International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 8 Decembert2017, ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

ON GRAPH COMPLETION OF A GRAPH

DrAjitha V
Associate Professor
P.G Department of Mathematics

Mahatma Gandhi College, Iritty-670703
Kerala, India

Bibin K Jose

P.G \& Research Department of Mathematics

S.D. College, Alappuzha
Kerala, India

Manju Raju

U.C. College Aluva

Kerala, India

Abstract

In this paper we establish the completion of graphs using degree sequences and establish some results. Also we introduce two types of indices related to this graph completion and shall attempt to compute these indices for some standard graphs.

Keywords

Completion of graphs, completion index type I, completion index type II.

1. Introduction

By a (p, q)-graph $G=(V(G), E(G))$ we mean a finite undirected simple graph. The degree sequence of G is the list of vertex degree of G usually written in non increasing order $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$. A graphic sequence is a list of non negative numbers that is the degree sequence of some simple graph. For various graph theoretic notations

International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 4, August 2017, ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: editorijmie@ gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
and terminology we follow F. Harrary [1] and D B West [2]. For basic number theoretic results we refer [3]. In this paper we consider simple graphs only.

In this article, we construct a new graph $\operatorname{Comp}(G)$ from a graph G as follows. The vertex set of $\operatorname{Comp}(G)$ is same as G and two vertices of $\operatorname{Comp}(G)$ are adjacent if and only if their degrees are equal in the graph G. Then the following theorem is immediate.

Theorem 1.1: Two vertices of $\operatorname{Comp}(G)$ are adjacent if and only if their degrees are equal in the graph G. This is an equivalence relation.

Proof: Since we consider simple graphs, we are not considering the loops, the reflexive property is taken as trivial. If u and v are adjacent in $\operatorname{Comp}(G)$ then u and v have same degree in G. Thusv and u are adjacent in $\operatorname{Comp}(G)$. Thus symmetry holds. For the transitivity, let u is adjacent to v and v is adjacent to w in $\operatorname{Comp}(G)$. Then u and v have same degree in G and also v and w have same degree in G. Thusu and w have the same degree in G. Hence u is adjacent to w in $\operatorname{Comp}(G)$. Hence it is an equivalence relation.

Thus a formal definition of the newly defined graph is as follows.
Definition 1.2: Givena (p, q)-graph G, one can define the completion of G as follows: corresponding to each vertex of G there is a vertex in the graph completion and two vertices of graph completion are joined by an edge if and only if their degrees are equal in the graph G. The graph completion is denoted by $\operatorname{Comp}(G)$.

Remark 1.3: Two vertices of $\operatorname{Comp}(G)$ are adjacent if and only if their degrees are equal in the graph G. This is an equivalence relation. Thus the vertices of $\operatorname{Comp}(G)$ are partitioned into different classes. Each vertex in a particular class is adjacent to all other vertices of the same class, since the degrees of the vertices are same in the class. Hence each class is isomorphic to a complete graph. Thus the most important fact is that $\operatorname{Comp}(G)$ is a disjoint union of complete graphs.

The following are some simple observations which follow immediately from the definition of graph completion.

Observation 1.4: Every graph G has a completion.
Observation 1.5: For a k-regular graph G, the completion is connected.

Observation 1.6: In general $\operatorname{Comp}(G)$ is a disjoined union of complete graphs.
Observation 1.7: If $G_{1} \cong G_{2}$ then $\operatorname{Comp}\left(G_{1}\right) \cong \operatorname{Comp}\left(G_{2}\right)$
Remark 1.8: The converse of the above Observation need not be true. For example, the non-isomorphic graphs cycles, C_{n} and complete graphs, K_{n} give the same graph completion K_{n}.

Observation 1.9: Let G be a graph with degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$. Let $D=\left\{d_{1}, d_{2}\right.$, $\left.\ldots d_{r}\right\}$ be the set formed by taking numbers of this degree sequence (Note that D does not contains repeated elements). Let the number d_{i} repeated n_{i} times in the degree sequences. Then the edges of $\operatorname{Comp}(G)$ is given by $\sum n_{i} C_{2}\left(n_{i} \neq 0 \& 1\right)$.

Observation 1.10: From the degree sequence of G, we can find the clique number of $\operatorname{Comp}(G)$ as the largest repeating number in the degree sequence of the graph.

Observation 1.11: If $\operatorname{Comp}(G)$ contains K_{n} then G has n vertices with equal degrees.
Theorem 1.12: G and its complement graphhave same graph completion.
Proof: If the degree of the vertex $v, \operatorname{deg}(v)=r$ in G the $\operatorname{deg}(v)=n-r-1$ in the complement of G. Thus, the degrees of vertices in the same equivalence classes have same degree in the complement also. Hence G and its complement graphhave same graph completion.

2. Completion of Certain Graphs

3. For star graphs $K_{1 n}, \operatorname{Comp}\left(K_{1 n}\right)=K_{1} \cup K_{n}$

For Paths $P_{n}, \operatorname{Comp}\left(P_{n}\right)=K_{2} \cup K_{n-2}$, for $n \geq 3$
For path $P_{2}, \operatorname{Comp}\left(P_{2}\right)=K_{2}$
For k-regular graph G with p vertices $\operatorname{Comp}(G)=K_{n}$
For Cycles, $\operatorname{Comp}\left(C_{n}\right)=K_{n}$
For complete graphs $\operatorname{Comp}\left(K_{\mathrm{n}}\right)=K_{n}$
For Complete Bipartite graphs $K_{m n}, \operatorname{Comp}\left(K_{m n}\right)=K_{n} \cup K_{m}$
For Wheels $W_{n}, \operatorname{Comp}\left(W_{n}\right)=K_{1} \cup K_{n-1}$
Theorem 2.1: The graph G is regular if and only if the graph completion, $\operatorname{Comp}(G)$ is isomorphic to the complete graph K_{n}.

Proof: Suppose that G is regular. Then all the vertices of $\operatorname{Comp}(G)$ are mutually adjacent. Hence, $\operatorname{Comp}(G)$ is isomorphic to K_{n}. Conversely suppose that the graph completion, $\operatorname{Comp}(G)$ is isomorphic to the complete graph K_{n}. Then, all the vertices of Ghas same degree and hence G is regular.
Theorem 2.2: The graph completion, $\operatorname{Comp}(G)$ is connected if and only if G is regular.
Proof: First suppose that $\operatorname{Comp}(G)$ is connected. If G is not regular, there exists vertices u and v such that u and vhas distinct degrees. Thusu and v are not adjacent in Comp(G). Hence u and v lie in different components of $\operatorname{Comp}(G)$. Thus $\operatorname{Comp}(G)$ is disconnected, a contradiction.

Conversely, let G is regular. Then all the vertices of $\operatorname{Comp}(G)$ are mutually adjacent. Hence, Comp(G) is connected.

Theorem 2.3: There exists no graphs G such that the graph completion, $\operatorname{Comp}(G)$ is isomorphic to the totally disconnected graph.

Proof: If there exists a graph G with $\operatorname{Comp}(G)$ is totally disconnected. Then, all the elements of the degree sequence must be distinct. Thus, all the n vertices must have distinct degrees and hence the possible degrees are $n-1, n-2, \ldots, 2,1,0$. This is not possible since, if a vertex has degree $n-1$, no other vertex in G has degree 0 . Thus the above degree sequence does not exists in a graph G. Hence at least two nodes of the graph u and v have the same degree. Consequently these nodes u and v are connected in $\operatorname{Comp}(G)$. Hence Comp(G) is not totally disconnected.

Corollary 2.4: If $\operatorname{Comp}(G)=K_{1} \cup K_{1} \cup \ldots \cup K_{1}$ then such a G does not exists.

4. Graphs Related to Disjoint Union of Complete Graphs

1. If $\operatorname{Comp}(G)=K_{1}$ then $G=K_{1}$
2. If $\operatorname{Comp}(G)=K_{1} \cup K_{1}$ then G does not exist.
3. If $\operatorname{Comp}(G)=K_{1} \cup K_{2}$ then $G=P_{3}$ or $K_{1} \cup K_{2}$
4. If $\operatorname{Comp}(G)=K_{1} \cup K_{2} \cup K_{2}$ then $G=K_{1} \cup P_{4}$

Thus we shall find certain graphs whose completion graph is given by disjoint union of complete graphs. An exclusive study of this special class of graphs would provide scope for an independent direction of research, which we leave open at this stage. Thus for a given $\operatorname{Comp}(G)$, finding the graph G is not an easy task. For a given $\operatorname{Comp}(G)$, there may be many non-isomorphic graphs G exists or in some cases such G does not exists. So for a give set of numbers $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$, if $\operatorname{Comp}(G)=K p_{1} \cup K p_{2} \cup \ldots \cup K p_{r}$, the problem of finding the graphs G is very interesting. The above examples shows that "not all such set of numbers" give Comp(G) for some graphs G. So finding such set of numbers is very interesting.
Problem 3.1: Find all $\operatorname{Comp}(G)$ with a unique graph G.
Problem 3.2: Does there exists a $\operatorname{Comp}(G)$ other than the totally disconnected graph such that the corresponding graph G does not exists?

5. Completion Indices Type I and Type I

From the above examples we conclude that sometimes completion graphs contains isolated vertices. We denote the number of isolated vertices of the graph completion by $\partial[\operatorname{Comp}(G)]$ and it is called the Index of Type I and the number of components of G is denoted by $\omega[\operatorname{Comp}(G)]$ and is called the Index of Type II. These two indices are mainly depends on the partition of $2 q$ to get a graphic sequence.
Theorem 4.1: LetG be a graph with n vertices. Then $\partial[\operatorname{Comp}(G)]<\omega[\operatorname{Comp}(G)]$
Proof:By Theorem 2.3, $\operatorname{Comp}(G)$ is not a totally disconnected graph. Hence $\partial[\operatorname{Comp}(G)]$
$\neq n$. Hence $\partial[\operatorname{Comp}(G)]<\omega[\operatorname{Comp}(G)]$
Corollary 4.2: Let G be a graph with n vertices. Then $\partial[\operatorname{Comp}(G)]<n$.
Theorem 4.3: $\omega[\operatorname{Comp}(G)]=1$ if and only if G is regular.
Proof: Clear from Theorem 2.1.
Theorem 4.4: Let Let G be a graph and let $D=\left\{d_{1}, d_{2}, \ldots d_{r}\right\}$ be the set formed by taking numbers of this degree sequence. Then $\partial[\operatorname{Comp}(G)]=|D|$.

Problem 4.5: Find $\partial[\operatorname{Comp}(G)]$ and $\omega[\operatorname{Comp}(G)]$ for different classes of graphs

International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 4, August 2017, ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: editorijmie @ gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \&
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Problem 4.6: Characterize (p, q)-graphs with $\omega[\operatorname{Comp}(G)]$ and $\partial[\operatorname{Comp}(G)]$ is $p-1$.

REFERENCES

[1] F. Harary Graph Theory, Addition-Wesley, Reading, Mass, 1972
[2] D B West, Introduction to Graph Theory, Prentice Hall, 2001.
[3] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
[4] J.A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 17 (2010), DS6.

