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  Abstract  

 
 The study of heat transfer of dusty fluid of an axially 

symmetrical jet mixing of a compressible fluid has been 
received considerable attention in the past due to its 
applications in the industries. The present study focused on 
the solution of an axially symmetrical jet mixing of a 
compressible dusty fluid . Assuming the velocity and 
temperature in the jet to differ slightly from that of the 
surrounding stream, a perturbation method has been 
employed to linearize the basic equations. The resulting 
equations are then solved by Hankel’s  and Laplace 
transformation technique. It has been observed that the axial 
fluid velocity  is more than the axial particle velocity  near the 
nozzle exit.  
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1. Introduction  
There are number of areas in which a valid feasible model is of great importance. In the long term planning 
for a growing community it is desirable to earmark some areas suitable for industrial activity and some 
others for residential use with a view to minimize the pollution load in the residential complex. But many of 
the physical phenomena in nature with special reference to boundary layer flows associated with 
suspended particulate matter. 
Compressible jet mixing of a dusty fluid originating from a circular jet has been studied by Dutta and Das 
[1991].in case of negligible volume fraction of SPM. But this assumption leads to an error which ranges from 
insignificant to very large. Also this type of assumption is not justified when the fluid density is high or 
particle mass fraction is large. In the present paper the effect of finite volume fraction in an axially 
symmetrical jet mixing of a compressible fluid with SPM has been studied. Assuming the velocity and 
temperature in the jet to differ only slightly from that of the surrounding stream, a perturbation method 
has been employed to linearize the governing differential equations. The resulting equations are then 
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solved by Hankel’s  and Laplace transformation technique. Attention has been given to get the solution of 
the longitudinal perturbated fluid velocity and particle velocity.   

2. Analysis of the Problem 
The equation governing the study of compressible two-phase boundary layer flow in axisymmetric case can 
be written as  
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                  and equation of state is P = RT                     (1.2.8) 

 Since the pressure is assumed to be constant and the carrier fluid is considered to be compressible   

              so ,  and k can not be regarded as constants but very with gas temperature T. Therefore we write 
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 Using (1.2.9) in equation (1.2.1) to (1.2.7) we can write as 
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To study the boundary layer flow, we introduce the dimensionless variables are 
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. 

 Assuming the flow from a circular, opening under full expansion i.e. no pressure variation occurs 

throughout the flow, and flow variables of the jet differ only slightly from that of the surrounding stream, it 

is possible to write the velocities, temperatures and particle density in the following form as 

,TTT,TTT,vv,uuu,vv,uuu
10110 ppp10ppppp110   

10 ppp   where 

,TT,uu,uu 01pp01 01
  

0101 pppp ,TT  . 

 The quantities with suffix ‘0’ are the values at the opening and those with suffix ‘1’ are perturbed 

quantities. Again, the suffix p denotes those variables for the particle. Under the above assumption the 

governing equation (6.2.10) to (6.2.16) can be written after dropping the * and suffix one in the non-

dimensional linearized form as follows 
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The boundary conditions for pp vandu,v,u  are 
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3. Solution of the Problem 
Taking Hankel and Laplace transforms respectively of both sides of the equation (1.2.18) and (1.2.21) and 
using the conditions (1.2.24) we obtain. 
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Where   
Hankel transform with respect to the variable r is denoted by * and Laplace transform with respect to the 
variable z  is denoted by – 
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 The inversion of (1.3.1) and (1.3.2) gives 
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Taking Hankel and Laplace transforms respectively of both sides of the equation (1.2.17) and using (1.3.1), 

(1.3.7) and boundary conditions we get 
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 The inversion of (1.3.13) gives 
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 Taking Hankel and Laplace transforms respectively of both sides of the equation (1.2.22) and using 

(1.3.13) and boundary conditions we get 
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 The inversion of (1.3.15) gives 
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 Taking Hankel and Laplace transforms respectively of both sides of the equation (1.2.20) and using 

(1.3.7), (1.3.16) and (1.2.24) we get 
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 The inversion of (1.3.17) gives  
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4. Discussion of Result and Conclusion 
The numerical computation have been made by taking Pr = 0.72, u10 = up10 = T10 = Tp10 = p10 = 0.1,  = 0.01. 
The velocity and temperature at the exit are taken nearly equal to unity.  

Table 1: Values of longitudinal perturbation fluid velocity u1 

ALPHA=0.1 ALPHA=0.2 ALPHA=0.3 

Z=0.25 Z=0.50 Z=1.0 Z=0.25 Z=0.50 Z=1.0 Z=0.25 Z=0.50 Z=1.0 

1.00E-01 1.02E-01 1.06E-01 1.00E-01 1.02E-01 1.07E-01 1.00E-01 1.02E-01 1.07E-01 

1.01E-01 1.02E-01 1.06E-01 1.01E-01 1.02E-01 1.06E-01 1.01E-01 1.02E-01 1.07E-01 

1.01E-01 1.01E-01 1.02E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.00E-01 

9.72E-02 9.09E-02 8.40E-02 9.63E-02 8.95E-02 8.27E-02 9.51E-02 8.78E-02 8.12E-02 

4.75E-02 4.71E-02 4.74E-02 4.74E-02 4.70E-02 4.74E-02 4.72E-02 4.68E-02 4.75E-02 

2.28E-03 7.64E-03 1.47E-02 3.00E-03 8.76E-03 1.59E-02 3.93E-03 1.01E-02 1.72E-02 

-3.03E-04 5.29E-05 2.10E-03 -2.72E-04 2.24E-04 2.73E-03 -2.35E-04 4.93E-04 3.56E-03 

-2.31E-04 -2.25E-04 -5.47E-05 -2.28E-04 -2.21E-04 5.53E-05 -2.27E-04 -2.10E-04 2.37E-04 

-1.60E-04 -1.84E-04 -1.80E-04 -1.69E-04 -1.84E-04 -1.73E-04 -1.76E-04 -1.84E-04 -1.56E-04 

-1.73E-04 -1.85E-04 -1.89E-04 -1.78E-04 -1.85E-04 -1.89E-04 -1.81E-04 -1.85E-04 -1.88E-04 
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Table 2: Values of longitudinal perturbation particle velocity UP1 

ALPHA=0.1 ALPHA=0.2 ALPHA=0.3 

Z=0.25 Z=0.50 Z=1.0 Z=0.25 Z=0.50 Z=1.0 Z=0.25 Z=0.50 Z=1.0 

6.62E-01 5.37E-01 3.66E-01 6.62E-01 5.37E-01 3.66E-01 6.62E-01 5.37E-01 3.67E-01 

8.19E-01 6.59E-01 4.39E-01 8.19E-01 6.59E-01 4.40E-01 8.19E-01 6.59E-01 4.40E-01 

8.32E-01 6.69E-01 4.45E-01 8.32E-01 6.69E-01 4.45E-01 8.32E-01 6.69E-01 4.45E-01 

7.89E-01 6.34E-01 4.17E-01 7.89E-01 6.33E-01 4.17E-01 7.88E-01 6.33E-01 4.16E-01 

3.84E-01 3.09E-01 2.05E-01 3.84E-01 3.09E-01 2.05E-01 3.84E-01 3.09E-01 2.05E-01 

-2.41E-03 -7.20E-04 4.26E-03 -2.35E-03 -4.49E-04 4.90E-03 -2.25E-03 -1.15E-04 5.65E-03 

-1.88E-02 -1.46E-02 -8.42E-03 -1.88E-02 -1.46E-02 -8.23E-03 -1.88E-02 -1.46E-02 -7.97E-03 

-7.08E-03 -5.55E-03 -3.42E-03 -7.08E-03 -5.55E-03 -3.40E-03 -7.07E-03 -5.54E-03 -3.36E-03 

3.49E-03 2.67E-03 1.54E-03 3.49E-03 2.67E-03 1.54E-03 3.49E-03 2.67E-03 1.54E-03 

2.86E-03 2.18E-03 1.24E-03 2.85E-03 2.17E-03 1.24E-03 2.85E-03 2.17E-03 1.24E-03 

 

Table 1 and table 2 shows the profiles of axial fluid perturbation velocity u and longitudinal perturbation 

particle velocity up for  =0.1, 0.2,0.3 and for different values of Z. It is observed that the axial fluid velocity 
u is greater than the axial particle velocity up near the nozzle exit 
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