Fixed Points of Geraghty Contractions with Rational Type Expressions

K. K. M. Sarma*
P. H. Krishna** P. Mahesh***

1. Introduction and Preliminaries

Banach contraction principle is one of the fundamental result in fixed point theory for which several authors generalized and etended it both in terms of considering more general contraction codition and a more general ambient space. Now-a-days, fixed point theory gained lot of interest in the direction of proving the existence of fixed points in partilly ordered metric spaces. Existence of fixed points in partially ordered sets has been considered by Ran and Reurings[14]. For more works on the existence of fixed points in partially ordered sets, we refer [9,10,11] and [15].

Khan, Swaleh and Sessa [13] studied the existence of fixed points in metric spaces by using altering distance functions.
Definition 1.1 ([13]) A function $\psi: R^{+} \rightarrow R^{+}, R^{+}=[0, \infty)$ is said to be an altering distance function if the following conditions hold:
(i) ψ is continuous,
(ii) ψ is non-decreasing, and

[^0](iii) $\psi(t)=0$ if and only if $t=0$.

Geraghty contractions depends on the class of functions

$$
S=\left\{\beta:[0, \infty) \rightarrow[0,1) / \beta\left(t_{n}\right) \rightarrow 1 \Rightarrow t_{n} \rightarrow 0\right\}
$$

Defnition 1.2.[7] Let (X, d) be a metric space. A selfmapf: $X \rightarrow X$ is said to be a Geraghty contraction if there exists $B \in S$ such that
$d(f(x), f(y)) \leq b(d(x, y)) d(x, y)$ for all $x, y \in X$.
Theorem 1.3.[7] Let (X, d) be a complete metric space. Letf: $X \rightarrow X$ be a selfmap. If there exists $b \in S$ such that

$$
d(f(x), f(y)) \leq b(d(x, y)) d(x, y) \text { for all } x, y \in X
$$

then f has a unique xed point in X.
In 2013, Cabrera, Harjani and Sadarangani [5] proved the above theorem in the context of partially ordered metric spaces as follows.

Theorem 1.4.[5]. Let (X, \leqslant) be a partially ordered set and supposethat there exists a metric d on X such that (X, d) is a complete metric space. Let $T: X \rightarrow X$ be a continuous and non-decreasing mapping such that (1.1.1) is satised for all $x, y \in X$ with $x \leqslant y$. If there exists $x_{0} \in X$ with $x_{0} \leqslant T x_{0}$ then T has a xed point.

Theorem 1.5.[5]. Let (X, \leqslant) be a partially ordered set and supposethat there exists a metric d on X such that (X, d) is a complete metric space. Assume that if $\left\{x_{n}\right\}$ is a non-decreasing sequence in X such that $x_{n} \rightarrow x$, then $x_{n} \leqslant x$, for all $n \in N$. Let $T: X \rightarrow X$ be a non-decreasing mapping such that (1.1.1) is satised for all $x, y \in X$ with $x \leqslant y$. If there exists $x_{0} \in X$ with $x_{0} \leqslant T x_{0}$ then T has a xed point.

Theorem 1.6.[5]. In addition to the hypotheses of Theorem 1.3 (orTheorem 1.4), suppose that for every $x, y \in X$, there exists $u \in X$ such that $u \leqslant x$ and $u \leqslant y$. Then T has a unique xed point.
De nition 1.7. [3] Let (X, \leqslant, d) be a partially ordered metric space and let $f: X \rightarrow X$ be a selfmap. Let $\psi \in$. If there exist $B \in S$ and $\mathrm{L} \geq 0$ such that
$\psi(d(f(x), f(y))) \leq 8(\psi(M(x, y))) \psi(M(x, y))+$ L.N (x, y)
where
$M(x, y)=\max \left\{d(x, y), \underline{1}_{2}(d(x, f(x))+d(y, f(y))), \frac{1}{2}(d(x, f(y))+d(y, f(x)))\right\} N(x, y)=\min \{d(x, f(x)), d(x, f(y)), d(y$, $f(x))\}$ for all $x, y \in X$ with $x \geqslant y$ then we call f is a ψ-weak generalized Geraghty contraction.

Theorem 1.8.[3] Let (X, \leqslant, d) be a partially ordered complete metric space. Let $f: X \rightarrow X$ be a nondecreasing mapping such that there exists $x_{0} \in X$ with $x_{0} \leqslant f\left(x_{0}\right)$. Assume that f is ψ-weak generalized Geraghty contraction.
Furthermore, assume that either
(i) fis continuous; (or)
(ii) X is such that if $\left\{x_{n}\right\} \subset X$ is a non-decreasing sequence with
$x_{n} \rightarrow x$, then $x_{n} \leqslant x$ for all $n \geq 1$.
Further, iffor any $s>0, \lim \sup B(t)=B(s)$ then f has a fixed point in X.
In 1975, Dass and Gupta [6] extended the Banach contraction prin-ciple through rational expression as follows.

Theorem 1.9.[6]. Let (X, d) be a complete metric space and T: $X \rightarrow X$ a mapping such that there exist $\alpha, B \geq 0$ with $\alpha+b<1$ satisfying

$$
d(T x, T y) \leq \alpha \frac{d(y, T y)[1+d(x, T x)]}{1+d(x, y)}+\beta d(x, y) \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{X} .
$$

Then T has a unique fixed point.
The following Lemma, which we use in our main theorem, can be easily established.
Lemma 1.10.[2] Let (X, d) be metric space. Let $\left\{x_{n}\right\}$ be a sequencein X such that $d\left(x_{n+1}, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exist an $\epsilon>0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with $n(k)>m(k)>k$ and $d\left(x_{m(k)}, x_{n(k)}\right) \geq \epsilon$. For each $k>0$, corresponding to $m(k)$, we can choose $n(k)$ to be the smallest integer such that $d\left(x_{m(k)}, x_{n(k)} \geq \epsilon\right.$ and $d\left(x_{m(k)}, x_{n(k) 1}\right)<\epsilon$. It can be shown that the following identities are satisfied.

$$
\begin{aligned}
& \text { (i) } \lim _{k \rightarrow \infty} d\left(x_{n(k)}, x_{m(k)}\right)=\varepsilon(i i) \lim _{k \rightarrow \infty} d\left(x_{n(k)}-1, x_{m(k)+1}\right)=\varepsilon, \\
& \text { (iii) } \lim _{k \rightarrow \infty} d\left(x_{n(k)-1,} x_{m(k)}\right)=\varepsilon, \quad \text { and }(i v) \lim _{k \rightarrow \infty} d\left(x_{n(k),} x_{m(k)+1}\right)=\varepsilon .
\end{aligned}
$$

In Section 2, we prove the theorems of fixed point results satisfying a generalized Geraghty contractions of selfmaps with altering distance function φ involving rational type expressions.

2. MAIN RESULTS

Notation :
$\Phi=\left\{\varphi: R^{+} \rightarrow R^{+} / \varphi\right.$ is non-decreasing, continuous and $\left.\varphi(t)=0 \Leftrightarrow t=0\right\}$.

Theorem 2.1.Let (X, \leqslant) be a partially ordered set and (X, d) be a complete metric space.
Let $T: X \rightarrow X$ be a non-decreasing mapping. Suppose there exist $\varphi \in \Phi$ such that,
for all $x, y \in X$ with $x \leqslant y$,

$$
\begin{equation*}
\varphi(d(T x, T y)) \leq b(\varphi(M(x, y))) \cdot \varphi(M(x, y))+L \cdot \min \cdot \varphi(N(x, y)) \tag{2.1.1}
\end{equation*}
$$

where
$M(x, y)=\max \left\{\frac{d(y, T y)[1+d(x, T x)]}{1+d(x, y)}, \frac{d(x, T x)[1+d(y, T y)]}{1+d(x, y)}, \frac{d(y, T x)[1+d(x, T y)]}{1+d(x, y)}, d(x, y)\right\}$
and

$$
N(x, y)=\max \left\{\frac{d(y, T y)[1+d(x, T x)]}{1+d(x, y)}, \frac{d(y, T x)[1+d(x, T y)]}{1+d(x, y)}, d(x, y)\right\}
$$

If there exists $x_{0} \in X$ with $x_{0} \leqslant T x_{0}$, then the sequence $\left\{x_{n}\right\}$ defined by $x_{n+1}=T x_{n}$ for $n=0,1,2, \ldots$ is a Cauchy sequence.

Proof.Let $x_{0} \in X$ be such that $x_{0} \leqslant T x_{0}$. (by hypothesis)
We define $\left\{x_{n}\right\}$ in X by $x_{n+1}=T x_{n}$ for each $n=0,1,2, \ldots$. .
Since $x_{0} \leqslant T x_{0}$ and T is a non-decreasing function, by mathematical induction it follows that

$$
\begin{aligned}
& x_{0} \leqslant T x_{0} \leqslant T x_{1} \leqslant T x_{2} \leqslant \ldots \leqslant T x_{n 1} \leqslant T x_{n} \leqslant \ldots \\
& \text { i.e., } x_{0} \leqslant x_{1} \leqslant x_{2} \ldots \leqslant x_{n} \leqslant x_{n+1} \leqslant \ldots
\end{aligned}
$$

so that $x_{n} \leqslant x_{n+1}$ for each $n=0,1,2, \ldots$.
If $x_{n}=x_{n+1}$ for some $n \in N$ then $x_{n}=T x_{n}=x_{n+1}$.
Hence $x_{n+2}=T x_{n+1}=T x_{n}=x_{n}$.
Then $x_{n}=x_{n+1}=x_{n+2}=\ldots$.
Hence $\left\{x_{n}\right\}$ is a Cauchy sequence.
Hence without loss of generality, we assume that $x_{n}=x_{n+1}$ for each n.

Since $x_{n} \leqslant x_{n+1}$ for each $n \geq 0$ from (2.1.1), we have

$$
\begin{aligned}
\varphi\left(d\left(x_{n}, x_{n+1}\right)\right. & =\varphi\left(d\left(T x_{n-1}, T x_{n}\right)\right. \\
& \leq \beta\left(\varphi\left(M\left(x_{n-1}, x_{n}\right)\right)\right) \varphi\left(M\left(x_{n-1}, x_{n}\right)\right)+L \min \varphi\left(N\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

2.1.2

$$
\begin{aligned}
& M\left(x_{n-1}, x_{n}\right)=\max \left\{\frac{d\left(x_{n}, T x_{n}\right)\left[1+d\left(x_{n-1}, T x_{n-1}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, \frac{d\left(x_{n-1}, T x_{n-1}\right)\left[1+d\left(x_{n}, T x_{n}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, \frac{d\left(x_{n}, T x_{n-1}\right)\left[1+d\left(x_{n-1}, T x_{n}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\} \\
& =\max \left\{\frac{d\left(x_{n}, x_{n+1}\right)\left[1+d\left(x_{n-1}, x_{n}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, \frac{d\left(x_{n-1}, x_{n}\right)\left[1+d\left(x_{n}, x_{n}+1\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, \frac{d\left(x_{n}, x_{n}\right)\left[1+d\left(x_{n-1}, x_{n}+1\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\} \\
& =\max \left\{d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n-1}, x_{n}\right)\left[1+d\left(x_{n}, x_{n+1}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\} \\
& N\left(x_{n-1}, x_{n}\right)=\min \left\{\frac{d\left(x_{n}, T x_{n}\right)\left[1+d\left(x_{n-1}, T x_{n-1}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, \frac{d\left(x_{n}, T x_{n-1}\right)\left[1+d\left(x_{n-1}, T x_{n}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\}
\end{aligned}
$$

$=0$
Suppose $\max \left\{d\left(x_{n}, x_{n+1}\right), \quad d\left(x_{n-1}, x_{n}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$,
then $\max \left\{d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n-1}, x_{n}\right)\left[1+d\left(x_{n}, x_{n+1}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}, \quad d\left(x_{n-1}, x_{n}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$.
Therefore from (2.1.2),

$$
\begin{equation*}
\varphi\left(d\left(x_{n}, x_{n+1}\right)<\varphi\left(d\left(x_{n}, x_{n+1}\right)\right.\right. \tag{2.1.3}
\end{equation*}
$$

Which is contradiction.

$$
\begin{equation*}
\text { So } \quad \max \left\{d\left(x_{n}, x_{n+1}\right), \quad d\left(x_{n-1}, x_{n}\right)\right\}=d\left(x_{n-1}, x_{n}\right) \tag{2.1.4}
\end{equation*}
$$

Therefore from 2.1.2 we have $\varphi\left(d\left(x_{n}, x_{n+1}\right)<\varphi\left(d\left(x_{n-1}, x_{n}\right)\right.\right.$
Thus it follows that $\left\{\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)\right\}$ is a strictly decreasing sequence of positive real numbers and so $\lim _{n \rightarrow \infty} \varphi$ $\left(d\left(x_{n}, x_{n+1}\right)\right)$ exists and it is r (say). i.e., $\lim _{n \rightarrow \infty} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)=r \geq 0$.

From (2.1.4), since φ is non-decreasing, it follows that $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is also a strictly decreasing sequence of positive real numbers and so $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)$ exists and it is s (say). i.e., $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=s \geq 0$.

We now show that $s=0$.
Suppose that $\mathrm{s}>0$.
From (2.1.2)

$$
0 \leq \varphi\left(d\left(x_{n}, x_{n+1}\right) \leq \beta\left(\varphi \left(d (x _ { n - 1 } , x _ { n }) \varphi \left(d\left(x_{n-1}, x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty\right.\right.\right.\right.
$$

So that $\lim _{n \rightarrow \infty} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)=r=0$ and hence $s=0$.
Now, we show that $\left\{x_{n}\right\}$ is Cauchy.
Suppose that $\left\{x_{n}\right\}$ is not a Cauchy sequence and from lemma 1.10

Suppose $n(k)>m(k)$,$) , we have x_{n(k)-1}>X_{m(k)-1}$
$\varphi\left(d\left(x_{m(k)}, x_{n(k)}\right)\right)=\varphi\left(d\left(T x_{m(k)-1}, T x_{n(k)-1}\right)\right)$
$\leq \beta\left(\varphi\left(M\left(x_{m(k)-1}, x_{n}(k)-1\right) \varphi\left(M\left(x_{m(k)-1}, x_{n(k)-1}\right)+L \min \varphi\left(N\left(x_{m(k)-1}, x_{n(k)-1}\right)\right)\right.\right.\right.$
$M\left(x_{m(k)-1}, x_{n}(k)-1\right)=\max \left\{\frac{d\left(x_{n}(k), T x_{n(k)-1}\right)\left[1+d\left(x_{m(k)-1}, T x_{m(k)-1}\right)\right]}{1+d\left(x_{m(k)-1}, x_{n(k)-1}\right)}, \frac{d\left(x_{m(k)-1}, T x_{m(k)-1}\right)\left[1+d\left(x_{n(k)-1}, T x_{n}(k)\right)\right]}{1+d\left(x_{m(k)-1}, x_{n(k)-1}\right)}, \frac{d\left(x_{n(k)-1}, T x_{m(k)-1}\right)\left[1+d\left(x_{m(k)-1}, T x_{n}(k)-1\right)\right]}{1+d\left(x_{m(k)-1}, x_{n(k)-1}\right)}, d\left(x_{m(k)-1}, x_{n(k)-1}\right)\right\}$
$=\max \left\{\frac{d\left(x_{n(k)}, x_{n(k)}\right)\left[1+d\left(x_{m(k)-1}, x_{m(k)}\right)\right]}{1+d\left(x_{m(k)-1}, x_{n(k)-1}\right)}, \frac{d\left(x_{m(k)-1}, x_{m(k)}\left[1+d\left(x_{n(k)-1}, x_{n}(k)\right]\right]\right.}{1+d\left(x_{m(k)-1}, x_{n}(k)-1\right)}, \frac{d\left(x_{n(k)-1}, x_{m(k)}\left[1+d\left(x_{m(k)-1}, x_{n}(k)\right)\right]\right.}{1+d\left(x_{m(k)-1}, x_{n(k)-1}\right)}, d\left(x_{m(k)-1}, x_{n(k)-1}\right)\right\}$
On letting $k \rightarrow \infty$,
$\lim _{k \rightarrow \infty} M\left(X_{n(k)-1}, X_{m(k)-1}\right)=\max \left(0,0, \frac{\varepsilon(1+\varepsilon)}{1+\varepsilon}, 0\right)=\quad \varepsilon$
Similarly $\lim _{k \rightarrow \infty} N\left(x_{n(k)-1,} x_{m(k)-1}\right)=\min (0,0, \varepsilon)=0$
Therefore from 2.1.5, we have
$\varphi\left(d\left(x_{m(k)}, \quad x_{n(k)}\right)\right) \leq \beta\left(\varphi\left(M\left(x_{m(k)-1}, x_{n}(k)-1\right) \varphi\left(d\left(x_{m(k)-1}, x_{n(k)-1}\right)\right.\right.\right.$
and hence $\frac{\varphi\left(d\left(x_{m(k)}, x_{n(k)}\right)\right)}{\varphi\left(d\left(x_{m(k)-1}, x_{n(k)-1}\right)\right.} \leq \beta\left(\varphi\left(M\left(x_{m(k)-1}, x_{n}(k)-1\right)<1\right.\right.$
On letting $k \rightarrow \infty$, and from Lemma 1.10, we get
$1=\frac{\varphi(\varepsilon)}{\varphi(\varepsilon)} \leq \beta\left(\varphi\left(M\left(x_{m(k)-1}, x_{n}(k)-1\right) \leq 1\right.\right.$
So that $\quad \beta\left(\varphi\left(M\left(x_{m(k)-1}, x_{n}(k)-1\right)\right) \rightarrow 1 \quad\right.$ as $k \rightarrow \infty$.
since $\boldsymbol{\beta} \in S, \varphi\left(M\left(x_{m}(k)-1, x_{n}(k)-1\right) \rightarrow 0\right.$.
i.e., $\varphi(\varepsilon)=0$ and is continuous, it follows that $\boldsymbol{\mathcal { E }}=0$, a contradiction.

Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Theorem 2.2.In addition of the hypothesis of Theorem 2.1 supposethat is continuous.
Then T has a fixed point.
Proof.Let $\left\{x_{n}\right\}$ be as in theorem 2.1 then, by theorem $2.1\left\{x_{n}\right\}$ is aCauchy sequence in X.
Since X is complete, there exists z such that $\lim x_{n}=z$ as $n \rightarrow \infty$.
Since T is continuous, $T x_{n} \rightarrow T z$ that implies $x_{n+1} \rightarrow T z$.
But $x_{n+1} \rightarrow z$. Therefore by the uniqueness of the limit, $T z=z$.

Lemma 2.3.Under the hypothesis of Theorem 2.2 suppose that z is a fixed point of T and $z<u$ for some $u \in X$ and $\left\{T^{n} u\right\}$ converges. Then $T^{n}(u) \rightarrow z$.
Proof.Now $z<u$ that implies $T z \leqslant T u$ so that $z \leqslant T u$.

By induction, $z \leqslant T^{n} u$ for every n.
We have
$\varphi\left(d\left(z, T^{n+1}(u)\right)\right)=\varphi\left(d\left(T^{n+1}(z), T^{n+1}(u)\right)\right)$
$=\varphi\left(d\left(T\left(T^{n}(z), T\left(T^{n}(u)\right)\right)\right.\right.$
$=\varphi\left(d\left(T(z), T\left(T^{n}(u)\right)\right)\right)$
$\leq B\left(\varphi\left(M\left(z, T^{n}(u)\right)\right)\right) \varphi\left(M\left(z, T^{n}(u)\right)\right)+L \cdot \min \varphi\left(N\left(z, T^{n}(u)\right)\right) \quad$ (2.3.1)
$M\left(z, T^{n}(u)\right)=\max \left\{\frac{d\left(T^{n} u, T^{n+1} u\right)[1+d(z, T z)]}{1+d\left(z, T^{n} u\right)}, \frac{d(z, T z)\left[1+d\left(T^{n} u, T^{n+1} u\right)\right]}{1+d\left(z, T^{n} u\right)}, \frac{d\left(T^{n} u, T z\right)\left[1+d\left(z, T^{n+1} u\right)\right]}{1+d\left(z, T^{n} u\right)}, d\left(z, T^{n} u\right)\right\}$
$=\max \left\{\frac{d\left(T^{n} u, T^{n+1} u[1+d(z, z)]\right.}{1+d\left(z, T^{n} u\right)}, \frac{d(z, z)\left[1+d\left(T^{n} u, T^{n+1} u\right)\right]}{1+d\left(z, T^{n} u\right)}, \frac{d\left(T^{n} u, z\right)\left[1+d\left(z, T^{n+1} u\right)\right]}{1+d\left(z, T^{n} u\right)}, d\left(z, T^{n} u\right)\right\}$
$=\quad \max \left\{\frac{d\left(T^{n} u, T^{n+1} u\right)}{1+d\left(z, T^{n} u\right)}, 0, \frac{d\left(T^{n} u, z\right)\left[1+d\left(z, T^{n+1} u\right)\right]}{1+d\left(z, T^{n} u\right)}, d\left(z, T^{n} u\right)\right\}$
$=\quad \max \left\{\frac{d\left(T^{n} u, z\right)\left[1+d\left(z, T^{n+1} u\right)\right]}{1+d\left(z, T^{n} u\right)}, d\left(z, T^{n} u\right)\right\}$
$=d\left(z, T^{n} u\right)$

Simillarly

$$
\begin{equation*}
N\left(z, T^{n}(u)\right)=0 \tag{2.3.2}
\end{equation*}
$$

From 2.3.1 $\varphi\left(d\left(z, T^{n+1}(u)\right) \leq \beta\left(\varphi\left(M\left(z, T^{n}(u)\right)\right) \varphi\left(z, T^{n}(u)\right)+L .0\right.\right.$
Now suppose that $\lim _{n \rightarrow \infty} T^{n}(u)=v \neq z$.
Then $\mathrm{d}\left(\mathrm{z}, T^{n}(u)>0\right.$ for large n consequently $\varphi\left(\mathrm{d}\left(\mathrm{z}, T^{n}(u)>0\right.\right.$ for large n .
Therefore from 2.3.2 $\varphi\left(d\left(z, T^{n+1}(u)\right)\right)<\varphi\left(d\left(z, T^{n}(u)\right)\right)$.
Hence $\left.\quad d\left(z, T^{n+1}(u)\right)\right)<d\left(z, T^{n}(u)\right)$ for large n^{\prime}
Therefore $\left\{\varphi\left(d\left(z, T^{n+1}(u)\right)\right)\right\}$ is a decreasing sequence and converges to (say) and $\left\{d\left(z, T^{n+1}(u)\right)\right\}$ is also decreasing sequence and converges to s (say).
From (2.3.2)
Now $B\left(\varphi\left(M\left(z, T^{n}(u)\right)\right) \rightarrow 1\right.$ then by the property of B, we have $\varphi\left(d\left(z, T^{n} u\right)\right) \rightarrow 0$ and hence $r=0$.
Therefore $\varphi\left(d\left(z, T^{n} u\right)\right) \rightarrow 0$ and hence $d\left(z, T^{n} u\right) \rightarrow 0$.
Therefore $d(z, v)=0$ i.e., $\lim T^{n}(u)=z$ so that $T^{n}(u) \rightarrow z$.

Similarly we can prove the following lemma.
Lemma 2.5. Under the hypothesis of Theorem 2.2 , suppose that z is a fixed point of T and z is comparable with u for some $u \in X$ and $\left\{T^{n} u\right\}$ converges.
Then $T^{n}(u) \rightarrow z$.
Proof. Let $z<u$ and $\left\{T^{n} u\right\}$ converge. Then by lemma $2.4\left\{T^{n} u\right\}$ converges to z.
Let $z>u$ and $\left\{T^{n} u\right\}$ converge.
Then by lemma $2.4\left\{T^{n} u\right\}$ converges to z.
Therefore z is comparable to u and $\left\{T^{n} u\right\}$ converges to z.
Theorem 2.6. In addition to the hypotheses of Theorem 2.2 we assumethe following:
for every $u, v \in X$, there exists $z \in X$ which is comparable to both u and v ".
Then T has a unique fixed point in X.
Proof. Let u and v be two fixed d points of T.

Suppose z is comparable to both u and v.
Since z is comparable to both u then by Lemma $2.5 T^{n}(z) \rightarrow u$.
Since z is comparable to both v then by Lemma $2.5 T^{n}(z) \longrightarrow v$.
Now we prove the existence of common fixed point for a pair of selfmaps.

Theorem 2.7. Let (X, d, \leqslant) be a partially ordered complete metric space. Let
$S, T: X \rightarrow X$ be self maps of X and T is S non-decreasing. Sup-pose there exist $\varphi \in \Phi$ such that

$$
\begin{equation*}
\varphi(d(T x, T y)) \leq b(\varphi(M(x, y))) \varphi(M(x, y))+L \min \varphi(N(x, y)), \tag{2.7.1}
\end{equation*}
$$

where
$M(x, y)=\max \{$ and

$$
d(S y, T y)[1+d(S x, T
$$

$$
\left.\frac{x)]}{1+d(S x, S y)}, \frac{d(S y, T x)[1+d(S x, T y g)]}{1+d(S x, S y)}, d(S x, S y)\right\}, \text { for }
$$

all $x, y \in X$ with $S x \leqslant S y$.
Further, assume that
(i) $T(X) \subseteq S(X)$;
(ii) there exists $x_{0} \in X$ such that $S_{x_{0}} \leqslant T x_{0}$;
(iii)S(X) is a complete subset of X; and
(iv)if any non-decreasing sequence $\left\{x_{n}\right\}$ in X converges to x then $\left\{x_{n}\right\} \leqslant x$ for all $n=0,1,2, \ldots$.

Then S and T have a coincident point in X.

Proof. By (ii), let $x_{0} \in X$ such that $S x_{0} \leqslant T x_{0}$. Since $T(X) \subseteq S(X)$,
we choose $x_{1} \in X$ such that $S x_{1}=T x_{0}$. Since $S x_{0} \leqslant T x_{0}$
and T is S non-decreasing, we have $S x_{0} \leqslant S x_{1}$, so that $T x_{1}$
By using the similarly argument we choose a sequence $\left\{x_{n}\right\}$ in X with
$S_{x_{n+1}}=T x_{n}$ for each $n=0,1,2, \ldots$.
Further, since $T x_{1} \leqslant T x_{2} \quad$ and T is S non-decreasing, we have $S x_{1} \leqslant$
$S x_{2}$ so that $T x_{2} \leqslant T x_{3}$. On continuing this process, we get $S x_{n} \leqslant$
S_{n+1} for all $n=0,1,2, \ldots$.
If $S x_{n}=S x_{n+1}$ for some $n \in N$ then $S x_{n}=T x_{n}$ so that x_{n} is a coin-
cidence point of S and T.
Hence, w. l. g., we assume that $S x_{n} \models S x_{n+1}$ for each n
then we have $d\left(S X_{n}, S X_{n+1}\right)>0$ for all n.
$\varphi\left(d\left(S x_{n}, S x_{n+1}\right)\right)=\varphi\left(d\left(T x_{n}-1, T x_{n}\right)\right)$

$$
\begin{equation*}
\leq \beta\left(\varphi\left(M\left(x_{n-1}, x_{n}\right)\right)\right) \varphi\left(M\left(x_{n-1}, x_{n}\right)\right)+L \cdot \min \varphi\left(N\left(x_{n-1}, x_{n}\right)\right) \tag{2.7.1}
\end{equation*}
$$

$M\left(x_{n-1}, x_{n}\right)=\max \left\{\frac{d\left(S x_{n}, T x_{n}\right)\left[1+d\left(S x_{n-1}, T x_{n-1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, \frac{d\left(S x_{n-1}, T x_{n-1}\right)\left[1+d\left(S x_{n}, T x_{n}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, \frac{d\left(S x_{n}, T x_{n-1}\right)\left[1+d\left(S x_{n-1}, S x_{n+1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, d\left(S x_{n-1}, S x_{n}\right)\right\}$
$=\max \left\{d\left(S x_{n}, S x_{n+1}\right), \frac{d\left(S x_{n-1}, S x_{n}\right)\left[1+d\left(S x_{n}, S x_{n+1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, d\left(S x_{n-1}, S x_{n}\right)\right\}$
And
$N\left(x_{n-1}, x_{n}\right)=\min \left\{\frac{d\left(S x_{n}, T x_{n}\right)\left[1+d\left(S x_{n-1}, T x_{n-1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, \quad \frac{d\left(S x_{n}, T x_{n-1}\right)\left[1+d\left(S x_{n-1}, S x_{n+1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, d\left(S x_{n-1}, S x_{n}\right)\right\}$
$=\min \left\{d\left(S x_{n}, S x_{n+1}\right), \frac{d\left(S x_{n}, S x_{n}\right)\left[1+d\left(S x_{n-1}, S x_{n+1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, d\left(S x_{n-1}, S x_{n}\right)\right\}=0$
If $M\left(x_{n-1}, x_{n}\right)=\max \left\{d\left(S x_{n}, S x_{n+1}\right), \frac{d\left(S x_{n-1}, S x_{n}\right)\left[1+d\left(S x_{n}, S x_{n+1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, d\left(S x_{n-1}, S x_{n}\right)\right\}=d\left(S x_{n}, S x_{n+1}\right)$

Then from 2.7.1
$\varphi\left(d\left(S x_{n}, S x_{n+1}\right) \leq \beta\left(\varphi\left(M\left(x_{n-1}, x_{n}\right)\right)\right) \varphi\left(M\left(x_{n-1}, x_{n}\right)\right)+L .0<\varphi\left(d\left(S x_{n}, S x_{n+1}\right)\right.\right.$
Which is contradiction .
Hence $\max \left\{d\left(S x_{n}, S x_{n+1}\right), d\left(S x_{n-1}, S x_{n}\right)\right\}=d\left(S x_{n-1}, S x_{n}\right)$
Therefore

$$
M\left(x_{n-1}, x_{n}\right)=\max \left\{\frac{d\left(S x_{n-1}, S x_{n}\right)\left[1+d\left(S x_{n}, S x_{n+1}\right)\right]}{1+d\left(S x_{n-1}, S x_{n}\right)}, \quad d\left(S x_{n-1}, S x_{n}\right)\right\}=d\left(S x_{n-1}, S x_{n}\right)
$$

Therefore from 2.7.2

We get
$\varphi\left(d\left(S x_{n}, S x_{n+1}\right) \leq \beta\left(\varphi\left(M\left(x_{n-1}, x_{n}\right)\right)\right) \varphi\left(d\left(S x_{n-1}, S x_{n}\right)\right)+L .0<\varphi\left(d\left(S x_{n-1}, S x_{n}\right)\right)\right.$
(2.7.3)

Thus it follows that $\left\{\varphi\left(d\left(S x_{n}, S x_{n+1}\right)\right)\right\}$ is a strictly decreasing sequence of positive real numbers and so $\lim \varphi\left(d\left(S X_{n}, S X_{n+1}\right)\right)$ exists and it is r (say).
i.e., $\lim \varphi\left(d\left(S x_{n}, S x_{n+1}\right)\right)=r \geq 0$.
since φ is non- decreasing, it follows that $\left\{d\left(S x_{n}, S x_{n+1}\right)\right\}$ is a strictly decreasing sequence of positive real numbers and so limd $\left(S x_{n}, S X_{n+1}\right)$ exists and it is r^{\prime} (say).
i.e., $\lim d\left(S X_{n}, S X_{n+1}\right)=r^{\prime} \geq 0$.

Suppose that $r^{\prime}>0$.
From 2.7.3 $\varphi\left(d\left(S x_{n}, S x_{n+1}\right)\right) \leq B\left(\varphi\left(d\left(S x_{n}-1, S x_{n}\right)\right)\right) \varphi\left(d\left(S x_{n}{ }_{-1}, S x_{n}\right)\right)$.
Taking limit supermum on both sides, we have
$\lim \varphi\left(d\left(S X_{n}, S X_{n+1}\right)\right) \leq \lim B\left(\varphi\left(d\left(S x_{n}-1, S X_{n}\right)\right)\right) \varphi\left(d\left(S x_{n}-1, S x_{n}\right)\right) \rightarrow 0$
$n \rightarrow \infty$

So that
$\lim \varphi\left(d\left(S x_{n}-1, S x_{n}\right)\right)=0$. which is contradiction, so that $r^{\prime}=0$
$n \rightarrow \infty$
Now, we show that $\left\{S x_{n}\right\}$ is Cauchy.
Suppose that $\left\{S X_{n}\right\}$ is not a Cauchy sequence. Then by lemma 1.10
$\varphi\left(d\left(S x_{m(k)}, S x_{n(k)}\right)=\varphi\left(d\left(T x_{m(k)-1}, T x_{n(k)-1}\right)\right.\right.$
$\leq \beta\left(\varphi\left(M\left(x_{m(k)-1}, x_{n(k)-1}\right)\right)\right) \varphi\left(M\left(x_{m(k)-1,}, x_{n(k)-1}\right)\right)+L \min \varphi\left(N\left(x_{m(k)-1,} x_{n(k)-1}\right)\right)$
(2.7.4)

On letting $k \rightarrow \infty$, we get $M\left(x_{m(k)-1,} x_{n}(k)-1\right)=\in$,
$N\left(x_{m(k)-1}, \quad x_{n(k)-1}\right)=0$
From 2.7.4 and taking limit supremum, we have
$\varphi(\epsilon)=\lim \varphi\left(d\left(S X_{m(k)}, S X_{n(k)}\right)\right) \leq \lim B\left(\varphi\left(M\left(x_{m(k)} 1, x_{n(k)}\right)\right)\right) \varphi(\epsilon)$
and it implies that
$\lim \varphi\left(M\left(x_{m(k)-1}, x_{n(k)-1}\right)\right)=0$.
Since $b \in S, \varphi\left(M\left(x_{m(k)-1}, x_{n(k)-1}\right)\right) \rightarrow 1$ as $k \rightarrow \infty$. i,e., $\varphi(\epsilon)$
$=0$, and φ is continuous, it follows that $\epsilon=0$ a
contradiction.
Therefore $\left\{S X_{n}\right\}$ is a Cauchy sequence in X.
Since $S(X)$ is complete, there exists $z \in S(X)$ such that
$\lim S X_{n+1}=\lim T x_{n}=S y=z$ for some $y \in X$.
n!1 n!1
Now we show that $S y=T y$.
Suppose that $S y=T y$, i.e., $d(S y, T y)>0$.
Now, suppose that the condition (iv) holds. Since $\left\{S x_{n}\right\}$ is a non-decreasing
sequence and $S x_{n} \rightarrow S y$ for some $y \in X$, we have $S x_{n} \leqslant$ Sy for all $n \geq 0$.
Now, from (2.7.1), we have
$\varphi\left(d\left(T x_{n}, T y\right)\right) \leq b\left(\varphi\left(M\left(x_{n}, y\right)\right)\right) \varphi\left(M\left(x_{n}, y\right)\right)+L \min \left(N\left(x_{n}, y\right)\right) \quad$ (2.7.5)
$M\left(x_{n}, y\right)=\max \left\{\frac{d(S y, T y)\left[1+d\left(S x_{n}, S x_{n+1}\right)\right]}{1+d\left(S x_{n}, S y\right)}, \frac{d\left(S x_{n}, S x_{n+1}\right)[1+d(S y, T y)]}{1+d\left(S x_{n}, S y\right)}, \frac{d\left(S y, S x_{n+1}\right)\left[1+d\left(S x_{n}, T y\right)\right]}{1+d\left(S x_{n}, S y\right)}, d\left(S x_{n}, S y\right)\right\}$
$N\left(x_{n}, y\right)=\max \left\{\frac{d(S y, T y)\left[1+d\left(S x_{n}, S x_{n+1}\right)\right]}{1+d\left(S x_{n}, S y\right)}, \frac{d\left(S x_{n}, S x_{n+1}\right)[1+d(S y, T y)]}{1+d\left(S x_{n}, S y\right)}, d\left(S x_{n}, S y\right)\right\}$
On letting $\mathrm{n} \rightarrow \infty$. we get
$M\left(x_{n}, y\right)=0$, and $N\left(x_{n}, y\right)=0$.
On letting $n \rightarrow \infty$ in (2.7.5), we get
$\varphi(d(S y, T y)) \leq b(\varphi(d(S y, T y))) \varphi(d(S y, T y))+$ L.0, which implies that
$\varphi(d(S y, T y))=0$.
Hence $T y=$ Sy so that T and S have a coincidence point y.

Theorem 2.8. In addition to the hypotheses of Theorem 2.7, if T and S are weakly compatible, and T is continuous then T and S have a unique common fixed point in X.

Proof.From the proof of Theorem 2.7, we have $\left\{S x_{n}\right\}$ is non-decreasingsequence that converges to $S x$.
Let $w=T z=S z$.
Since T and S are weakly compatible, $T w=T S z=S T z=S w$ and $S z \leqslant S S z=S w$.
Suppose that $w=T w$.
Consider
$\varphi(d(w, T w))=\varphi(d(T z, T T z))$
$\leq b(\varphi(M(z, T z))) \varphi(M(z, T z))+L \min \varphi(N(z, T z))$
where

$N(z, T z)=\min \{\quad 1+d(S z, S T z) \quad, \quad 1+d(S z, S T z) \quad, d(S z, S T z)\}$
$\frac{d(S w, T T z)}{1+d S z, S w)}$
$=\min _{1}\{1+d(S z, S w) \quad, 0, d(S z, S w)\}$
$=\min \left\{\begin{array}{l}d(T w, T T z), 0, d(w, T w)\} \\ 1+d(w) T w)\end{array}\right.$

$$
1+d(w, T w)
$$

$$
d(T w, T w)
$$

$=\min \left\{\frac{1+d(w, T}{w)}, 0, d(w, T w)\right\} \quad=0$.
from (2.2.1) $\varphi(d(w, T w))<\varphi(d(w, T w))$,
a contradiction, so that $w=T w$. Hence $w=T w=S w$. Therefore w
is a common xed point of T and S. Uniqueness:

Let z, and w be two xed points of T and S with $z=\{W$.
$\varphi(d(z, w))=\varphi(d(T z, T w))$
$\leq b(\varphi(M(z, w))) \varphi(M(z, w))+L \min (N(z, w))$
Where


```
    \(1+d(S z, S w)\)
\(=\operatorname{maxi} d(w, w), 0, d(w, z)[1+d(z, w)], d(z, w)\}\)
    \(1+d(z, w) 1+d(z, w)\)
\(=\max \{0,0, d(z, w), d(z, w)\}\)
\(=d(z, w)\).
\(N(z, w)=\min \{d(S w, T w)[1+d(S z, T z)] . \quad d(S z, T z)[1+d(S w, T w)], d(S z, S w)\}\)
                                    \(1+d(S z, S w)\)
                                    \(1+d(S z, S w)\)
\(\left.=\min \overline{\left\{1^{1+}(w, w\right.} d(z, z), 0, d(z, w)\right\}\)
\(=\min \{0,0, d(z, w)\}\)
\(=0\).
```

from (2.2.1) $\varphi(d(z, w)) \leq b(\varphi(d(z, w))) \varphi(d(z, w))+L .0 \varphi(d(z, w))<\varphi(d(z, w))$
acontradiction, so that $\mathrm{z}=\mathrm{w}$ Therefore T and S have a unique common xed point in X.

The following is an example in support of our main Theorem 2.1.
Example 2.9. Let $X=\left\{0, \frac{1}{4}, \frac{1}{2}, 1\right\} \quad$ with the usual metric.
We de ne partial order \leqslant on X as follows:

$$
\leqslant:=\left\{(O, O),\left(\frac{1}{4}, \frac{1}{4}\right),\left(\frac{1}{2}, \frac{1}{2}\right),(1,1),\left(\frac{1}{4}, \frac{1}{2}\right)\right\}
$$

Clearly (X, d) is a metric space and (X, \leqslant) is a partially ordered set.
We de ne $T: X \rightarrow X$ by $\quad T(0)=\frac{1}{4}, T\left(\frac{1}{4}\right)=\frac{1}{2}, T\left(\frac{1}{2}\right)=1, \quad$ and $T(1)=1$.

Moreover, we choose $x_{0}=\frac{1}{4} \in X$ then $x \leqslant T(x)$.
We de ne $B:[0, \infty) \rightarrow[0,1)$ by $B(t)=\frac{1}{1+t} \quad$ We now verify the inequality (2.1.1) for the elements $\left({ }_{-4}, \frac{1}{2}\right)$ and in the remaining cases the inequality (2.1.1) holds trivially.
Case $(i):(x, y)=\left(\frac{1}{4}, \frac{1}{2}\right)$
In this case $\varphi\left(d\left(T\left(\frac{1}{4}, \frac{1}{2}\right)\right)\right)=\varphi\left(d\left(\frac{1}{2}, 1\right)\right)=\varphi\left(\frac{1}{2}\right)=\frac{1}{4}$, and
$\left.M\left(\frac{1}{4}, \frac{1}{2}\right)\right)=\frac{3}{5}$, and $N\left(\frac{1}{4}, \frac{1}{2}\right)=\frac{1}{4}$
$\varphi\left(d\left(T\left(\frac{1}{4}, \frac{1}{2}\right)\right)\right)=\frac{1}{4} \leq \beta\left(\varphi\left(\frac{3}{5}\right)\right) \varphi\left(\frac{3}{5}\right)+L \varphi\left(\frac{1}{4}\right)$
holds for $L \geq 3$.
Therefore T satises all the conditions of Theorem 2.1 and T has a uniquefixed point 1.

References

[1] A. Amini-Harindi, H. Emami. "A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equa-tions". Nonlinear Analysis, 2010, 72(5): pp.2238-2242.
[2] G. V. R.Babu, P. D. Sailaja. "A fixed point theorem of generalzed weak contac-tive maps in orbitally complete metric spaces". Thai Journal of Mathematics,
2011, 9(1): pp.1-10.
[3] Babu, G. V. R., Sarma, K. K. M. and Krishna, P. H., "Fixed points of-weak Geraghty contractions in partially ordered metric spaces", J. of Adv. Res. inPure Math., 6(4) 2014, pp. 9 - 23.
[4] Babu, G. V. R., Sarma, K. K. M. and Krishna, P. H., "Necessary andsufficient conditions for the existence of fixed points of weak generalized Geraghty contractions", Int. J. Mathematics and Scientfic computing,5(1) 2015, pp.31-38.
[5] I. Cabrera, J. Harjani, K. Sadarangani, "A fixed point theorem for contrac-tions of rational type in partially ordered metric spaces", Ann. Univ . Ferrara. 59(2013) pp.251-258.
[6] B. K. Dass, S. Gupta, "An extension of Banach contraction principle through rational expressions", Indian J. Pure App. Math. 6(1975) . pp. 1455-1458.

[^0]: *Department of Mathematics, Andhra University, Visakhapatnam, India
 ** Department of Mathematics, Centurion University, Visakhapatnam, Andhra Pradesh, India
 ${ }^{* * *}$ Department of Mathematics, Baba Institute of Technology and Sciences, Visakhapatnam, India

