A NOTE ON GLOBAL COTOTAL DOMINATION IN GRAPHS

T. Sheeba Helen, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil, TamilNadu, India.
T. Nicholas, Department of Mathematics, St.Jude's College, Thoothoor, TamilNadu, India.

Abstract

A dominating set D of a graph G is a global cototal dominating set if D is both a global dominating set and a cototal dominating set. The global cototal domination number $\gamma_{\mathrm{gcot}}(\mathrm{G})$ is the minimum cardinality of a global cototal domination set of G. In this paper we determine the value of the global cototal domination number $\gamma_{\mathrm{gcot}}(\mathrm{G})$ for Friendship graph, Helm graph, Trestled graph, Total graph, Web graph and Grid graph. Subject Classification: 05C69

KEYWORDS:

Global domination number, Cototal domination number, Global cototal domination number.

1. INTRODUCTION

All graphs considered in this paper are simple, finite, undirected and connected. For graph theoretical terms we refer Harary [6] and for terms related to domination we refer Haynes et al. [7]. A set of vertices D in a graph G is a dominating set, if each vertex of G is dominated by some vertices of D . The domination number $\gamma(\mathrm{G})$ is the minimum cardinality of a dominating set of G . A dominating set D of a graph G is a global dominating set if D is also a dominating set of \bar{G}. The global domination number $\gamma_{\mathrm{g}}(\mathrm{G})$ is the minimum cardinality of a global dominating set of G. This concept was introduced independently by Brigham and Dutton [2] (the term factor domination number was used) and Sampathkumar [11]. A dominating set D of a graph G is a cototal dominating set if the induced sub graph, <V-D> has no isolated vertices. The cototal domination number $\gamma_{\mathrm{cot}}(\mathrm{G})$ is the minimum cardinality of a cototal dominating set of G. This concept was introduced by Kulli, Janakiram and Iyer in [8]. A dominating set D of a graph G is a global cototal dominating set if D is both a global dominating set and a cototal dominating set. The global cototal domination number $\gamma_{\mathrm{gcot}}(\mathrm{G})$ is the minimum cardinality of a global cototal domination set of G . This new concept, the global cototal domination number $\gamma_{\text {gcot }}(\mathrm{G})$ of a graph G was introduced by Sheeba Helen and Nicholas in [9]. In this paper we study the minimal condition of a global cototal dominating set and calculate the global cototal domination number in specific classes of graphs.

We need the following.
Proposition 1.1.[9] For any complete graph $\mathrm{K}_{\mathrm{n}}, \gamma_{\mathrm{gcot}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}, \mathrm{n} \geq 3$.
Proposition 1.2.[9] For any star graph $K_{1, n}, \gamma_{\mathrm{gcot}}\left(K_{1, n}\right)=n+1, n \geq 3$.
Proposition 1.3.[9] For the cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \geq 6$

$$
\gamma_{\mathrm{gcot}}\left(\mathrm{C}_{\mathrm{n}}\right)= \begin{cases}\frac{n}{3}, & n \equiv 0(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil, & n \equiv 1(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil+1, & n \equiv 2(\bmod 3)\end{cases}
$$

Proposition 1.4[9]. For any wheel $\mathrm{W}_{\mathrm{n}}, \gamma_{\mathrm{gcot}}\left(\mathrm{W}_{\mathrm{n}}\right)=\left\{\begin{array}{cc}4 & \text { if } n=3 ; \\ 3 & \text { otherwise }\end{array}\right\}$.
2. MAIN RESULTS

Definition 2.1[9]

A global cototal dominating set of a graph G is a set D of vertices of G such that D is both global dominating set and cototal dominating set. The global cototal domination number $\gamma_{\mathrm{gcot}}(\mathrm{G})$ is the minimum cardinality of a global cototal dominating set of G .
The following theorem of Ore characterizes the minimal dominating sets.
Theorem 2.2. [10] A dominating set D is a minimal dominating set if and only if for each vertex v in D one of the following condition holds.
(i) v is an isolated vertex of D .
(ii) There exists a vertex u in $V-D$ such that $N(u) \cap D=\{v\}$.

Theorem 2.3. A global cototal dominating set D is minimal if and only if for each vertex v in D one of the following conditions holds.
(i) There exists a vertex u in $V-D$ such that $N(u) \cap D=\{v\}$.
(ii) $\quad N(u) \cap(V-D) \neq \varnothing$.

Proof: Suppose D is the minimal global cototal dominating set of G. On contrary if there exists a vertex v in D such that v does not satisfy any of the given conditions, then by the previous theorem, $\mathrm{D}_{1}=\mathrm{D}-\{\mathrm{v}\}$ is a dominating set of G . By sub division(ii) $\left\langle\mathrm{V}-\mathrm{D}_{1}\right\rangle$ has no isolated vertices. This implies that D_{1} is a global cototal dominating set of G which is a contradiction. Sufficiency is obvious.

Theorem 2.4. Let T be the spanning sub graph of a complete graph K_{n}, then $\gamma_{\text {gcot }}(T) \leq \gamma_{\text {gcot }}\left(\mathrm{K}_{\mathrm{n}}\right)$.
Proof: Let D be the minimal global cototal dominating set of K_{n}. Let T be the spanning sub graph of a K_{n}. We know that $\gamma_{\mathrm{gcot}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}, \mathrm{n} \geq 3$, by Proposition 1.1. If T is a star then by Proposition 1.2 the global cototal domination number of a star graph of order n is n. Hence equality holds. If T is a cycle, by Proposition 1.3 for $\mathrm{n} \geq 6$

$$
\gamma_{\mathrm{gcot}}\left(\mathrm{C}_{\mathrm{n}}\right)= \begin{cases}\frac{n}{3}, & n \equiv 0(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil, & n \equiv 1(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil+1, & n \equiv 2(\bmod 3)\end{cases}
$$

This proves the theorem

Definition 2.5. Friendship graph $C_{3}^{(t)}$ is a planar undirected graph with $2 \mathrm{n}+1$ vertices and $3 n$ edges. It can be got by joining 't' copies of the cycle graph C_{3} at a common vertex.
Theorem 2.6. $\gamma_{g \operatorname{gcot}}\left(C_{3}^{(t)}\right)=3$ where t denotes the number of copies of the cycle C_{3} identified at a common vertex.

G
Figure 2.4
Proof: Let D be the minimal global cototal dominating set of $C_{3}^{(t)}$. v_{0} be the apex vertex in $C_{3}^{(t)}$.Then v_{0} dominates all other vertices of $C_{3}^{(t)}$. Hence any minimal global cototal dominating set D must contain v_{0}. Since v_{0} is isolated in G^{c}, it does not dominate any vertex in G^{c}. Therefore D has a vertex $v_{1} \neq v_{0}$. But in this case the sub graph induced by $\left\langle V-\left\{\mathrm{v}_{1}\right.\right.$, $\left.v_{0}\right\}>$ has an isolated vertex v_{2} which is adjacent to both v_{0} and v_{1} in G. Hence $D=\left\{v_{0}, v_{1}\right.$, $\left.\mathrm{v}_{2}\right\} \subseteq \mathrm{V}(\mathrm{G})$. Now D is the minimal global cototal dominating set of $C_{3}^{(t)}$ and hence $\gamma_{\mathrm{gcot}}\left(C_{3}^{(t)}\right)=3$.
Definition 2.7. A graph obtained from a wheel by attaching a pendant edge at each vertex of an n -cycle is a helm and is denoted by H_{n}. It is a graph of order $2 \mathrm{n}+1$.
Theorem 2.8. $\gamma_{\mathrm{gcot}}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}+1$.

Helm Graph H_{8}
Figure 2.5

Proof: Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the cycle. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the corresponding pendant vertices and v be the center. H_{n} contains $2 n+1$ vertices. Let D be the minimal global cototal dominating set. Then D contains v . Since v dominates only the cycle vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}, D$ must contain a pendant vertex. Then D must contain all the pendant vertices, $v_{1}, v_{2}, v_{3}, \ldots, v_{n} \in D$ since otherwise it will violate the cototal property. Hence we claim that $D=\left\{v_{1}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ is minimal. The vertex v_{i} cannot be replaced with the corresponding u_{i}, since otherwise, $\mathrm{V}-\left\{\mathrm{v}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ induce isolated vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ which violates the cototal property. Therefore we choose $\mathrm{D}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right.$, $\left.\ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{v}\right\} \subseteq \mathrm{V}(\mathrm{G})$ as the minimal global cototal dominating set of H_{n} and hence $\gamma_{\mathrm{gcot}}\left(\mathrm{H}_{\mathrm{n}}\right)=$ $\mathrm{n}+1$.
Definition 2.9. The trestled graph of index k denoted by $T_{k}(G)$ is a graph obtained from G adding k copies of K_{2} corresponding to each edge $u v$ of G and joining u and v to the respective end vertices of each K_{2}.
Theorem 2.10. If G is a trestled graph of index k of a cycle C_{n}, then $\gamma_{\mathrm{gcot}}(G)=n$.

G
Figure 2.6
Proof: Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the cycle C_{n}. The k copies of K_{2} corresponding to each edge $u_{1} u_{2}$ is labeled as $w_{11}, w_{12}, w_{13}, \ldots, w_{1 m}$ and $v_{21}, v_{22}, \ldots, v_{2 m}$. In general k copies of K_{2} corresponding to each edge $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}(1 \leq i, j \leq n)$ is labeled as $\mathrm{w}_{\mathrm{i} 1}$, $\mathrm{w}_{\mathrm{i} 2}, \mathrm{w}_{\mathrm{i} 3}, \ldots$, $w_{i m}$ and $v_{j 1}, v_{j 2}, \ldots, v_{j m}$. Let D be the minimal global cototal dominating set of G. The trestled graph of a cycle C_{n} of index k contains $n+2 \mathrm{kn}$ vertices. u_{i} is adjacent to $\mathrm{w}_{\mathrm{i} 1}, \mathrm{w}_{\mathrm{i} 2}, \mathrm{w}_{\mathrm{i}}$,
$\ldots, w_{i m}$ and $v_{j 1}, v_{j 2}, \ldots, v_{j m}$ of k copies of K_{2} corresponding to each edge $u_{i} u_{j}$ and $u i$ is adjacent to the succeeding and preceding vertices u_{i+1}, u_{i+2} of the cycle. The end vertices of each K_{2} is adjacent to the end vertices of each edge $u_{i} u_{j}$ of the cycle. Thus $D=\left\{u_{1}, u_{2}, u_{3}\right.$, $\left.\ldots, \mathrm{u}_{\mathrm{n}}\right\} \subseteq \mathrm{V}(\mathrm{G})$ is minimal and the induced subgraph $\langle\mathrm{V}-\mathrm{D}\rangle$ results in a disconnected graph containing nk number of K_{2} 's. Thus D is the minimal global cototal dominating set of G. Hence $\gamma_{\text {gcot }}(\mathrm{G})=\mathrm{n}$.

Corollary 2.11. If $G \cong T_{k}\left(\mathrm{C}_{\mathrm{n}}\right)$, then $\gamma_{\mathrm{gcot}}(\mathrm{G})=\gamma(\mathrm{G})$.
Theorem 2.12. If $\mathrm{G} \cong \mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)$, then $\gamma_{\mathrm{gcot}}\left(\mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{n}$ for every $\mathrm{k} \geq 1$.

Figure 2.7
Proof: Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ denote the vertices of the path P_{n}. The initial vertex v_{1} of the path P_{n} is adjacent to k vertices namely $v_{11}, v_{12}, v_{13}, \ldots, v_{1 k}$ and the end vertex v_{n} of the path P_{n} is adjacent to k vertices $v_{n 1}, v_{n 2}, \ldots, v_{n k}$. Each internal vertex v_{i} of the path P_{n} of $\mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)$ is adjacent to 2 k vertices $\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \ldots, \mathrm{v}_{\mathrm{ik}}, \mathrm{w}_{\mathrm{i} 1}, \mathrm{w}_{\mathrm{i} 2}, \ldots, \mathrm{w}_{\mathrm{ik}}$. Then $\left|\mathrm{V}\left(\mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)\right)\right|=$ $(\mathrm{n}-2)(2 \mathrm{k}+1)+2 \mathrm{k}+2=(2 \mathrm{k}+1) \mathrm{n}-2 \mathrm{k}$. Let D be the minimal global cototal dominating set of $\mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)$. We have $\Delta\left(\mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=2 \mathrm{k}+2$. Since $\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{k}+2$, $(2 \leq i \leq n-1), \mathrm{v}_{\mathrm{i}} \in \mathrm{D}$. The induced sub graph $\langle\mathrm{V}-\mathrm{D}\rangle$ has 2 k isolated vertices $\mathrm{v}_{11}, \mathrm{v}_{12}, \mathrm{v}_{13}, \ldots, \mathrm{v}_{1 \mathrm{k}}, \mathrm{v}_{\mathrm{n} 1}, \mathrm{v}_{\mathrm{n} 2}, \ldots, \mathrm{v}_{\mathrm{nk}}$. Therefore $\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}} \in \mathrm{D}$. Thus $\mathrm{D}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ is the minimal global cototal dominating set of $\mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)$ with $|\mathrm{D}|=\mathrm{n}$. Hence $\gamma_{\mathrm{gcot}}\left(\mathrm{T}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{n}$.
Theorem 2.13. If $\mathrm{G} \cong \mathrm{T}_{\mathrm{k}}\left(\mathrm{K}_{1, \mathrm{n}}\right)$, then $\gamma_{\mathrm{gcot}}(\mathrm{G})=\mathrm{n}+1$ for every $\mathrm{k} \geq 1$.

G

Figure 2.8

Proof: Let u be the center and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the pendant vertices of the star $K_{1, n}$. Let $v_{\mathrm{i} 1} \mathrm{w}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2} \mathrm{w}_{\mathrm{i} 2}, \ldots, \mathrm{v}_{\mathrm{ik}} \mathrm{w}_{\mathrm{ik}}$ be the edges added to the edge u_{i} of $\mathrm{K}_{1, \mathrm{n}}$ as shown in the figure. Let D be the minimal global cototal dominating set of $T_{k}\left(K_{1, n}\right)$. The vertex u dominates u_{1}, u_{2}, \ldots, u_{n} and one end of the edges $v_{i 1} W_{i 1}, v_{i 2} W_{i 2}, \ldots, v_{i k} W_{i k}$. Since the degree of u is maximum $u \in D$. the only possible global cototal dominating sets of $T_{k}\left(K_{1, n}\right)$ are $D_{1}=\{u$, $\left.\mathrm{v}_{11}, \mathrm{v}_{12}, \mathrm{v}_{13}, \ldots, \mathrm{v}_{1 \mathrm{k}}, \mathrm{v}_{21}, \mathrm{v}_{22}, \mathrm{v}_{23}, \ldots, \mathrm{v}_{2 \mathrm{k}}, \ldots, \mathrm{v}_{\mathrm{n} 1}, \mathrm{v}_{\mathrm{n} 2}, \ldots, \mathrm{v}_{\mathrm{nk}}\right\}$ with $\left|\mathrm{D}_{1}\right|=\mathrm{nk}+1$ and D_{2} $=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ with $\left|D_{2}\right|=n+1$. Since $\left|D_{2}\right|<\left|D_{1}\right|$ we take $D_{2}=D=\left\{u, u_{1}, u_{2}, u_{3}, \ldots\right.$., $\left.u_{n}\right\}$ as a $\gamma_{g c o t}$-set of $T_{k}\left(K_{1, n}\right)$ with $|D|=n+1$. Also the induced sub graph $\langle V-D\rangle$ is disconnected containing nk number of K_{2} graphs. Hence $\gamma_{\mathrm{gcot}}(\mathrm{G})=\mathrm{n}+1$.

Definition 2.14. The total graph $T(G)$ of a graph $G=(V, E)$ has vertices that correspond one to one with elements of $V \cup E$ and two vertices in $T(G)$ are adjacent if and only if the corresponding elements are adjacent or incident in G .

Figure 2.9
Theorem 2.15. If $\mathrm{G} \cong \mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)$, then $\gamma_{\mathrm{gcot}}(\mathrm{G})=\left\lceil\frac{2 n-1}{5}\right\rceil$.
Proof: Let $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, e_{1}, e_{2}, e_{3}, \ldots, e_{n-1}\right\}$ be the vertex set of $T\left(P_{n}\right)$ with $2 n-1$ vertices. Let D_{1} be the global cototal dominating set of $\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)$ containing vertices $\mathrm{u}_{\mathrm{i}}, 1 \leq i \leq n$. Let D_{2} be the global cototal dominating set of $\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)$ containing vertices $\mathrm{e}_{\mathrm{i}}, 1 \leq i \leq n-1$. Let D_{3} be the minimal global cototal dominating set of $T\left(P_{n}\right)$. Now let us choose the first five vertices of $T\left(P_{n}\right)$ say $e_{1}, e_{2}, u_{1}, u_{2}, u_{3}$ here u_{2} is adjacent to all the vertices of the above set. Hence u_{2} $\in D_{3}$. Similarly for the set of five vertices $e_{i}, e_{i+1}, u_{i}, u_{i+1}, u_{i+2}$ here u_{i+1} dominates all the other vertices. Hence $u_{i+1} \in D_{3}$. Next we choose the proceeding five vertices of $T\left(P_{n}\right)$ say e_{3}, e_{4}, e_{5}, u_{4}, u_{5}. The vertex e_{4} dominates all the other vertices. Hence $e_{4} \in D_{3}$. For the next set of five vertices $e_{i}, e_{i+1}, e_{i+2}, u_{i+1}, u_{i+2}$ here e_{i+1} dominates all the other vertices in the set. Hence e_{i+1} $\in D_{3}$. Proceeding like this we have the remaining vertices as $i=0,1,2,3,4$. Among these vertices, choose a vertex which is having the maximum degree. Finally we have $D_{3}<D_{2}<$ D_{1} with $\left|D_{3}\right|=\left\lceil\frac{2 n-1}{5}\right] . D_{3}$ is a minimal global cototal dominating set with $\left|D_{3}\right|=\left\lceil\frac{2 n-1}{5}\right\rceil$. Hence $\gamma_{\mathrm{gcot}}(\mathrm{G})=\left\lceil\frac{2 n-1}{5}\right\rceil$.

Definition 2.16. The web graph is a graph obtained by joining the pendant vertices of a Helm H_{n} to form a cycle and then adding a single pendant edge to each vertex of this outer cycle. It is a graph of order $3 n+1$.
Theorem 2.17. For a web graph G, $\gamma_{\mathrm{gcot}}(G)=\mathrm{n}+1$.
Proof: $V(G)=\left\{u, u_{i}, v_{i}, w_{i} / i=1,2, \ldots, n\right\}$ and $E(G)=\left\{u u_{i}, u_{i} v_{i}, v_{i} w_{i} / i=1,2, \ldots, n\right\} \cup$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / i=1,2, \ldots, n-1\right\} \cup\left\{u_{n} u_{1,}, v_{n} v_{1}\right\}$. Let D be the minimal global cototal dominating set. Then D contains u, since u dominates only the cycle $u_{1}, u_{2}, \ldots, u_{n}$. D must contain a pendant vertex. Then D must contain all the pendant vertices $w_{1}, w_{2}, \ldots, w_{n}$ which dominates the vertices of the outer cycle, since otherwise, it will violate the cototal property.

That is $w_{1}, w_{2}, \ldots, w_{n} \in D$. We claim that $\left\{u, w_{1}, w_{2}, \ldots, w_{n}\right\}$ is minimal. The vertex w_{i} cannot be replaced with the corresponding v_{i}, since otherwise $V-\left\{u, v_{1}, v_{2}, \ldots v_{n}\right\}$ induce a cycle C_{n} and isolated vertices $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$ which violates the cototal property. Therefore we choose $\mathrm{D}=\left\{\mathrm{u}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right\} \subseteq \mathrm{V}(\mathrm{G})$ as the minimal global cototal dominating set of the web graph and hence $\gamma_{\mathrm{gcot}}(\mathrm{G})=\mathrm{n}+1$.

Definition 2.18. The Grid graph $P_{m} \times P_{n}$ is the Cartesian product of two paths P_{m} and P_{n} Theorem 2.19. The global cototal domination number of a grid graph is given by
$\gamma_{\mathrm{gcot}}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right)=\left\{\begin{array}{lr}\frac{m n}{4}+\frac{m}{2} & \text { if } m \text { is even, } n \text { is even; } \\ {\left[\frac{m n}{4}\right]+\left\lceil\frac{m}{2}\right\rceil} & \text { if } m \text { is odd, } n \text { is even; } \\ \left\lfloor\frac{m n}{5}\right\rceil+\left[\frac{m}{3}\right]+\left[\frac{n}{3}\right] & \text { if } m \text { is odd, } n \text { is odd; } ; \\ \frac{m}{2}\left\lceil\frac{n}{2}\right\rceil & \text { if } m \text { is even } n \text { is odd. }\end{array}\right.$

Figure 2.11

Proof: Let $V\left(P_{m} \times P_{n}\right)=\left\{u_{i j} / i=1,2,3, \ldots, m, j=1,2,3, \ldots, n\right\}$
Consider the following sets
$\mathrm{D}_{1}=\mathrm{U}_{t=1}^{m / 2}\left\{\mathrm{U}_{s=1}^{[n / 4]} U_{(2 t-1)(4 s-3)} \mathrm{U}_{s=1}^{\lfloor n / 4]} U_{2 t,(4 s-1)}\right\} \mathrm{U}_{t=1}^{m / 2} U_{2 t, n}$, where m is even and n is even.
$\mathrm{D}_{2}=\mathrm{U}_{t=1}^{(m+1) / 2}\left\{\mathrm{U}_{s=1}^{[n / 4]} U_{(2 t-1)(4 s-3)} \mathrm{U}_{s=1}^{\lfloor n / 4]} U_{2 t,(4 s-1)}\right\} \mathrm{U}_{t=1}^{(m-1) / 2} U_{2 t, n}$, where m is odd and n is even.
$\mathrm{D}_{3}=\mathrm{U}_{t=1}^{m / 2}\left\{\mathrm{U}_{s=1}^{[n / 4]} U_{(2 t-1)(4 s-3)} \mathrm{U}_{s=1}^{[n / 4]} U_{2 t,(4 s-1)}\right\}$, where m is even and n is odd.
$\mathrm{D}_{4}=\mathrm{U}_{t=1}^{(m+1) / 2}\left\{\mathrm{U}_{s=1}^{[n / 4]} U_{(2 t-1)(4 s-3)} \mathrm{U}_{s=1}^{[n / 4]} U_{2 t,(4 s-1)}\right\}$, where m is odd and n is odd.
Consider a 4 - square centered at $u_{i j} \in D$ contains 9 vertices namely $u_{i-1, j-1}, u_{i-1},{ }_{j}, u_{i-1}, j+1, u_{i, j-}$ ${ }_{1}, u_{i, j}, u_{i, j+1}, u_{i+1, j-1}, u_{i+1, j}, u_{i+1, j+1}$. Then $u_{i j}$ dominates the vertices of $N\left(u_{i j}\right)=\left\{u_{i, j-1}, u_{i, j+1}, u_{i-1}, j\right.$, $\left.u_{i+1, j}\right\}$. The vertices $u_{i-1, j-1}, u_{i-1, j+1}, u_{i+1, j-1}, u_{i+1, j+1}$ are dominated by $u_{i-1, j-2}, u_{i-1, j+2}, u_{i+1, j-2}$, $u_{i+1, j+2}$ respectively. Hence D is a dominating set of $P_{m} \times P_{n}$. Obviously D dominates G^{c}.
Moreover $V(G)-D$ induces a subgraph containing paths P_{m} 's and P_{3} 's and no isolated vertices. Hence D is a global cototal dominating set of $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$. Let $\mathrm{x} \in \mathrm{D}$. Suppose we
remove x from D the vertex x is not even dominated by any of the vertices of D since D is an independent set.
Hence $\left|\mathrm{D}_{1}\right|=\frac{m n}{4}+\frac{m}{2}$, if m is even, n is even.
$\left|D_{2}\right|=\left[\frac{m n}{4}\right]+\left\lceil\frac{m}{2}\right\rceil$, if m is odd, n is even.
$\left|D_{3}\right|=\frac{m}{2}\left[\frac{n}{2}\right]$, if m is even, n is odd.
$\left|D_{4}\right|=\left\lceil\frac{m n}{5}\right\rceil+\left[\frac{m}{3}\right]+\left[\frac{n}{3}\right]$, if m is odd, n is odd.

REFERENCES

[1] B.Basavanagoud and S.M Hosamani - Journal of Scientific Research J.Sci.Res3 (3), 547 - 555 (2011)
[2] R.C.Brigham and R.D.Dutton, Factor domination in graphs, Discrete Math 86(1990)127136.
[3] C.J .Cockayne, R.M .Dawes and S.T. Hedetniemi, Total Domination in graphs, networks, 10(1980) 211-219
[4] Dr.J.Deva Raj,V.Sujin Flower, A note on Global Total Domination in Graphs, Bulletin of Pure and Applied Sciences Volume 30 E (Math \& Stat)Issue (No:1) 2011 P.63-70
[5] G.S.Domke, J.H.Hattingh, S.T. Hedetniemi, R.C.Laskar and L.R .Markus, Restrained Domination in graphs, Discrete Math 203 (1999).
[6] Harary.F, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[7] T.W. Haynes, S.T. Hedetneimi, P.J. Slater, Fundamentals of Domination in Graphs, MarcelDekker, New York, 1988.
[8] V.R.Kulli, B. Janakiram and R.R Iyer. The Cototal Domination Number of a graph J.Discrete Mathematical Sciences and Cryptography 2 (1999) 179-184.
[9] T. Nicholas and T. Sheeba Helen, Global Cototal Domination in Graphs, Tamkang Journal of Mathematics, Communicated.
[10] Ore.O, Theory of Graphs, Amer, Math. Soc. Colloq. Publ., 38, Providence, (1962).
[11] E. Sampathkumar, The global domination number of a graph J.MathPhys.Sci 23 (1989) 377-385.

