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Abstract 

In this paper, the reflection and transmission of plane waves from imperfect interface 

separating a micropolar viscoelastic solid half space and a fluid saturated incompressible 

porous solid half space is studied. A longitudinal wave (P-wave) or transverse wave (SV-

wave) impinges obliquely at the interface. Amplitude ratios for various reflected and 

transmitted waves have been obtained with help of boundary conditions at the interface. Then 

these amplitude ratios have been computed numerically for a specific model and results thus 

obtained are shown graphically with angle of incidence of incident wave.  It is found that 

these amplitude ratios depend on angle of incidence of the incident wave, imperfect interface 

as well as on the properties of media. From the present investigation, a special case when 

fluid saturated porous half space reduces to empty porous solid and micropolar viscoelastic 

solid half space reduces to micropolar elastic solid has also been deduced and discussed with 

the help of graphs.   

Keywords: Micropolar viscoelastic solid, porous, reflection, transmission, longitudinal wave, 

transverse wave, amplitude ratios, empty porous solid.  

 

1. Introduction 

Most of natural and man-made materials, including engineering, geological and biological 

media, possess a microstructure. The ordinary classical theory of elasticity fails to describe 

the microstructure of the material. To overcome this problem, Suhubi and Eringen (1964), 

Eringen and Suhubi (1964) developed a theory in which they considered the microstructure of 

the material and they showed that the motion in a granular structure material is characterized 

not by a displacement vector but also by a rotation vector. Gautheir (1982) found aluminum-

epoxy composite to be a micropolar material. Eringen (1967) developed the linear theory of 

micropolar viscoelasticity. Many researchers discussed the problems of waves and vibrations 

in micropolar viscoelastic solids. 

Based on the work of Fillunger model (1913), Bowen (1980) and de Boer and Ehlers (1990a, 

1990b) developed an interesting theory for porous medium having all constituents to be 

incompressible. Based on this theory, many researchers like de Boer and Liu (1994, 1995), 

Liu (1999), Singh (2002), de Boer and Didwania (2004), Kumar and Barak (2007), Kumar 

and Hundal (2007), Kumar et.al. (2011) etc. studied some problems of wave propagation in 

fluid saturated incompressible porous media. Elastic waves propagation in fluid saturated 

porous media has its importance in various fields such as soil dynamics, hydrology, 

seismology, earthquake engineering and geophysics. Imperfect interface considered in this 

problem means that the stress components are continuous and small displacement field is not. 

The values of the interface parameters depend upon the material properties of the medium. 

Recently, using the imperfect conditions at the interface, Chen et.al. (2004), Kumar and 

Chawala (2010), Kumari (2014)etc studied the various types of wave problems. 

Using the theory of de Boer and Ehlers (1990) for fluid saturated porous medium and Eringen 

(1967) for micro polar elastic solid, the reflection and transmission phenomenon of 

longitudinal and transverse waves at an imperfect interface between micropolar elastic solid 

half space and fluid saturated porous solid half space is studied. A special case when fluid 

saturated porous solid half space reduces to empty porous solid half space has been deduced 
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and discussed. Amplitudes ratios for various reflected and transmitted waves are computed 

for a particular model and depicted with help of graphs and discussed accordingly. The model 

which is considered here is assumed to exist in the oceaniccrust part of the earth and the 

propagation of wave through such a model will be of great use in the fields which are related 

to earth sciences.  

 

2. Basic equations and constitutive relations 

2.1. For medium 𝐌𝟐(Micropolar viscoelastic solid) 

Following Eringen (1967), the constitutive and field equations of a micropolar viscoelastic 

solid in the absence of body forces and body couples, are as under  

          tkl = λur,rδkl + μ(uk,l + ul,k) + κ(ul,k − ϵklrϕr)                                                                 (1) 

          mkl = αϕr,rδkl + βϕk,l + γϕl,k                                                                                                 (2) 

         (c1
2 + c3

2)∇(∇. 𝐮) − (c2
2 + c3

2)∇ × (∇ × 𝐮) + c3
2∇ × 𝝓 = 𝐮̈                                        (3) 

         (c4
2 + c5

2)∇(∇. 𝝓) − c4
2∇ × (∇ × 𝝓) + ω0

2∇ × 𝐮 − 𝟐ω0
2𝝓 = 𝝓̈                                  (4) 

where 

         c1
2 =

(λ + 2μ)

ρ
 ;    c2

2 =
μ

ρ
  ;   c3

2 =
κ

ρ
  ;        c4

2 =
𝛾

𝜌𝑗
  ;    c5

2 =
(α + β)

ρj
  ; 

        ω0
2 =

κ

ρj
  ;  λ = λ∗ + λυ

∗ (
∂

∂t
) ;          μ = μ∗ + μυ

∗ (
∂

∂t
) ;         κ = κ∗ + κυ

∗ (
∂

∂t
)  ; 

       𝛼 = α∗ + αυ
∗ (

∂

∂t
) ;  β = β∗ + βυ

∗ (
∂

∂t
) ;   γ = γ∗ + γυ

∗ (
∂

∂t
) ;  ∇= 𝑖 (

∂

∂x
) + 𝑘 (

∂

∂z
)    (5) 

λ∗ , μ∗ , κ∗, α∗, β∗, γ∗, λυ
∗ , μυ

∗, κυ
∗, αυ

∗, βυ
∗
and γυ

∗ are material constants, 𝜌  is the density and j 

the rotational inertia.  𝐮and𝝓are displacement and microrotation vectors respectively. 

Superposed dots on right hand side of equations (3) and (4) represent the second order partial 

derivative with respect to time.  

Taking 𝐮 = (u, 0, w) and  𝛟 = (0, ϕ2, 0)and introducing potentials ϕ(x, z, t) and ψ(x, z, t) 

which are related to displacement components as  

     u =
∂ϕ

∂x
+

∂ψ

∂z
 and     w =

∂ϕ

∂z
−

∂ψ

∂x
                                                                                             (6) 

With the help of displacement components given by (6) in (3) and (4), we get 

(∇2 −
1

(c1
2 + c3

2)

∂2

∂t2
) ϕ = 0                                                                                                            (7) 

(∇2 −
1

(c2
2 + c3

2)

∂2

∂t2
) ψ − pϕ2 = 0                                                                                               (8) 

(∇2 − 2q −
1

c4
2

∂2

∂t2
) ϕ2 + q∇2ψ = 0                                                                                               (9) 

where        p =
μ

μ+κ
  ;     q =

κ

γ
                                                                                                           (10) 

Assuming the time variation as  

          ϕ(x, z, t) = ϕ̅(x, z) exp(iωt) 

          ψ(x, z, t) = ψ̅(x, z) exp(iωt) 

          ϕ2(x, z, t) = ϕ̅2(x, z) exp(iωt)                                                                                              (11) 

Using (11) in (7) to (9), we obtain 

(∇2 + (ω2/V1
2)) ϕ̅ = 0                                                                                                                     (12) 

(∇4 + ω2B∇2 + ω4C)(ψ̅, ϕ̅2) = 0                                                                                                   (13) 

where 
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          B =
q(p − 2)

ω2
+

1

(c2
2 + c3

2)
+

1

c4
2

  ;             𝐶 =
1

(𝑐2
2 + 𝑐3

2)
(

1

𝑐4
2

−
2𝑞

𝜔2
)                  (14) 

and       V1
2 = c1

2 + c3
2                                                                                                                      (15) 

In an unbounded medium, the solution of (12) corresponds to modified longitudinal 

displacement wave (LD wave) propagating with velocityV1. 

Writing the solution of (13) as 

 ψ̅ = ψ̅1 + ψ̅2                                                                                                                                        (16) 

where  ψ̅1 and ψ̅2 satisfy 

(∇2 + δ1
2)ψ̅1 = 0                                                                                                                                (17) 

(∇2 + δ2
2)ψ̅2 = 0                                                                                                                               (18) 

and 

          δ1
2 = λ1

2ω2  ;      δ2
2 = λ2

2ω2                                                                                               (19) 

          λ1
2 =

1

2
[B + √B2 − 4C]  ;     λ2

2 =
1

2
[B − √B2 − 4C]                                                   (20) 

From (8) we obtain 

ϕ̅2 = Eψ̅1 + Fψ̅2 

where          E =
(

ω2

c2
2+c3

2−δ1
2)

p
  ;           F =

(
ω2

c2
2+c3

2−δ2
2)

p
                                                                (21) 

Thus there  are two waves propagating with velocities λ1
−1

  and λ2
−1, each consisting of 

transverse displacement ψ and transverse microrotation  ϕ2.Following Parfitt and 

Eringen(1969), these waves are modified coupled transverse displacement wave and 

transverse microrotational waves (CD I  and  CD II waves) respectively. 

 

2.2. For medium 𝐌𝟏 (Fluid saturated incompressible porous medium) 

Following de Boer and Ehlers (1990b), the governingequations in a fluid-saturated 

incompressible porous medium are  

          div(ηS𝐱̇S + ηF𝐱̇F) = 0.                                                                                                             (22) 

          div𝐓𝐄
𝐒 − ηS grad p + ρS(𝐛 − 𝐱̈s) − 𝐏𝐄

𝐅 = 0,                                                                        (23) 

          div𝐓𝐄
𝐅 − ηF grad p + ρF(𝐛 − 𝐱̈F) + 𝐏𝐄

𝐅 = 0,                                                                       (24) 

where  𝐱̇i and 𝐱̈i(i = S, F) denote the velocities and accelerations, respectively of solid (S) 

and fluid (F) phases of the porous aggregate and p is the effective pore pressure of the 

incompressible pore fluid. ρS and ρFare the densities of the solid and fluid phases respectively 

and bis  the body force per unit volume.𝐓𝐄
𝐒and 𝐓𝐄

𝐅  are the  effective stress in the solid  and 

fluid phases  respectively, 𝐏𝐄
𝐅is the effective quantity of momentum supply and ηS and ηF are 

the volume fractions satisfying 

ηS + ηF = 1.                                                                                                                                          (27) 

If  𝐮S and 𝐮F are the displacement vectors for solid and fluid phases, then 

ẋS = 𝐮̇S,    𝐱̈s = 𝐮̈s,    𝐱̇F = 𝐮̇F,     𝐱̈F = 𝐮̈F.                                                                                     (28) 

The constitutive equations for linear isotropic, elastic incompressible porous medium are 

given by de Boer, Ehlers and Liu (1993) as 

          𝐓𝐄
𝐒 = 2μS𝐄S + λ

S(ES. 𝐈)𝐈,                                                                                                         (29) 

          𝐓𝐄
𝐅 = 0,                                                                                                                                         (30) 

          𝐏𝐄
𝐅 = −𝐒v(𝐮̇F − 𝐮̇S),                                                                                                                 (31) 

where λ
S
  and μS are the macroscopic Lame’s parameters of the porous solid and  𝐄S is the 

linearized Langrangian strain tensor defined as  
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          𝐄S =
1

2
(grad 𝐮S + gradT𝐮S),                                                                                                (32) 

In the case of isotropic permeability, the tensor 𝐒v describing the coupled interaction between 

the solid and fluid is given by de Boer and Ehlers (1990b) as 

          𝐒v =
(ηF)2γFR

KF
𝐈,                                                                                                                          (33) 

where  γFR is the specific weight of the fluid  andKF is the Darcy’s permeability coefficient of 

the porous medium. 

Making the use of (28) in equations (22)-(24), and with the help of (29)-(32), we obtain 

  div(ηS𝐮̇S + ηF𝐮̇F) = 0,                                                                                                                     (34) 

(λ
S + μS)grad div 𝐮S + μSdiv grad 𝐮S − ηSgrad p + ρS(𝐛 − 𝐮̈s) + Sv(𝐮̇F − 𝐮̇S) = 0,    (35) 

−ηFgrad p + ρF(𝐛 − 𝐮̈F) − Sv(𝐮̇F − 𝐮̇S) = 0.                                                                             (36) 

For the two dimensional problem, we assume the displacement vector 𝐮i(i = F, S) as  

𝐮i = (ui, 0, wi)     where    i = F, S.                                                                                                  (37) 

Equations (34) - (36) with the help of equation (37) in the absence of body forces take the 

form  

          ηS [
∂2uS

∂x ∂t
+

∂2wS

∂z ∂t
] + ηF [

∂2uF

∂x ∂t
+

∂2wF

∂z ∂t
] = 0,                                                                     (38) 

          ηF
∂p

∂x
+ ρF

∂2uF

∂t2
+ Sv [

∂uF

∂t
−

∂uS

∂t
] = 0,                                                                               (39) 

          ηF
∂p

∂z
+ ρF

∂2wF

∂t2
+ Sv [

∂wF

∂t
−

∂wS

∂t
] = 0,                                                                           (40) 

         (λS + μS)
∂θS

∂x
+ μS∇2uS − ηS ∂p

∂x
− ρS ∂2uS

∂t2 + Sv [
∂uF

∂t
−

∂uS

∂t
] = 0,                                    (41) 

         (λS + μS)
∂θS

∂z
+ μS∇2wS − ηS

∂p

∂z
− ρS

∂2wS

∂t2
+ Sv [

∂wF

∂t
−

∂wS

∂t
] = 0,                         (42) 

where  

          θS =
∂(uS)

∂x
+

∂(wS)

∂z
                                                                                                                 (43) 

and 

            ∇2=
∂2

∂x2
+

∂2

∂z2
                                                                                                                         (44) 

Also,tzz
S  and  tzx

S  the normal and tangential stresses in the solid phase are as under 

          tzz
S = λS (

∂uS

∂x
+

∂wS

∂z
) + 2μS

∂wS

∂z
                                                                                      (45) 

          tzx
S = μS (

∂uS

∂z
+

∂wS

∂x
)                                                                                                           (46) 

The displacement components ujand wj are related to the dimensional potential ϕj and ψj as  

          uj =
∂ϕj

∂x
+

∂ψj

∂z
 and   wj =

∂ϕj

∂z
−

∂ψj

∂x
  ;      j = S, F.                                                          (47) 

Using eq. (47) in equations (38)-(42), we obtain the following equations determining 

 ϕS,   ϕF, ψS ,   ψF and  p  as: 

          ∇2ϕS −
1

C1
2

∂2ϕS

∂t2
−

Sv

(λS + 2μS)(ηF)2

∂ϕS

∂t
= 0                                                                  (48) 

           ϕF = −
ηS

ηF
ϕS                                                                                                                             (49) 
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          μS∇2ψS − ρS
∂2ψS

∂t2
+ Sv [

∂ψF

∂t
−

∂ψS

∂t
] = 0                                                                           (50) 

          ρF
∂2ψF

∂t2
+ Sv [

∂ψF

∂t
−

∂ψS

∂t
] = 0                                                                                               (51) 

(ηF)2p − ηSρF
∂2ϕS

∂t2
− Sv

∂ϕS

∂t
= 0                                                                                          (52) 

where 

          C1  = √
(ηF)2(λS + 2μS)

(ηF)2ρS + (ηS)2ρF
                                                                                                     (53) 

Assuming the solution of the system of equations (48) - (52) in the form 

         (ϕS, ϕF, ψS, ψF , p) = (ϕ1
S, ϕ1

F, ψ
1

S, ψ
1

F, p1) exp(iωt)                                                   (54) 

where ω is the complex circular frequency. 

Making the use of (54) in equations (48)-(52), we obtain 

[∇2 +
ω2

C1
2 −

iωSv

(λS + 2μS)(ηF)2
] ϕ1

S = 0                                                                              (55) 

[μS∇2 + ρSω2 − iωSv]ψ
1

S = −iωSvψ
1

F                                                                             (56) 

           [−ω2ρF + iωSv]ψ
1

F − iωSvψ
1

S = 0                                                                                    (57) 

(ηF)2p1 + ηSρFω2ϕ1
S − iωSvϕ1

S = 0                                                                               (58) 

           ϕ1
F = −

ηS

ηF
ϕ1

S                                                                                                                         (59) 

Equation (55) corresponds to longitudinal wave propagating with velocityV̅1, given by 

 V̅1
2

=
1

G1
                                                                                                                                               (60) 

where          G1 = [
1

C1
2 −

iSv

ω(λS+2μS)(ηF)2]                                                                                          (61) 

From equation (56) and (57), we obtain 

[∇2 +
ω2

V2

2] ψ
1

S = 0,                                                                                                               (62) 

Equation (62) corresponds to transverse wave propagating with velocityV̅2,  

given by V̅2
2

= 1/G2 

where 

          G2 = {
ρS

μS
−

iSv

μSω
−

Sv
2

μS(−ρSω2 + iωSv)
}                                                                             (63) 

3. Formulation of the problem  

Consider a two dimensional problem by taking the z-axis pointing into the lower half-space 

and the plane interface z=0 separating the uniform micropolar viscoelastic solid half space 

mediumM2 (z<0) and fluid saturated porous half space medium M1 (z>0). Consider a 

longitudinal wave or transverse wave propagating through the medium M1,  incident at the 

plane z=0 and making an angle θ0 with normal to the surface. Corresponding to incident 

longitudinal wave or transverse wave, we get two reflected waves in the medium M1  and 

three transmitted waves in medium M2 as shown in fig.1. 
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Figure1. Geometry of the problem. 

In medium 𝐌𝟐 

          ϕ = B1 exp{iδ1(xsinθ1 − zcosθ1 ) + iω1 t},                                                                    (64) 

          ψ = B2 exp{iδ2(xsinθ2 − zcosθ2 ) + iω2 t}

+ B3 exp{iδ3(xsinθ3 − zcosθ3 ) + iω3 t},                                                       (65) 

Φ2 = EB2 exp{iδ2(xsinθ2 − zcosθ2 ) + iω2 t}

+ FB3 exp{iδ3(xsinθ3 − zcosθ3 ) + iω3 t},                                                    (66) 

In medium 𝐌𝟏 

{ϕS , ϕF , p} = {1, m1, m2}[A01exp{ik1(xsinθ0– zcosθ0)
+ iω1t}+A1exp{ik1(xsinθ1 + zcosθ1) + iω1t}],                                          (67) 

{ψS  , ψF} = {1, m3}[B01exp{ik2(xsinθ0– zcosθ0) + iω2t} + A2exp{ik2(xsinθ2 + zcosθ2)
+ iω2t}],                                                                                                                  (68) 

where 

          m1 = −
ηS

ηF
  ;     m2 = − [

ηSω1
2ρF − iω1Sv

(ηF)2
]  ;     m3 =

iω2Sv

iω2Sv − ω2
2ρF

  ;               (69) 

and  B1 , B2 , B3  are amplitudes of transmitted P-wave, transmitted coupled transverse and 

micro-rotation waves respectively. Also  A01or B01 , A1  and A2 are amplitudes of incident P-

wave or SV-wave, reflected P-wave and reflected SV-wave respectively and to be determined 

from boundary conditions.  

 

4. Boundary conditions 

Boundary conditions appropriate here are the continuity of displacement, micro 
rotation and stresses at the interface separating medium  M1 and M2. These boundary 
conditions at z=0 can be written in mathematical form as  
          tzz = tzz

S − p  ;  tzx = tzx
S ,    mzy = 0   

          tzz
S − p = Kn(w − wS)  ;     tzx

S = Kt(u − uS)                                                                 (70) 

In order to satisfy the boundary conditions, the extension of the Snell’s law will be  

          

sinθ0

v0
=

sinθ1

v1
=

sinθ2

v2
=

sinθ1

v̅1
=

sinθ2

v̅2
=

sinθ3

v̅3
                                                                      (71) 
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where  v̅2 =
1

λ2
 ;     v̅3 =

1

λ3
 

For longitudinal wave, 

           v0 = v1  ;     θ0 = θ1                                                                                                                  (72) 

For transverse wave, 

           v0 = v2 ;      θ0 = θ2                                                                                                                 (73) 

Also 

           δ1v1 = δ2λ2
−1 = δ3λ3

−1 = k1v1 = k2v2 = ω,    at  z = 0                                                (74) 

Making the use of potentials given by equations (64)-(68) in equations (1)-(2) and (6) and 

(45)-(47) and (67)  and then using the boundary conditions given by equation (70) and using 

(71)-(74), we get a system of five non homogeneous which can be written as  

            ∑ aij

5

j=0

Zj = Yi,        (i = 1,2,3,4,5 )                                                                                        (75) 

where 

            Z1 =
B1

B0
 ;      Z2 =

B2

B0
 ;     Z3 =

B3

B0
 ;     Z4 =

A1

B0
 ;     Z5 =

A2

B0
                                         (76) 

where  B0 = A01  or B01  is amplitude of  incident P-wave or SV-wave respectively. 

i.e.  Z1 to Z5  be the amplitude ratios of reflected modified longitudinal displacement wave, 

reflected CD I wave at an angle  θ2, reflected CD II wave at an angle θ3, refracted P-wave 

and refracted SV-wave, respectively and aij  in non-dimensional form are as 

          a11 =
−λδ1

2 − (2μ + κ)(δ1
2cos2θ1)

μδ1
2   ;     a12 =

(2μ + κ)δ2
2sinθ2cosθ2

μδ1
2  

        a13 =
(2μ + κ)δ3

2sinθ3cosθ3

μδ1
2   ;                  a14 =

k1
2(λS + 2μScos2θ1) + m2

μδ1
2  

 

       a15 =
−2μSk2

2sinθ2cosθ2

μδ1
2   ;                           a21 =

(2μ + κ)δ1
2sinθ1cosθ1

μδ1
2  

       a22 =
μδ2

2 cos 2 θ2 + κδ2
2cos2θ2 − κE

μδ1
2   ;  a23 =

μδ3
2 cos 2 θ3 + κδ3

2cos2θ3 − κF

μδ1
2  

       a24 =
μSk1

2sin2θ1

μδ1
2  ;                                           a25 =

μSk2
2 cos2θ2

μδ1
2  

        a31 = 0;                  a32 = cosθ2 ;           a33 =
δ3F cosθ3

δ2E
 ;     a34 = 0 ;           a35 = 0 

        a41 =
λδ1

2 + (2μ + κ)(δ1
2cos2θ1) + kni δ1cosθ1

knδ1
 ; 

       a42 =
−(2μ + κ)δ2

2sinθ2cosθ2 − kni δ2sinθ2

knδ1
  ;  

       a43 =
−(2μ + κ)δ3

2sinθ3cosθ3 − kni δ3sinθ3

knδ1
 ;      

       a44 =
i k1cosθ1

δ1
 ;           a45 = −

i k2sinθ2

δ1
 ; 

       a51 =
−(2μ + κ)δ1

2sinθ1cosθ1 − iktδ1sinθ1

ktδ1
 ; 
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       a52 =
−μδ2

2cos2θ2 − κδ2
2cos2θ2 + κE − kti δ2cosθ2

ktδ1
 ; 

       a53 =
−μδ3

2cos2θ3 − κδ3
2cos2θ3 + κF − kti δ3cosθ3

ktδ1
 ; 

       a54 =
i k1sinθ1

δ1
 ;                a55 =

i k2cosθ2

δ1
 ; 

For incident P wave 

         Y1 = −a14 ;     Y2 = a24  ;     Y3 = a34 ;     Y4 = a44  ;       Y5 = −a54 
For incident SV wave 

         Y1 = a15 ;     Y2 = −a25  ;     Y3 = a35 ;     Y4 = −a45 ;      Y5 = a55                                     (77) 

 

5. Particular cases: 

Case I: Normal force stiffness (Kn ≠ 0, Kt → ∞) 

In this case, we get a system of five non homogeneous equations as in given by equation (77) 

with some aij changed as  

       a51 = −i sinθ1 ;              a52 =
−i δ2cosθ2

δ1
  ;   a53 =

−i δ3cosθ3

δ1
 ;                                   (78) 

Case II: Transverse force stiffness (Kt ≠ 0, Kn → ∞) 

In this case, a system of five non homogeneous equations as those given by equation (77) is 

obtained but some  aij changed as  

          a41 =
i δ1cosθ1

δ1
 ;          a42 =

−i δ2sinθ2

δ1
  ;             a43 =

−i δ3sinθ3

δ1
                           (79) 

Case III: Welded contact (Kn → ∞, Kt → ∞) 

Again in this case, a system of five non homogeneous equations is obtained as in equation 

(67) with some aij  changed as  

          a41 =
i δ1cosθ1

δ1
 ;     a42 =

−i δ2sinθ2

δ1
 ;     a43 =

−i δ3sinθ3

δ1
 ;                             

       a51 = −i sinθ1 ;       a52 =
−i δ2cosθ2

δ1
  ;   a53 =

−i δ3cosθ3

δ1
;                                           (80) 

Special case:- 

CASE-1 

If pores are absent or gas is filled in the pores then  ρF is very small as compared to ρS and 

can be neglected, so the relation (41) gives us  

          C = √
λS + 2μS

ρS
.                                                                                                                          (81) 

In this situation the problem reduces to the problem of empty porous solid half space lying 

over micropolar elastic solid half space.  

CASE-2 

When upper half space is micropolar elastic solid,in this case boundary conditions remain 

same and hence  aij in equation (77) are same. 

 

 

6. Numerical results and discussion 

The theoretical results obtained above indicate that the amplitude ratios Zi(i = 1,2,3,4,5 ) 

depend on the angle of incidence of incident wave and material properties of half spaces. In 
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order to study in more detail the behaviour of various amplitude ratios, we have computed 

them numerically for a particular model for which the values of various physical parameters 

are as under   

In medium M2 , the physical parameters for micropolar  viscoelastic elastic solid are taken 

from Gauthier (1982) as   

λ∗ = 7.59 × 1011 dyne/cm2 ,                μ∗ = 1.89 × 1011 dyne/cm2,  
 κ∗ = 0.0149 × 1011dyne/cm2,            ρ = 2.19gm/cm3 

  γ∗ = 0.0268 × 1011dyne,                      j = 0.0196cm2. 

λ = λ∗ (1 +
𝐢

Q1
) ,                                        μ = μ∗ (1 +

𝐢

Q2
),  

 κ = κ∗ (1 +
i

Q3
) ,                                      γ = γ∗ (1 +

i

Q4
),                                                          (79) 

where the quality factors Qi(i = 1,2,3,4) are taken arbitrarily as  

Q1 = 5,    Q2 = 10,    Q3 = 15,   Q4 = 13. 
In mediumM1, the physical constants for fluid saturated incompressible porous medium are 

taken from de Boer, Ehlers and Liu (1993)as 

ηs = 0.67,      ηF = 0.33,     ρs = 1.34 Mg/m3,    ρF = 0.33 Mg/m3,    λs = 5.5833 MN/m2,  
KF = 0.01m/s,    γFR = 10.00KN/m3,    μs = 8.3750N/m2.                                               (80)  

A computer programme in MATLAB has been developed to calculate the modulus of 

amplitude ratios of various reflected and transmitted waves for the particular model and to 

depict graphically.  

In figures (2)-(22), dashed dotted line shows the general case (Gen) when medium-I is fluid 

saturated porous solid and medium-II is micropolar viscoelastic solid half space. In these 

figures dotted line shows the case when medium-I becomes empty porous solid and medium-

II remains same.  In these figures P wave (longitudinal wave) is incident wave. 

Figure (2)-(5) shows the variation of |Z1| with respect to angle of incidence which varies 

from θ = 00 to θ = 900 . These figures show the effect of porosity which is very clear. Also 

after comparing the figures (2)-(5), the effect of stiffness is clear. In figure (2), the contact 

between two half space is imperfect. Figure (3) shows the variation of  |Z1| when contact 

between half spaces is Normal Force Stiffness (NFS). Figure (4) corresponding to Transverse 

Force Stiffness (TFS) contact. Figure (5) shows the variation of |Z1| when the contact 

between two half spaces is Welded (Welded). In figures (2)-(5) effect of fluid filled in pores 

(porosity) as well as effect of stiffness is very clear.  

Figure (6)-(9) shows the variation of |Z2|with respect to angle of incident P wave. In these 

figures also, the effect of porosity and effect of stiffness is clear. In all cases of stiffness 

(imperfect boundary, normal force stiffness, transfers force stiffness, welded contact) the 

value of |Z2|are different. 

Figure (10) to (13) shows the variation of |Z3|with respect to angle of incidence of P wave. In 

all these figures, the effect of porosity and stiffness is very clear. The values of |Z3|are small 

in case of imperfect interface than all other cases. 

Figure (14) to (18) shows the variation of |Z4| i.e. modulus of amplitude ratio for reflected P 

wave with respect to angle of incident from  θ = 00 to θ = 900. These figures also show the 

effect of porosity as well as effect of stiffness. 

Figures (19) to (22) depict the variation of |Z5| with respect to angle of incident of P wave. In 

these figures the effect of stiffness and porosity is very clear. 

In figures (23) to (42), there is a SV wave (transverse wave) incident. In these figure dashed 

dotted line shows the variation of |Zi| (i = 1,2,3,4,5) when medium-I is fluid saturated 

porous solid whereas dotted line shows the case when medium-I becomes empty porous solid 

(EPS). In all these figures (23) to (42) medium-II to remains same. 
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Also in these figures, imperfect shows the case when interface between two half spaces is 

imperfect. NFS shows the case when contact between the two half spaces is Normal force 

stiffness. TFS shows the case when boundary between two half spaces is transverse force 

stiffness. Welded shows the case of welded contact between the spaces. 

Figures (23)-(26), (27)-(30), (31)-(34), (35)-(38) and (39)-(42) shows the variation of 
|Zi| (i = 1,2,3,4,5) respectively for different cases of stiffness. This figure shows the effect of 

porosity i.e. fluid filled in the pores of fluid saturated porous solid and effect of stiffness. 

In figures (43) to (81) dashed dotted lines shows the case when medium-I is fluid situated 

porous solid and medium-II is micropolar viscoelastic solid. Dotted lines show the case when 

medium-I remain same but medium-II becomes micropolar elastic solid. 

These figures show the effect of viscosity of micropolar viscoelastic solid. In figures (43) to 

(62), P wave is incident and the figure (63) to (81), there is SV wave incident. 

Figures (43)-(46), (47)-(50), (51)-(54), (55)-(58) and (59)-(62) shows the variation of 
|Zi| (i = 1,2,3,4,5)respectively with angle of incidence P wave in four cases of stiffness i.e. 

imperfect interface, NFS (normal force stiffness), TFS (transverse force stiffness), Welded 

(welded). In figures (43) to (54), the effect of viscosity and stiffness is evident i.e. for 

modulus of amplitude ratio corresponding to transmitted wave. But figures (55) to (58) i.e. for 

corresponding to reflected P wave, the effect of viscosity is negligible. In figures (59) to (62), 

the effect of viscosity for reflected transverse wave (SV wave) is negligible for imperfect and 

welded case. But effect of viscosity in NFS, TFS is clear. 

Figures (63)-(66), (67)-(70), (71)-(74), (75)-(78) and (79)-(81), shows the variation of 
|Z1|, |Z2|, |Z3|, |Z4| and |Z5| respectively in four cases of stiffness. In all these figures i.e. (63 

to (81), the effect of stiffness as well as effect of viscosity is clear. Also the effect of viscosity 

is more for transmitted wave than for reflected waves. 

 

 
Figure (2)-(5). Variation of the |Z1|with angle of 

incidence of the incident longitudinal wave 

 
Figure (6)-(9). Variation of the |Z2|with angle of 

incidence of the incident longitudinal wave 
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Figure (10)-(13). Variation of the |Z3|with angle of 

incidence of the incident longitudinal wave 

 
Figure (14)-(18). Variation of the |Z4|with angle of 

incidence of the incident longitudinal wave 

 
Figure (19)-(22). Variation of the |Z5|with angle of 

incidence of the incident longitudinal wave 

 
Figure (23)-(26). Variation of the |Z1|with angle of 

incidence of the incident transverse wave 

 
Figure (27)-(30). Variation of the |Z2|with angle of 

incidence of the incident transverse wave 

 
Figure (31)-(34). Variation of the |Z3|with angle of 

incidence of the incident transverse wave 
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Figure (35)-(38). Variation of the |Z4|with angle of 

incidence of the incident transverse wave 

 
Figure (39)-(42). Variation of the |Z5|with angle of 

incidence of the incident transverse wave 

 
Figure (43)-(46). Variation of the |Z1|with angle of 

incidence of the incident longitudinal wave 

 
Figure (47)-(50). Variation of the |Z2|with angle of 

incidence of the incident longitudinal wave 

 
Figure (51)-(54). Variation of the |Z3|with angle of 

incidence of the incident longitudinal wave 

 
Figure (55)-(58). Variation of the |Z4|with angle of 

incidence of the incident longitudinal wave 
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Figure (59)-(62). Variation of the |Z5|with angle of 

incidence of the incident longitudinal wave 

 
Figure (63)-(66). Variation of the |Z1|with angle of 

incidence of the incident transverse wave 

 
Figure (67)-(70). Variation of the |Z2|with angle of 

incidence of the incident transverse wave 

 
Figure (71)-(74). Variation of the |Z3|with angle of 

incidence of the incident transverse wave 

 
Figure (75)-(78). Variation of the |Z4|with angle of 

incidence of the incident transverse wave 

 
Figure (79)-(81). Variation of the |Z5|with angle of 

incidence of the incident transverse wave

 

7. Conclusion 

In conclusion, a mathematical study of reflection and transmission coefficients at an 

imperfect interface separating micropolar viscoelastic solid half space and fluid saturated 



                   IJESM               Volume 5, Issue 2                          ISSN: 2320-0294 

 
 

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics  

                                                                              http://www.ijesm.co.in Page 131 
 

 

Jun. 16 

incompressible porous half space is made when longitudinal wave or transverse wave is 

incident. It is observed that 

 

1. The effect of incident wave is significant on amplitude ratios. All the amplitudes 

ratios are found to depend on incident waves. 

2. The velocities of various reflected and transmitted waves are found to be complex 

valued. 

3. The modulus of amplitudes ratios of various reflected and transmitted waves depend 

on the angle of incidence of the incident wave and material properties of half spaces.  

4. The effect of fluid filled in the pores of incompressible fluid saturated porous 

medium is significant on the amplitudes ratios for reflected and transmitted waves. 

5. The effect of stiffness is significant either longitudinal wave is incident or transverse 

wave is incident. 

6. If we neglect the viscous effect of micropolar viscoelastic solid then the variations in 

the amplitude ratios of various transmitted waves have been affected significantly 

either longitudinal wave is incident or transverse is incident .  

7. Effect of viscosity of micropolar viscoelastic solid is more on modulus of amplitude 

ratios for transmitted waves. 

8. Effect of viscosity is more for transmitted wave than for reflected waves. 

 

Hence the amplitudes ratios of various reflected and transmitted waves depend on material 

properties and angle of   incidence of the incident wave. The model presented in this paper is 

one of the more realistic forms of the earth models. The present theoretical results may 

provide useful information for experimental scientists/researchers/seismologists working in 

the area of wave propagation in micropolar viscoelastic solid/fluid saturated incompressible 

porous solid. 
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