International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 8, Decemer 2017,
ISSN: 2320-0294 Impact Factor: 6.238
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \&
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

ON ABSOLUTE WEIGHTED MEAN SUMMABILITY FACTOR OF AN INFINITE

SERIES AND ITS APPLICATIONS

SANJAY TRIPATHI

Abstract

In the paper, we have proved a result on absolute summability factor method of an infinite series by using quasi $(\beta-\gamma)$-power increasing sequence, which generalizes some of the known results.

Keywords:

Infinite series;
Absolute Summability;
Summability Factors;
Almost increasing sequence;
Quasi β - Power increasing sequence.

Copyright © 2017International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

Department of Mathematics, Faculty of Science
The Maharaja Sayajirao University of Baroda, VADODARA-390002 (GUJARAT)
Email: sanjaymsupdr@yahoo.com

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$. Every increasing sequence is almost increasing sequence but the converse need not be true as can be seen from the example,
say $b_{n}=n e^{(-1)^{n}}$ (see[5]). A positive sequence $\left(\gamma_{n}\right)$ is said to be a quasi β - power increasing sequence if there is a constant $K=K(\beta, \gamma) \geq 1$ such that $K n \beta_{n} \geq m \beta_{m}$ holds for all $n \geq m \geq 1$. It should be noted that every almost increasing sequence is quasi β - power increasing sequence for any $\beta>0$, but the converse need not be true as can be seen by example $\gamma_{n}=n^{-\beta}$ for $\beta>0$. If $\beta=0$, then $\left(\gamma_{n}\right)$ is simply called a quasi increasing sequence.

Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with $\left(s_{n}\right)$ as the sequence of its partial sums. Let $\left(p_{n}\right)$ be a sequence of positive real numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty, \text { as } n \rightarrow \infty \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right)
$$

The sequence - to - sequence transformation

$$
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(t_{n}\right)$ of $\left(\bar{N}, p_{n}\right)$ transform of $\left(s_{n}\right)$ generated by $\left(p_{n}\right)$. The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$ and $T=\delta k+k-1$, if (see [6])

$$
\sum_{n=1}^{\infty} \phi_{n}^{T}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

where $\left(\phi_{n}\right)$ be any sequence of positive real constants.

Remarks: In particular case, we observed that

1. For $\delta=0$, the summability $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}$ reduces to $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}$ summability due to W.T.Sulaiman [10]
2. For $\delta=0$ and $\phi_{n}=\frac{P_{n}}{p_{n}}$, the summability $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}$ reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability due to H.Bor [1]
3. For $\phi_{n}=\frac{P_{n}}{p_{n}}$, the summability $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}$ reduces to $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability due to H.Bor [1].
4. If we put $\delta=0$ and $\phi_{n}=n$, for all values of n, then $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ summability due to W.T.Sulaiman [9]
5. If $\phi_{n}=n$, for all values of n, the summability $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}$ reduces to $\left|R, p_{n} ; \delta\right|_{k}$, summability due to W.T.Sulaiman [9]
6. If we take $\phi_{n}=\frac{P_{n}}{p_{n}}$ and $p_{n}=1$ for all values of n, then $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}$ reduces to $|C, 1 ; \delta|_{k}$ summability which on putting $\delta=0$ which becomes $|C, 1|_{k}$ due to T.M.Flett [8].

2. Main Result

The aim of this paper is to prove a result by considering $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}$ summability. In fact, we shall prove the following result

Theorem 1: Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\mathrm{O}\left(n p_{n}\right) \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

If $\left(X_{n}\right)$ be quasi $(\beta-\gamma)$-power increasing sequence for some $0<\beta<1$ and the sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ are such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{2.2}\\
& \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.3}\\
& \sum_{n=1}^{\infty} n X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{2.4}
\end{align*}
$$

$$
\begin{align*}
& \left|\lambda_{n}\right| X_{n}=\mathrm{O}(1) \text { as } n \rightarrow \infty \tag{2.5}\\
& \sum_{n=1}^{m} \phi_{n}^{T}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n}\right|^{k}=\mathrm{O}\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{T-k} \frac{1}{P_{n-1}}=\mathrm{O}\left[\left(\frac{P_{v}}{p_{v}}\right)^{\tau k} \frac{1}{P_{v}}\right] \tag{2.7}
\end{equation*}
$$

where $\left(\phi_{n}\right)$ be a sequence of positive real constants such that $\left(\frac{\phi_{n} p_{n}}{P_{n}}\right)$ is non-increasing sequence , then the series $\sum_{n=0}^{\infty} a_{n} \lambda_{n}$ is summable $\left|\bar{N}_{p}, \phi_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \tau<\frac{1}{k}$.

3. Lemma:

We need the following lemma for the proof our result.

Lemma 1 [11, lemma 2.2] : Let $\left(X_{n}\right)$ quasi $(\beta-\gamma)$ - power increasing sequence, $0<\beta<1$ and $\gamma \geq 0$, then the condition (2.3) and (2.4) implies
and

$$
\begin{align*}
& n \beta_{n} X_{n}<\infty \tag{3.1}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{3.2}
\end{align*}
$$

4. Proof of the Theorem 1:

Let $\left(t_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ means of the series $\sum_{n=0}^{\infty} a_{n} \lambda_{n}$, then, by definition, we have

$$
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v}
$$

Then, for $n \geq 1$ and by using simple calculation, we get

$$
\begin{equation*}
t_{n}-t_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v} \tag{4.1}
\end{equation*}
$$

Using Able's transformation to the right hand side of (4.1), we get

$$
\begin{aligned}
t_{n}-t_{n-1} & =\frac{p_{n} s_{n} \lambda_{n}}{P_{n}}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v} \\
& =t_{n, 1}+t_{n, 2}+t_{n, 3}, \text { say }
\end{aligned}
$$

Since

$$
\left|t_{n, 1}+t_{n, 2}+t_{n, 3}\right|^{k} \leq 3^{k}\left(\left|t_{n, 1}\right|^{k}+\left|t_{n, 2}\right|^{k}+\left|t_{n, 3}\right|^{k}\right)
$$

Thus, in order to complete the proof of the Theorem 1, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \phi_{n}^{T}\left|t_{n, z}\right|^{k}<\infty, \text { for } z=1,2,3
$$

We have,

$$
\begin{aligned}
& \sum_{n=1}^{m} \phi_{n}^{T}\left|t_{n, 1}\right|^{k} \\
= & \sum_{n=1}^{m} \phi_{n}^{T}\left|\frac{p_{n} s_{n} \lambda_{n}}{P_{n}}\right|^{k} \\
= & \mathrm{O}(1) \sum_{n=1}^{m} \phi_{n}^{T}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n}\right|^{k}\left(\left|\lambda_{n}\right|\right)^{k-1}\left|\lambda_{n}\right| \\
= & \mathrm{O}(1) \sum_{n=1}^{m} \phi_{n}^{T}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n}\right|^{k}\left|\lambda_{n}\right|, \quad \text { by (2.5) } \\
= & \mathrm{O}(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \phi_{v}^{T}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|s_{v}\right|^{k}+\mathrm{O}(1) \quad\left|\lambda_{m}\right| \sum_{n=1}^{m} \phi_{n}^{T}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n}\right|^{k}
\end{aligned}
$$

$=\mathrm{O}(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+\mathrm{O}(1) \quad\left|\lambda_{m}\right| X_{m}, \quad$ by (2.6)
$=\mathrm{O}(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+\mathrm{O}(1) \quad\left|\lambda_{m}\right| X_{m}, \quad$ by (2.2)
$=\mathrm{O}(1)$ as $m \rightarrow \infty$, by ((3.2) and (2.5)).

Again,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \phi_{n}^{T}\left|t_{n, 2}\right|^{k} \\
& =\sum_{n=2}^{m+1} \phi_{n}^{T}\left|\frac{-p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1} \phi_{n}^{T}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} p_{v}\left|s_{v}\right|\left|\lambda_{v}\right|\right\}^{k} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1}\left(\frac{\phi_{n} p_{n}}{P_{n}}\right)^{T}\left(\frac{P_{n}}{p_{n}}\right)^{T-k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =\mathrm{O}(1) \quad \sum_{v=1}^{m} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \quad \sum_{n=v+1}^{m+1}\left(\frac{\phi_{n} p_{n}}{P_{n}}\right)^{T}\left(\frac{P_{n}}{p_{n}}\right)^{T-k} \frac{1}{P_{n-1}} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left(\frac{\phi_{v} p_{v}}{P_{v}}\right)^{T} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{T-k} \frac{1}{P_{n-1}} \\
& =\mathrm{O}(1) \quad \sum_{v=1}^{m} \phi_{v}^{T}\left(\frac{p_{v}}{P_{v}}\right)^{T}\left(\frac{P_{v}}{p_{v}}\right)^{T-k}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|, \text { by (2.7) } \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \phi_{v}^{T}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \\
& =\mathrm{O}(1) \quad \text { as } m \rightarrow \infty, \text { Proceeding as in case }\left|t_{n, 1}\right|
\end{aligned}
$$

Finally we have,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \phi_{n}^{T}\left|t_{n, 3}\right|^{k} \\
& =\sum_{n=2}^{m+1} \phi_{n}^{T}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{O}(1) \sum_{n=2}^{m+1} \phi_{n}^{T}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} p_{v} v\left|s_{v} \| \Delta \lambda_{v}\right|\right\}^{k} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1}\left(\frac{\phi_{n} p_{n}}{P_{n}}\right)^{T}\left(\frac{P_{n}}{p_{n}}\right)^{T-k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|s_{v}\right|^{k}\left(v \beta_{v}\right) k\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1}\left(\frac{\phi_{n} p_{n}}{P_{n}}\right)^{T}\left(\frac{P_{n}}{p_{n}}\right)^{T-k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|s_{v}\right|^{k}\left(v \beta_{v}\right)^{k}\right\} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} p_{v}\left|s_{v}\right|^{k}\left(v \beta_{v}\right) \sum_{n=v+1}^{m+1}\left(\frac{\phi_{n} p_{n}}{P_{n}}\right)^{T}\left(\frac{P_{n}}{p_{n}}\right)^{T-k} \frac{1}{P_{n-1}} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \phi_{v}^{T}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|s_{v}\right|^{k}\left(v \beta_{v}\right) \text { by (2.7) } \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1}\left|\Delta\left(\nu \beta_{v}\right)\right| \sum_{i=1}^{v} \phi_{i}^{T}\left(\frac{p_{i}}{P_{i}}\right)^{k}\left|s_{i}\right|^{k}+\mathrm{O}(1) m \beta_{m} \sum_{i=1}^{m} \phi_{i}^{T}\left(\frac{p_{i}}{P_{i}}\right)^{k}\left|s_{i}\right|^{k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right) X_{v}+\mathrm{O}(1) \sum_{v=1}^{m-1} X_{v}\right| \Delta \lambda_{v+1} \mid+\mathrm{O}(1) m \beta_{m} X_{m} \text {, } \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1} v\left|\beta_{v}\right| X_{v}+\mathrm{O}(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v}+\mathrm{O}(1) m \beta_{m} X_{m} \\
& =\mathrm{O}(1) \text { as } m \rightarrow \infty \text {, by (2.4), (3.2) and (3.1). }
\end{aligned}
$$

Thus we have shown that

$$
\sum_{n=1}^{\infty} \phi_{n}^{T}\left|t_{n, z}\right|^{k}<\infty, \text { for } z=1,2,3
$$

which completes the proof of the Theorem 1.

5. Applications:

If we consider the special cases of our Theorem 1, then following results are the consequences of our Theorem 1, which we have put in the form of corollaries as follows:

Corollary 1 : It must be noted that, every almost increasing sequence is quasi $(\beta-\gamma)$-power increasing sequence for $\gamma=0$.Thus, Theorem 1 generalizes our result [7].

Corollary 2: If $\delta=0$ and $\phi_{n}=\frac{P_{n}}{p_{n}}$, then our results (Theorem 1) reduces for $\left|\bar{N}, p_{n}\right|_{k}$ summability ,which extend the result of [2].

Corollary 3: If $\delta=0$, then our results (Theorem 1) reduces for $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}$ summability.

Corollary 4: If $\phi_{n}=\frac{P_{n}}{p_{n}}$, then our results (Theorem 1) reduces for $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability , which extend the result of [3].
Corollary 5 : If $\delta=0$ and $\phi_{n}=n$ for all values of n, then our results (Theorem 1) reduces for $\left|R, p_{n}\right|_{k}$ summability.
Corollary 6 : If $\phi_{n}=n$ for all values of n, then our results (Theorem 1) reduces for $\left|R, p_{n} ; \delta\right|_{k}$ summability.
Corollary 7: If $\phi_{n}=\frac{P_{n}}{p_{n}}$ and $p_{n}=1$ for all values of n, then our results (Theorem 1) reduces for $|C, 1 ; \delta|_{k}$ summability.
Corollary 8: If $\phi_{n}=\frac{P_{n}}{p_{n}}$ and $\delta=0$ and $p_{n}=1$ for all values of n, then our results (Theorem 1) reduces for $|C, 1|_{k}$ summability (see[4]).

References:

1. Bor,H., "On Local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series", J.Math.Anal. Appl., vol. 179, pp. 646-649,1993.
2. Bor,H., "A note on Absolute summability factors", Internal.J.Math.\&Math.Sci., vol.17(3), pp. 479-482, 1994.
3. Bor, H, "On $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors of infinite series", Taiwanese Journal of Mathematics, vol. 1, pp.327332, 1997.
4. Mishra,K.N., Srivastava,R.S.L., "On absolute Cesaro summability factors of infinite series", Portugaliae Math., vol. 42(1), pp. 53-61, 1983-84.
5. Aljancic,S., Arandelovic,D.,"O-regularily varying functions, Publications de I'Institut. Mathematique", vol. 22(36), pp. 5-22,1977.
6. Sanjay Tripathi, "On the relation between two new absolute summability method of infinite series and its applications", International Journal of Mathematical Sciences,vol.11(1-2), pp. 115-122, 2012.
7. Sanjay Tripathi,"A note on an extension of absolute Riesz summability factors of an infinite series and its applications", The Mathematics Student,vol. 80(1-4), pp. 115-122, 2011.
8. Flett,T.M.,"On an extension of absolute summability and theorems of Littlewood and Paley", Proc. Lond. Math. Soc., vol. 7, pp. 113-141,1957.
9. Sulaiman, W.T., "On $\left|R, p_{n}\right|_{k}$ summability of infinite series, International Mathematical Forum", vol.43(3), pp. 2129-2137 2008.
10. Sulaiman,W.T., On some summability factors of infinite series, Proc. Amer. Math. Soc.vol. 115(2) ,pp.313-317,1992.
11. Sulaiman,W.T.,(2009): A study on absolute factors for a triangular matrix, Bulletin of Mathematical Analysis and Applications, vol. 1(3), pp. 1-9,2009.
