}^{M_{2}, N_{2}} \left[z_{2} (1-x)^{\mu} /_{(d_{j}, \delta_{j})_{1, Q_{2}}}^{(c_{j}, \gamma_{j})_{1, P_{2}}} \right] \right\} dx$$

$$= H_{P+2, Q+1}^{0, N+2} \int_{P_{1}, Q_{1}, P_{2}}^{M_{1}, N_{1}, M_{2}, N_{2}} \left[z_{1} /_{(1-\alpha, \lambda)}^{(1-\alpha, \lambda)} \int_{(1-\beta, \mu)}^{(1-\beta, \mu)} (a_{j}, \alpha_{j})_{P_{1}} (c_{j}, \gamma_{j})_{P_{2}} \right] dx$$

Provided Re (α) >0 Re (β) >0 λ , μ >0

$$\operatorname{Re}\left(\alpha + \lambda \frac{b_j}{\beta_j}\right) > 0 \operatorname{Re}\left(\beta + \mu \frac{d_j}{\delta_j}\right) > 0 \quad j = 1, 2 \dots m \quad k = 1, 2 \dots g$$

$$\begin{aligned} \left| \arg z_{1} \right| &< \frac{1}{2} \pi \Delta_{1} & \left| \arg z_{2} \right| &< \frac{1}{2} \pi \Delta_{2} \quad \Delta_{1} \quad \Delta_{2} > 0 \\ \Delta_{1} &= \sum_{1}^{M_{1}} b_{j} - \sum_{M_{1}+1}^{Q_{1}} b_{j} + \sum_{1}^{N_{1}} a_{j} - \sum_{N_{1}+1}^{P_{1}} a_{j} \\ \Delta_{2} &= \sum_{1}^{M_{2}} d_{j} - \sum_{M_{2}+1}^{Q_{2}} d_{j} + \sum_{1}^{N_{2}} c_{j} - \sum_{N_{2}+1}^{P_{2}} c_{j} \end{aligned}$$

Result III

$$L\left\{e^{-nt}t^{h}H_{P,Q}^{M,N}\left[zt^{k}/_{(b_{j},\beta_{j})_{1,Q}}^{(a_{j},\alpha_{j})_{1,P}}\right],P\right\}$$

$$=\left(P+a\right)^{-1-h}H_{P+1,Q}^{M,N+1}\left[z\left(p+a\right)^{-k}/_{(b_{j},\beta_{j})_{1,Q}}^{(-h,k)\left(a_{j},\alpha_{j}\right)_{1,P}}\right]$$

Provided Re(p) >0 $1 \ge \lambda > a$ and Re($1+\infty$)>0

Proof I First Taking by mellin barnes type contour integral for H- function for one variable and then convolution of laplace transform for H-function and get required result.

Proof II Taking by mellin barnes type contour integral for H- function for two variables and then using beta function we get required result.

Proof III same as proof I

3. Conclusion

From this Paper we get some many solution of integral equation of convolution from having H – Function of one or more veriables

4. Acknowledgement

The author is highly grateful to Dr. Atul Garg for their valuable help and suggestions to improve this paper

5. Refrence

- 1. Saxena R.K. , and Kumbhat R.K. , Integral operators H- Function, Indian J . Pure Appl. Maths $\,5(1974)$. 1-6
- 2. Srivasatava H.M. , Gupta K.C. , and Goyal S.P. The H- Function of one and two variables with applications south Asian Publishers. New Dehli and Madras (1992)
- 3. Erdely A. etal. Tabres of Integral Transforms, Mc Graw Hill- Book Company , New York , Vol. I. (1954).
- 4. Melachlan, N.W.: laplace Transform and their application to Differential equations, Dover, Publications New York (1962)
- 5. Muhammad: Special function and its Application, Ph.D. Thesis, University of Calcuta ,(1987)
- 6. kumbhat R.K. and K.M. khan Arif: Convolution of an Integral equation with the I-Function as its Kernel J.indian Acad. Math vol.23 No. 2 (2001)