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  Abstract  

 
 

We define various types of Fibonacci and Lucas peseudoprimes and 
prove some theorems on these pseudoprimes. In particular, we will 
discuss the existence of Fibonacci pseudoprimes by setting some 
parameters.  
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1. Introduction  
We know that every non-absolute compositeness test series rise to a class of Pseudoprimes. The same, we 

can see in the case of Fibonacci number [1], which are recursively defined by  

1,0 10  ff and 221   nfff nnn  

i.e ,...13,8,5,3,2,1,1,0  

the sequence corresponding to )1,1(),( QP 0)1,1(0 U  and 1)1,1(1 U  was first consider by 

Fibonacci, and it begins as  

,...323,...13,8,5,4,3,2,1,1,0  

Since Fibonacci number grow quite large, in order to evaluate nf  efficiently we can use matrix identity.  
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Justification: The above identity can be proved by induction. 

For instance, the first FibonacciPseudoprime is 323  

i.e. 1917323  , 
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 Now, we will show that 324|323 f  by successive squaring algorithm, 
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By the above results we say the 324|323 f  

Note: one can try the same, using larger Fibonacci Pseudoprimes in the case of  

3827,1891,377 and 4181 

 
2. Finding with Justifications  
As we shown/discussed in earlier introduction, the following theorems are defined: 

 

 

 

 

Theorem 2.1: 1| pfP if )10(mod1P and 1| pfP  if )10(mod3P  

Proof: Leaving for readers. 
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Let us discuss the following important theorems  

Theorem 2.2: with parameters 1P and 1Q , there do not exist even Fibonacci Pseudoprime. 

Before solving this theorem, we define the following. 

Observation#1: QPPA 22   admits an odd prime divisor kp 4 )(  zk  and }1,1{Q  

Justification: QkkA 24)4( 2   

  )4(mod2A , if 2A  then A  admits an odd prime divisor. 

Observation#2: If 14  kp )( zk  and }1,1{Q  then the value QPPA 22   admits an 

odd prime divisor 3P , unless )1,1(),( QP , )1,1(),( QP  or )1,5(),( QP . 

Justification: By observation 1# , we have )4(mod1P  and )4(mod2A  if 1Q

 22 PP 2 iff 1P  

 Now, )3(mod1A  

Here A admits an odd prime divisor 3P  and 1P  

Or for 1Q , we have  22 PP 2 Iff 1P  

Here )3(mod0A  when )3(mod2P  

Here A  admits an odd prime divisor 3P . 

Observation#3: let }{ na  is defined by recurrence relation ,2
2

1  kk aa 1k  

If ),(21 zlla  then ),2(mod2 k

ka  1k  

If 121  la , then ),2(mod1 k

ka  1k . 

 
3. Justification  

Let us consider that )2(mod k

ka   

Here 1k  and 1  or 2  

Clearly,   22
 

ta k

k 2  

Or  ta k

k 2 )( zt  

And 2
2

1  kk aa  

   22
2
 tk  

   2222
22  tt kk   

   1212 222   kk tt  

 12 2mod2  k  

Now, we can define some lemmas based on above observations: 
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Lemma#1: For QP 1 , no every Fibonacci Pseudo Prime exists. 

Proof: Let us consider sequence }{ nV  with recurrence relation 20 V  , 11 V  

21   nnn VVV  

11 V  

121012  VVV  

211123  VVV  

112234  VVV  

121345  VVV  

2)1(1456  VVV  

112567  VVV  

121678  VVV  

}{ nV is periodic with period 6 . 

i.e. 26 kV ,  0k  

and 126 kV , 0k  

 Every Fibonacci Pseudo Prime does not exist. [2],[3] and [4] 

Lemma#2: For ,2kn  2k , }1,1{Q iff )2(mod2 kP   or )2(mod1 kP  . 

Proof: For ,0n n

nn QVV 2
2

2   from observation 3# , 

we have 2
2

1  kk aa , 1k  (1) 

QVV nn 2
2

2  deduce that 
k

kk VV 22

22
)1(21   

2
2

2
 kV   , 1k  

Thus kVak 2
  satisfies observation 3# or Equation (1) 

Also   QPVa 22

21   

)2(mod2 PP   

By observation 3# ; )2(mod2
2

k
kV  if 1k and lP 2  

Then )2(mod1
2

k
kV   

Lemma#3: If )4(mod0P  or )4(mod1P with )1,5(),( QP  and 1P then there exists an 

odd prime number P  such that Pn 2 is an even number. 

Proof: We know that; 

 )(a If lP 2  then )2(mod0nV ; 0n  
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 )(b If 12  lP then )2(mod0nV iff )3(mod0n  

 )(c If P is prime, then )(modPVV nnp  for 0n . 

Let us assume that )4(mod0P  or )4(mod1P  and the P  is odd prime. 

Here )2(mod2 PPV p   is similar to  2)2(mod2  PV p  

and  3)(mod2  PPV p  

by )(a  and )(b , the relation )2( is true  

by )(c relation )3( holds.  

Proof: The cited above observations/Lemma’s concludes the theorem. 

 

APPENDIX 

I. Conditional Identities  

We can define the following identities: 

I. 1,0),2( 121   UUnQUPUU nnn  

pVVnQVPVV nnn   1021 ,2),2(  

II. nnn VUU 2  

n

nn QVV 2
2

2   

III. 
nm

n

nmnm UQVUU    

nm

n

nmnm VQVVV     (for bm ) 

IV. nmnmnm UQUUUU 11    

2/)( nmnmnm VDUVVV   

V. nnn PVVDU  12  

nnn PUUV  12  

VI. 1

11

2 

  n

nnn QUUU  

n

nn QDUV 4
22
  

VII. nm

n

mnnm UQVUVU  2 )( nm   

nmmnnm UVUVU  2  

VIII.       ...2 2513011

531
  DpnDpnDpnU n

c

n

c

n

cn

n
 

      ...2 241201

420
  DpnDpnDpnV n

c

n

c

n

cn

n
 

IX. )(mod1 QVU nn   
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)(modQPV n

n   

X. )(modPPVp   

XI.   ...5

2

31 mmmm VQQVVU  ( last sum and); where  

Last sum and =   
𝑄

𝑚−2

2
  𝑖𝑓  𝑚=𝐸𝑣𝑒𝑛

𝑄
𝑚−1

2
  𝑖𝑓  𝑚=𝑂𝑑𝑑

  

II. Fibonacci and Lucas numbers for 1,1  QP  

Fibonacci number  Lucas number 

U(0)=1,U(1)=1 V(0)=2,V(1)=1 

U(2)=1 V(2)=3 

U(3)=2 V(3)=4 

U(4)=3 V(4)=7 

U(5)=5 V(5)=11 

U(6)=8 V(6)=18 

U(7)=13 V(7)=19 

U(8)=21 V(8)=47 

U(9)=34 V(9)=76 

U(10)=55 V(10)=123 

U(11)=89 V(11)=199 

U(12)=144 V(12)=322 

U(13)=233 V(13)=521 

U(14)=377 V(14)=843 

U(15)=610 V(15)=1364 

U(16)=987 V(16)=2207 

U(17)=1597 V(17)=3571 

U(18)=2584 V(18)=5778 

U(19)=4181 V(19)=9349 

U(20)=6765 V(20)=15127 

U(21)=10946 V(21)=24476 

U(22)=17711 V(22)=39603 
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