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1. Introduction 
The Banach contraction mapping is one of the pivotal results of analysis.  It is a very popular tool 
for solving existence problems in many different fields of mathematics.  There are a lot of 
generalizations of Banach contraction principel in the literature (see [1]-[23] and  references cited 
therein). 
 Ran and Reurings [22] extended the Banach contraction principel in partially ordered sets 
with some applications to linear and nonlinear matrix equations.  While Nieto and Rodriguez-
Lopez [20] extended the result of Ran and Reurings and applied their main theorems to obtain a 
unique solution for a first order ordinary differential equation with periodic boundary conditions.  
Bhaskar and Lakshmikantham [4] introduced the concept of mixed monotone mappings and 
obtained some coupled fixed point results.  Also, they applied results on a first order differential 
equation with periodic boundary conditions. 
 Recently, many researchers have obtained fixed point, common fixed point results in 
metric spaces and partially ordered metric spaces.  The purpose of this paper is to establish some 
common fixed point results satisfying a generalized contraction mappings of rational type in 
metric and partially ordered metric spaces. 
 To start with, we recall some definitions. 
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Definition 1.1.  Let M  be a nonempty subset of metric space (X, d) and T, f :  M   M .  A point   is a 
common fixed (respectively, coincidence) point of  f   and  T  if  x = fx = Tx (respectively,  fx = Tx).  
The set of fixed points ( respectively, coincidence points) of  f   and T  is denoted by  F (f, T) 
(respectively  C (f, T). 
The pair (T, f) is called 
a) commutative if  T fx = f Tx for all  ; 

 a) commutative if  T fx = f Tx for all x M ; 

 b)  compatible [16] if   lim , 0n nd T fx fTx   whenever {xn} is a sequence such that                 

 limn nTx fx t   for some  t  in M; 

 c)  weakly compatible [17] if  f   and  T  commute at their coincidence points, i.e., if    f Tx = 
T f x whenever fx = Tx. 
2 Main Results 
2.1 Common fixed point theorems in metric spaces  
 In this section, we prove a common fixed point theorem for three single – valued mappings 
in the setting of metric spaces. 
Theorem 2.1. Let  M  be a subset of a metric space (X, d).  Suppose that T, f, g :  M M satisfy 

  
   

     
  

, ,
, ,

, , ,

d gx Tx d gy fy
d Tx fy d gx gy

d gx gy d gx fy d gy Tx
 
 

     
 (2.1) 

for all ,x y M  and for some , , [0,1)    with 1   . Suppose also that 

     T M f M g M    and   ,g M d  is complete.  Then 

 (i)  T,  f   and  g  have a coincidence point  in  M ; 
 (2)  If the pairs (g,T) and (g, f) are weakly compatible, then T, f  and g have a unique  
        common fixed point. 

Proof :  Let 0x X . Since        T M f M g M    we can choose 1 2,x x M  so that     

1 0gx Tx and 2 1gx fx .  By induction, we construst a sequence   nx in  X  such that 

2 1 2n ngx Tx    and 
2 1 2 1n ngx fx   ,for every  n    0. 

 By (2,1), 

   2 2 2 1 2 1 2, ,n n n nd gx gx d fx Tx    
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d gx gx d gx gx

d gx gx d gx gx d gx gx

d gx gx





  

   



 
       

 
   

 
  2 1 2 2 2 2 1

2 1 2

2 1 2 1

, ,
,

,

n n n n

n n

n n

d gx gx d gx gx
d gx gx

d gx gx
   



 

 
   

 
 

      2 1 2 2 1 2, ,n n n nd gx gx d gx gx     

    2 1 2,n nd gx gx    ,     (2.2) 

Which implies that  

       2 2 2 1 2 1 2, ,n n n nd gx gx d gx gx         (2.3) 

 Using, mathematical induction we have 
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2 1

2 2 2 1 2 1 2, ,
n

n n n nd gx gx d gx gx 


       (2.4) 

Put 1k     .  Now, we shall prove that {gxn} is a Cauchy sequence.  For   m  n,  we have 

        1 1 2 1, , , ..... ,m n m m m m n nd gx gx d gx gx d gx gx d gx gx        

      1 2

1 0...... ,m m nk k k d gx gx      

    1 0,
1

nk
d gx gx

k

 
  

 
     (2.5) 

Which implies that  , 0m nd gx gx  as ,m n   .  Thus {gxn} is a Cauchy sequence. 

 As (g(M),d) is complete, there is t   M such that  ngx gt  as n  .  We shall prove 

that t  is a coincidence point of T,  f  and  g.  We have 

   2 2 2, ,n nd gx ft d Tx ft   

 
   

     
  2 2 1

2

2 2 2 1

, ,
,

, , ,

n n

n

n n n

d gx Tx d gt ft
d gx gt

d gx gt d gx ft d gt gx
 



 
     

 

 
   

     
  2 2 1

2

2 2 2 1

, ,
,

, , ,

n n

n

n n n

d gx gx d gt ft
d gx gt

d gx gt d gx ft d gt gx
 



 
     

 

On letting n     , we have d(gt, ft) = 0 and hence gt = ft. 

Also, we have  

   , ,d Tt gt d Tt ft  

 
   

     
  

, ,
,

, , ,

d gt Tt d gt ft
d gt gt

d gt gt d gt ft d gt Tt
 
 

     
 

This implies that d(Tt, gt) = 0, that is, Tt = gt. 
 Thus we have, gt = Tt = ft, that is, t  is a coincidence point of T, f  and  g. Then (i) holds. 
 Now, suppose that the pairs (g,T) and (g,f) are weakly compatible.Let z = ft = gt = Tt.  Then 
we have gTt = Tgt and  gft = fgt,  which implies that  Tz = fz = gz.  On the other hand, we have 

   , ,d gz z d Tz ft  

  
   

     
  

, ,
,

, , ,

d gz Tz d gt ft
d gz gt

d gz gt d gz ft d gt Tz
 
 

     
 

This implies that d(gz, z) = 0, that is, gz = z.  Hence, we get that z = gz = Tz = fz, that is, z  is a common 
fixed point of g,T and  f.  This makes end to the proof. 
 Suppose now that  z1  M  is another common fixed point of g,T and f , that is  
    z1 = gz1 = Tz1 = fz1. 
We have 

   1 1, ,d z z d Tz fz  

  
   

     
  

1 1

1

1 1 1

, ,
,

, , ,

d gz Tz d gz fz
d gz gz

d gz gz d gz fz d gz Tz
 
 
  
  
 

. 

This implies that d(z, z1) = 0, that is, z = z1.  Thus we proved the uniqueness of the common fixed 
point.  Hence, (ii) hold. 
Corollary 2.2. Let  M  be a subset of a metric space (X, d) Suppose that T,S : M M  satisfy 

 ,d Tx Ty
   

     
  

, ,
,

, , ,

d Sx Tx d Sy Ty
d Sx Sy

d Sx Sy d Sx Ty d Sy Tx
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for all x,yM and for some [0, 1)    with 1   .Suppose also that T(M)    S(M) and 

(S(M),d) is complete.  Then 
 (i)  T  and  S  have a coincidence point in M ; 
 (ii)  If the pair (S,T) is weakly compatible, then T  and  S  have a unique common fixed point. 
Corollary 2.3. [15]  Let  T  be a continuous self map defined on a complete metric space       (X, d).  
Suppose that  T  satisfies the following contractive conditions: 

 ,d Tx Ty
   

     
  

, ,
,

, , ,

d x Tx d y Ty
d x y

d x y d x Ty d y Tx
 
 

     
 

for  all ,x y X ,  and for some , [0, 1)    with  1    , then  T  has  a unique fixed point 

in  X. 
2.2 Common fixed point theorems in ordered metric spaces  
In this section, we prove a common fixed point theorem in the setting of ordered metric spaces. 
Definitions 2.1.  Suppose (X,  )  is a partially ordered set and T : X  X .  T  is said to be monotone 

nondecreasing if for all ,x y X , 

   x  y  implies  Tx  Ty.     (2.6) 
Definition 2.2.  Let (X,  ) be a partially ordered set and T, f, g :  X   X  are mappings such that   

   T X g X  and    f X g X .  Then  T  and  f  are weakly increasing with respect to  g   if  

and only if for all  x X,  we have 

(a)  Tx fy for all  1y g Tx  ; 

(b)   fx Ty for all  1y g fx . 

 Various examples of such mappings are given in [18]. 

Remark 2.4. If gx = x  for all  x X ,  then  T  and  f  are weakly increasing with respect to  g  

implies that  T  and  f  are weakly increasing mappings.  Note that the concept of weakly increasing 
mappings was introduced by Altun and Simsek in [3]. 
Theorem 2.5. Let (X,  ) be a partially ordered set and suppose that there exists  a  metric  d  on  
X  such that (X, d) is a complete metric space.  Suppose that  T, f, g : X  X  satisfy 

 ,d Tx fy
   

     
  

, ,
,

, , ,

d gx Tx d gy fy
d gx gy

d gx gy d gx fy d gy Tx
 
 

     
        (2.7) 

for all x, y   X,  gxgy  and for some , , [0,1)    with 1   . 

 Suppose that  

 (i)          ,T X g X f X g X  and  g(X) is a complete subspace of X ; 

 (ii)  T  and  f  are weakly increasing with respect to  g.   
Also suppose that either 
a)  the pair (T, g) is compatible and  T, g  are continuous ;  or 
b)  the pair (f, g) is compatible and  f, g are continuous. 

 Then T,  f  and  g  have  a coincidence point, that is, there exists t   X such that  gt = ft = Tt. 
Proof. Let x0X.  From (i), we can choose x1, x2X  such that gx1 = Tx0 and gx2 = fx1.  By induction, 
we construct  a sequence {gxn} in X such that gx2n+1 = Tx2n  and  gx2n+2 = fx2n+1,  for  every n   0. 
 We claim that  

   1n ngx gx  for  all 1n   .          (2.8) 

Since  T  and  f  are weakly increasing mappings with respect to g,  we obtain 

    1

1 0 0,gx Tx fy y g Tx   . 

Since gx1  = Tx0,  then  1

1 0x g Tx  ,  and we get 

   1 0 1 2gx Tx fx gx   

Again, 
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    1

2 1 1,gx fx Ty y g fx   . 

Since,  1

2 1x g fx   we get 

   2 1 2 3gx fx Tx gx   

By induction on n,  we conclude that  

   1 2 2 1 2 2....... .......n ngx gx gx gx   

Thus our claim (2.8) holds. 

 Since 2 2 1n ngx gx    for all  n  1,  from (2.7), we have 

   2 2 2 1 2 1 2, ,n n n nd gx gx d fx Tx    
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d gx gx d gx gx d gx gx
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  2 1 2 2 2 2 1
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2 1 2 2
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n n n n

n n

n n

d gx gx d gx gx
d gx gx

d gx gx
   



 

 
   

 
 

      2 1 2 2 1 2, ,n n n nd gx gx d gx gx     

    2 1 2,n nd gx gx    ,     (2.9) 

Which implies that  

       2 2 2 1 2 1 2, ,n n n nd gx gx d gx gx         (2.10) 

 Using, mathematical induction we have 

       
2 1

2 2 2 1 2 1 2, ,
n

n n n nd gx gx d gx gx 


       (2.11) 

Put 1k     .  Now, we shall prove that {xn} is a Cauchy sequence.  For   m  n,  we have 

        1 1 2 1, , , ..... ,m n m m m m n nd gx gx d gx gx d gx gx d gx gx        

      1 2

1 0...... ,m m nk k k d gx gx      

    1 0,
1

nk
d gx gx

k

 
  

 
     (2.12) 

Which implies that  , 0m nd gx gx  as ,m n   .  Thus {gxn} is a Cauchy sequence. 

 Since (g(X),d) is complete, there is t   M such that  ngx gt  as n  .   

Suppose that condition (a) holds.  Let  z  = gt.  Then we have 

  2 2lim lim .n n
n n

Tx gx z
 

   

Since the pair (T, g) is compatible, then 

     2 2lim ( , ) 0.n n
n

d g Tx T gx


      (2.13) 

Also, from the continuity of  T  and  g,  we have 

       2 2lim ( , ) , .n n
n

d g Tx T gx d gz Tz


     (2.14) 

Now, using (2,13) and (2,14), by the uniqueness of the limit, we have d(gz, Tz) =0, that is ,  gz = Tz .  
Using (2.7),  we have 
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   , ,d gz z d Tz fz  

  
   

     
  

, ,
, ,

, , ,

d gz Tz d gz fz
d gz gz

d gz gz d gz fz d gz Tz
 
 

     
 

which implies that gz = fz.  Thus, we have gz = fz = Tz, and  z  is a coincidence point of  T, g  and  f. 
 If condition (b) holds, then by following the same arguments, we get the result. 
Corollary 2.6.  Let (X,   )  be a partially ordered set  and  suppose that  there exists a  metric  d  and  
X  such that  (X, d) is a complete metric space.  Suppose that  T, S : X  Xsatisty 

 ,d Tx Ty
   

     
  

, ,
,

, , ,

d Sx Tx d Sy Ty
d Sx Sy

d Sx Sy d Sx Ty d Sy Tx
 
 

     
    (2.15) 

for  all ,x y X , Sx Sy  and for  some , [0, 1)    with  1    . 

 Suppose that 
 (i)  T(X)    S(X),  and  S(X)  is a complete subspace of  X ; 

 (ii)  T  is  monotone  S – non – decreasing ; 
 (iii)  the pair  (T,S) is compatible and  T, S are continuous. 
 Then  T  and  S  have a coincidence point, that is,  there exists  t   X such that  St =  Tt. 
 Other consequences of our results are the following for the mappings involving 
contractions of integral type. 

 Denote by   the set of functions : [0, ) [0, )      satisfying the following hypotheses 

: 
 
 (h1)   is  aLebesgue – integrable mapping on each compact subset of [0,  ); 

 (h2)  for any   > 0,  we have  
0

0t dt


   . 

Corollary 2.7.  Let (X,   )  be a partially ordered set  and  suppose that  there exists a  metric  d  and  
X  such that  (X, d) is a complete metric space.  Suppose that  T, f,g : X  X  satisfy 

     
    

   

     
 

, ,
, ,

, , ,

0 0 0

d gx Tx d gy fy
d Tx fy d g x g y

d gx gy d gy Tx d gx fyt dt t dt t dt          

for  allx, y   X  for which  gx gy  are comparable,      and for some , [0,1)        with 

1    . 

 Suppose that  
 (i)  T(X)   g(X),  f(X)   g(X)  and  g(X) is a complete subspace of X ; 

 (ii)  T  and  f  are weakly increasing with respect  to  g. 
 Also suppose that either  
 (a)  the pair  (T,  g) is compatible  and  T, g  are continuous ;  or 
 (b)  the pair  (f, g) is compatible and  f, g  are continuous. 
 Then  T,  f  and  g  have a coincidence point,  that is,  there exists  t    X  such that  gt = ft  
=  Tt. 
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