A CLASS OF SEPERATE REGRESSION TYPE ESTIMATOR UNDER STRATIFIED RANDOM SAMPLING

Rajiv Saksena, Manu Priya and R. N. Masaldan
Department of Statistics, Lucknow University, Lucknow

Abstract

A class of regression type estimators using the auxiliary information on population mean and population coefficient of variation is proposed under stratified random sampling. The expressions of its bias and mean square error under are obtained Further the expression of minimum mean square error under the optimum value of the characterizing scalar is also given in this section. An optimum allocation with the proposed class is obtained and its efficiency is compared with that of Neyman optimum allocation.

1. Introduction of The Proposed Estimator

Let a population of size ' N ' be stratified in to ' L ' non- overlapping strata, the $h^{\text {th }}$ stratum size being $N_{h}(h=1,2, \ldots, L)$ and $\sum_{h=1}^{L} N_{h}=N$. Suppose ' y ' be characteristic under study and ' x ' be the auxiliary variable. We denote by $Y_{h j}$: The observation on the $j^{t h}$ unit of the population for the characteristic ' y ' under study $\left(j=1,2, \ldots, N_{h}\right) . X_{h j}$: The observation on the $j^{\text {th }}$ unit of the population for the characteristic ' x ' under study $\left(j=1,2, \ldots, N_{h}\right)$.

$$
\begin{aligned}
& \bar{Y}_{h}=\frac{1}{N_{h}} \sum_{j=1}^{N_{h}} Y_{h j} ; \\
& \bar{X}_{h}=\frac{1}{N_{h}} \sum_{j=1}^{N_{h}} X_{h j} ; \\
& S_{y h}^{2}=\frac{1}{\left(N_{h}-1\right)} \sum_{j=1}^{N_{h}}\left(y_{h j}-\bar{Y}_{h}\right)^{2} ; \\
& S_{x h}^{2}=\frac{1}{\left(N_{h}-1\right)} \sum_{j=1}^{N_{h}}\left(x_{h j}-\bar{X}_{h}\right)^{2} ; \\
& S_{x y h}=\frac{1}{\left(N_{h}-1\right)} \sum_{j=1}^{N_{h}}\left(X_{h j}-\bar{X}_{h}\right)\left(Y_{h j}-\bar{Y}_{h}\right)=\rho_{h} S_{x h} S_{h j} ;
\end{aligned}
$$

International Journal of Engineering, Science and Mathematics (UGC Approved)
Vol. 6 Issue 5, September 2017, ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
where ρ_{h} is the population correlation coefficient between ' x ' and ' y ' for the $h^{\text {th }}$ stratum

$$
\begin{aligned}
& (h=1,2, \ldots, L) \\
& \lambda_{y x h}=\frac{\mu_{21 h}}{\bar{Y}_{h} S_{x h}^{2}} \\
& R_{h}=\frac{\bar{X}_{h}}{\bar{Y}_{h}} \\
& C_{y h}^{2}=\frac{S_{y h}^{2}}{\bar{Y}_{h}^{2}}=\frac{\mu_{02 h}}{\bar{Y}_{h}^{2}}, \\
& C_{x h}^{2}=\frac{S_{y h}^{2}}{\bar{X}_{h}^{2}}=\frac{\mu_{02 h}}{\bar{X}_{h}^{2}}, \\
& \mu_{p q h}=\frac{1}{N_{h}} \sum_{j=1}^{L}\left(X_{h j}-\bar{X}_{h}\right)^{p}\left(Y_{h j}-\bar{Y}_{h}\right)^{q}: \text { the }(p, q)^{t h}
\end{aligned}
$$

Product moment about mean between ' x ' and ' y ' for the $h^{\text {th }}$ stratum $(h=1,2, \ldots, L)$.

$$
\begin{aligned}
& \beta_{1 h}=\frac{\mu_{30 h}^{2}}{\mu_{20 h}^{2}} \\
& \beta_{2 h}=\frac{\mu_{40 h}^{2}}{\mu_{20 h}^{2}} \\
& \beta_{h}=\frac{S_{x y h}}{S_{x h}^{2}}=\rho_{h} \frac{S_{y h}}{S_{x h}}
\end{aligned}
$$

be the population regression coefficient of y on x for the $h^{t h}$ stratum $(h=1,2, \ldots, L)$. Let a simple random sample of size n_{h} be selected from the $h^{\text {th }}$ stratum without replacement and we denote by:
$y_{h j}$: The observation on the $j^{t h}$ unit of the sample for the characteristic ' y^{\prime} under study $(j=$ $\left.1,2, \ldots, n_{h}\right) . x_{h j}$: The observation on the $j^{t h}$ unit of the sample for the characteristic ' x ' under study ($j=1,2, \ldots, n_{h}$).
For the sake of simplicity we assume that N_{h} is so large that $1-f_{h}=1$. We define

$$
\begin{aligned}
& \bar{y}_{h}=\frac{1}{n_{h}} \sum_{j=1}^{n_{h}} y_{h j} \\
& \bar{x}_{h}=\frac{1}{n_{h}} \sum_{j=1}^{n_{h}} x_{h j}
\end{aligned}
$$

International Journal of Engineering, Science and Mathematics (UGC Approved)
Vol. 6 Issue 5, September 2017, ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
& s_{x h}^{2}=\frac{1}{n_{h}-1} \sum_{j=1}^{n_{h}}\left(x_{h j}-\bar{x}_{h}\right)^{2} ; \\
& s_{y h}^{2}=\frac{1}{n_{h}-1} \sum_{j=1}^{n_{h}}\left(y_{h j}-\bar{y}_{h}\right)^{2} ; \\
& S_{x y h}=\frac{1}{n_{h}-1} \sum_{j=1}^{n_{h}}\left(x_{h j}-\bar{x}_{h}\right)\left(y_{h j}-\bar{y}_{h}\right) ; \\
& b_{h}=\frac{S_{x y h}}{S_{x h}^{2}} ; \\
& \hat{C}_{x h}=\frac{S_{x h}}{\bar{x}_{h}}
\end{aligned}
$$

Assuming that \bar{X}_{h} is known $\forall h=1.2 \ldots ., L$. In order to estimate the population mean of the study variable, an estimator $\hat{\bar{Y}}_{\theta S}$ is given by

$$
\begin{align*}
\hat{Y}_{\theta S} & =\sum_{h=1}^{L} W_{h}\left\{\bar{y}_{h}\left[1+\frac{\theta_{h}\left(\hat{\sigma}_{x h}^{2}-\sigma_{x h}^{2}\right)}{\sigma_{x h}^{2}}\right]+b_{h}\left(\bar{X}_{h}-\bar{x}_{h}\right)\right\} \\
& =\sum_{h=1}^{L} W_{h}\left\{\bar{y}_{h}+\theta_{h} \bar{y}_{h}\left(\frac{\hat{\sigma}_{x h}^{2}}{\sigma_{x h}^{2}}-1\right)+b_{h}\left(\bar{X}_{h}-\bar{x}_{h}\right)\right\} \tag{1.1}
\end{align*}
$$

where θ_{h} are the characterizing scalars to be chosen suitably, strata means \bar{X}_{h} and strata variances $\sigma_{x h}^{2}$ of the auxiliary variable ' x ' are assumed to be known. We propose to use the following separate regression type estimator

$$
\begin{align*}
\hat{\bar{Y}}_{\omega S} & =\sum_{h=1}^{L} W_{h}\left\{\bar{y}_{h}\left[1+\omega_{h} \frac{\left(\hat{C}_{x h}-C_{x h}\right)}{C_{x h}}\right]+b_{h}\left(\bar{X}_{h}-\bar{x}_{h}\right)\right\} \\
& =\sum_{h=1}^{L} W_{h}\left\{\bar{y}_{h}+\omega_{h} \bar{y}_{h}\left(\frac{c_{x h}}{C_{x h}}-1\right)+b_{h}\left(\bar{X}_{h}-\bar{x}_{h}\right)\right\} \tag{1.2}
\end{align*}
$$

where ω_{h} are the characterizing scalars to be chosen suitably, strata means \bar{X}_{h} and strata coefficient of variations $C_{x h}$ of the auxiliary variable ' x ' are assumed to be known. It should be noted that for $\omega_{h}=0 ; \forall h=1.2 \ldots ., L$, the proposed separate regression type estimator reduces to the separate linear regression estimator given by

$$
\begin{equation*}
\bar{Y}_{L R S}=\sum_{j=1}^{L} W_{h}\left\{\bar{y}_{h}+b_{h}\left(\bar{X}_{h}-\bar{x}_{h}\right)\right\} \tag{1.3}
\end{equation*}
$$

International Journal of Engineering, Science and Mathematics (UGC Approved)
Vol. 6 Issue 5, September 2017, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

2. Bias of The Proposed Estimator $\hat{\bar{Y}}_{\omega S}$

Let

$$
\begin{align*}
& \bar{y}_{h}=\bar{Y}_{h}\left(1+e_{0 h}\right) \\
& \bar{x}_{h}=\bar{X}_{h}\left(1+e_{1 h}\right) \\
& s_{x y h}=S_{x y h}\left(1+e_{2 h}\right) \\
& s_{x h}^{2}=S_{x h}^{2}\left(1+e_{3 h}\right) \\
& E\left(e_{0 h}\right)=E\left(e_{1 h}\right)=E\left(e_{2 h}\right)=E\left(e_{3 h}\right)=0 \\
& \quad \forall h=1,2, \ldots, L \tag{2.1}
\end{align*}
$$

Now from (1.2), we have

$$
\begin{aligned}
\hat{\bar{Y}}_{\omega S} & =\sum_{h=1}^{L} W_{h}\left[\bar{Y}_{h}\left(1+e_{0 h}\right)+\omega_{h} \bar{Y}_{h}\left(1+e_{0 h}\right)\left\{\frac{\left(1+e_{3 h}\right)^{1 / 2}}{\left(1+e_{3 h}\right)}-1\right\}+\beta_{h} \frac{\left(1+e_{2 h}\right)}{\left(1+e_{3 h}\right)}\left(-\bar{X}_{h} e_{1 h}\right)\right] \\
& = \\
& \sum_{h=1}^{L} W_{h}\left[\bar{Y}_{h}\left(1+e_{0 h}\right)+\left\{1-\omega_{h}+\omega_{h}\left(1+e_{3 h}\right)^{1 / 2}\left(1+e_{1 h}\right)^{-1}\right\}+\beta_{h}\left(1+\quad e_{2 h}\right)(1+\right. \\
& e 3 h-1-X e 1 \\
& =\sum_{h=1}^{L} W_{h}\left[\overline { Y } _ { h } (1 + e _ { 0 h }) \left[1-\omega_{h}+\omega_{h}\left\{(1 + \frac { 1 } { 2 } e _ { 3 h } - \frac { 1 } { 8 } e _ { 3 h } ^ { 2 } + \cdots) \left(1-e_{1 h}+\quad e_{1 h}^{2}-\right.\right.\right.\right.
\end{aligned}
$$

$$
\ldots+\beta h X h 1+e 2 h 1-e 3 h+e 3 h 2 e 1 h
$$

$$
=\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left[\left\{1+e_{0 h}+\omega_{h}\left(-e_{1 h}+\frac{1}{2} e_{3 h}+e_{1 h}^{2}-\frac{1}{8} e_{3 h}^{2}-e_{0 h} e_{1 h}+\frac{1}{2} e_{0 h} e_{3 h}-\right.\right.\right.
$$

$$
\begin{equation*}
12 e 1 h e 3 h+\ldots)+\beta h X h-e 1 h-e 1 h e 2 h+e 1 h e 3 h+\ldots \tag{2.2}
\end{equation*}
$$

Let the sample size be so large that $\left|e_{i h}\right|, i=0,1,2,3 ; \forall h=1.2 \ldots ., L$; become so small that terms of $e_{i}^{\prime} s$ having power greater than two may be neglected.

$$
\begin{gathered}
E\left(\hat{\bar{Y}}_{\omega S}\right)=\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left[1+\omega_{h}\left\{E\left(e_{1 h}^{2}\right)-\frac{1}{8} E\left(e_{3 h}^{2}\right)-E\left(e_{0 h} e_{1 h}\right)+\frac{1}{2} E\left(e_{0 h} e_{3 h}\right)-\right.\right. \\
12 E e 1 h e 3 h+\ldots+\beta h X h Y h E e 1 h e 3 h-E e 1 h e 2 h
\end{gathered}
$$

Using the following results

$$
\begin{aligned}
& E\left(e_{0 h}^{2}\right)=\frac{C_{y h}^{2}}{n_{h}} \\
& E\left(e_{1 h}^{2}\right)=\frac{C_{x h}^{2}}{n_{h}} \\
& E\left(e_{0 h} e_{1 h}\right)=\frac{\rho_{x y h} C_{x h} C_{y h}}{n_{h}} \\
& E\left(e_{3 h}^{2}\right)=\frac{\left(\beta_{2 x h}-1\right)}{n_{h}}
\end{aligned}
$$

International Journal of Engineering, Science and Mathematics (UGC Approved)
Vol. 6 Issue 5, September 2017, ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{align*}
& E\left(e_{0 h} e_{3 h}\right)=\frac{\lambda_{y x_{h}}}{n_{h}} \\
& E\left(e_{1 h} e_{2 h}\right)=\frac{1}{n_{h}} \frac{\mu_{21 h}}{\bar{X}_{h} S_{x y h}} \\
& E\left(e_{1 h} e_{3 h}\right)=\frac{1}{n_{h}} \sqrt{\beta_{1 x h}} C_{x h} ; \quad \forall h=1,2, \ldots, L \tag{2.3}
\end{align*}
$$

We have

$$
\begin{equation*}
=\bar{Y}+\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left[\frac{\omega_{h}}{n_{h}}\left\{C_{x h}^{2}-\frac{1}{8}\left(\beta_{2 x h}-1\right)-\rho_{x y h} C_{x h} C_{y h}+\frac{1}{2} \lambda_{y x h}-\frac{1}{2} \sqrt{\beta_{1 x h}} C_{x h}+\ldots\right\}+\right. \tag{2.4}
\end{equation*}
$$

ßhXhYhß1xhCxh- 2 21hXhSxyh
Showing that $\hat{\bar{Y}}_{\omega S}$ is a biased estimator of population mean \bar{Y} and its bias is given by

$$
\begin{aligned}
B\left(\hat{\bar{Y}}_{\omega S}\right)= & E\left(\hat{\bar{Y}}_{\omega S}\right)=\bar{Y} \\
= & \sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left[\frac { \omega _ { h } } { n _ { h } } \left\{C_{x h}^{2}-\frac{1}{8}\left(\beta_{2 x h}-1\right)-\rho_{x y h} C_{x h} C_{y h}+\frac{1}{2} \lambda_{y x h}-\frac{1}{2} \sqrt{\beta_{1 x h}} C_{x h}+\right.\right. \\
& \ldots+\beta h X h Y h \beta 1 x h C x h-\mu 21 h X h S x y h
\end{aligned}
$$

Therefore, mean square error of $\hat{\bar{Y}}_{\omega S}$ is given by

$$
\begin{aligned}
& \operatorname{MSE}\left(\hat{\bar{Y}}_{\omega S}\right)=E\left(\hat{\bar{Y}}_{\omega S}-\bar{Y}\right)^{2} \\
& =E\left\{\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left(e_{0 h}+\omega_{h}\left(-e_{1 h}+\frac{1}{2} e_{3 h}\right)-\beta_{h} R_{h} e_{1 h}\right)\right\}^{2} \\
& =\sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} E\left\{e_{0 h}+\omega_{h}\left(-e_{1 h}+\frac{1}{2} e_{3 h}\right)-\beta_{h} R_{h} e_{1 h}\right\}^{2}
\end{aligned}
$$

Using (2.2) upto first order of approximation

$$
\begin{aligned}
= & \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2}\left[E\left(e_{0 h}^{2}\right)+\beta_{h}^{2} R_{h}^{2} E\left(e_{1 h}^{2}\right)-2 \beta_{h} R_{h} E\left(e_{0 h} e_{1 h}\right)+\omega_{h}^{2}\left\{E\left(e_{1 h}^{2}\right)+\frac{1}{4} E\left(e_{3 h}^{2}\right)-\right.\right. \\
& E(e 1 h e 3 h)-2 w h E e 0 h e 1 h-12 E e 0 h e 3 h-\beta h R h E e 12+\beta h R h 2 E(e 1 h e 3 h)
\end{aligned}
$$

Using the results given in (2.3), we have

$$
\begin{aligned}
& \quad= \\
& \sum_{h=1}^{L} W_{h}^{2} \frac{\bar{Y}_{h}^{2}}{n_{h}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}+\omega_{h}^{2}\left\{C_{x h}^{2}+\frac{1}{4}\left(\beta_{2 x h}-1\right)-\sqrt{\beta_{1 x h}} C_{x h}\right\}-2 \omega_{h}\left\{\rho_{x y h} C_{x h} C_{y h}-\right.\right. \\
& \left.\left.\frac{1}{2} \lambda_{x h}-\beta_{h} R_{h} C_{x h}^{2}+\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& \quad= \\
& \sum_{h=1}^{L} W_{h}^{2} \frac{\bar{Y}_{h}^{2}}{n_{h}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}+\omega_{h}^{2}\left\{C_{x h}^{2}+\frac{1}{4}\left(\beta_{2 x h}-1\right)-\sqrt{\beta_{1 x h}} C_{x h}\right\}-\right. \\
& 2 \omega h \beta h R h 2 \beta 1 x h C x h-12 \lambda x h \tag{2.6}
\end{align*}
$$

(2.6) is minimum when
$\omega_{\text {hopt }}=\frac{\left.\frac{\left\{\beta_{h} R_{h}\right.}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}}{\left\{C_{x h}^{2}+\frac{1}{4}\left(\beta_{2 x h}-1\right)-\sqrt{\beta_{1 x h}} C_{x h}\right\}} ; \forall h=1,2, \ldots, L$
And the minimum mean square error of $\hat{\bar{Y}}_{\omega S}$ is given by

$$
\begin{align*}
\operatorname{MSE}\left(\hat{Y}_{\omega S}\right)_{\min } & =\sum_{h=1}^{L} W_{h}^{2} \frac{\bar{Y}_{h}^{2}}{n_{h}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{C_{x h}^{2}+\frac{1}{4}\left(\beta_{2 x h}-1\right)-\sqrt{\beta_{1 x h}} C_{x h}\right\}}\right] \\
& =\sum_{h=1}^{L} W_{h}^{2} \frac{\bar{Y}_{h}^{2}}{n_{h}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\left\{\beta_{h} R_{h}\right.}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right] \tag{2.8}
\end{align*}
$$

3. Optimum Allocation with The Proposed Class

Considering the cost function $C=C_{0}+\sum_{h=1}^{L} c_{h} n_{h}$, where C_{0} and c_{h} are the cost per unit within $h^{\text {th }}$ stratum respectively minimizing the approximate minimum variance.

$$
\operatorname{MSE}\left(\hat{\bar{Y}}_{\omega S}\right)_{\min }=\sum_{h=1}^{L} W_{h}^{2} \frac{\bar{Y}_{h}^{2}}{n_{h}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right]
$$

By Lagrange's method of multipliers subject to the cost restriction $C-C_{0}=\sum_{h=1}^{L} c_{h} n_{h}$, on the lines of Cochran (1977), n_{h} and the multiplies λ are found so as to minimize

$$
\begin{aligned}
\emptyset= & \operatorname{MSE}\left(\hat{\bar{Y}}_{\omega S}\right)_{\text {min }}+\lambda \sum_{h=1}^{L} c_{h} n_{h}-C+C_{0} \\
= & \sum_{h=1}^{L} W_{h}^{2} \frac{\bar{Y}_{h}^{2}}{n_{h}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right]+\lambda\left(\sum_{h=1}^{L} c_{h} n_{h}-C+\right. \\
& \text { CO }
\end{aligned}
$$

differentiating (3.2) with respect to n_{h} and equating to zero, we get

$$
\begin{align*}
& =\frac{W_{h}^{2} \bar{Y}_{h}^{2}}{n_{h}^{2}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right]+\lambda c_{h}=0 \\
n_{h} & =\frac{1}{\sqrt{\lambda}} \frac{W_{h}}{\sqrt{C_{h}}}\left\{\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}} \forall h=1,2, \ldots, L \tag{3.3}
\end{align*}
$$

Summing over all strata we have

$$
\begin{equation*}
n_{h}=\frac{1}{\sqrt{\lambda}} \frac{W_{h}}{\sqrt{c_{h}}}\left\{\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}} \tag{3.4}
\end{equation*}
$$

Taking ratio of (3.3) and (3.4) we obtain

As a particular case for $c_{h}=c_{1} ; \forall h=1,2, \ldots, L$ i.e., the given cost function $c_{1} \sum_{h=1}^{L} n_{h}+C_{0}=$ $C=C 0+c 1 n$
The optimum allocation (3.5) reduces to

$$
\begin{equation*}
n_{h}=n \frac{W_{h} \bar{Y}_{h}\left\{\left(1-\rho_{x y h}^{2}\right) c_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} c_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-c_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}}}{\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left\{\left(1-\rho_{x y h}^{2}\right) c_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h} c_{x h}-\frac{1}{2} \lambda y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-c_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}}} \forall h=1,2, \ldots, L \tag{3.6}
\end{equation*}
$$

Substituting the value from (3.6) in (3.1) we have

$$
\begin{align*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{\omega S}\right)_{O P T} & =\frac{1}{n} \sum_{h=1}^{L}\left[W_{h} \bar{Y}_{h}\left\{\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}}\right]^{2} \\
& =M_{O P T} \text { (say) } \tag{3.7}
\end{align*}
$$

4. Concluding Remarks

The mean square error of the separate linear regression estimator is given by

$$
\begin{equation*}
\operatorname{MSE}\left(\bar{y}_{L R S}\right)=\sum_{h=1}^{L} W_{h}^{2}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right)\left(1-\rho_{h}^{2}\right) S_{y h}^{2} \tag{4.1}
\end{equation*}
$$

Also the minimum mean square error of the proposed generalized regression type estimator $\hat{\bar{Y}}_{\omega S}$ is given by

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{\omega S}\right)_{\min }=\sum_{h=1}^{L} W_{h}^{2} \frac{\bar{Y}_{h}^{2}}{n_{h}}\left[\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right] \tag{4.2}
\end{equation*}
$$

Therefore the proposed generalized class of estimators $\hat{Y}_{\omega S}$ may be preferred to the separate linear regression estimator, separate ratio estimator, separate product estimator and the usual
stratified sample mean in the sense of smaller mean square error. Further the parameter involved ω_{h} may be estimated by the corresponding sample value in order to get a class of estimators depending upon estimated optimum value. Also the variance of stratified sample mean $\bar{y}_{s t}$ under Neyman optimum allocation $n_{h}=n \frac{W_{h} S_{y h}}{\sum_{h=1}^{L} W_{h} S_{y h}}$ is

$$
\begin{equation*}
V\left(\bar{y}_{s t}\right)_{N e y}=\frac{1}{n}\left(\sum_{h=1}^{L} W_{h} S_{y h}\right)^{2} \tag{4.3}
\end{equation*}
$$

Also from (4.3) and (3.6), we have

$$
\begin{gather*}
n_{h}=n \frac{W_{h} \bar{Y}_{h}\left\{\left(1-\rho_{x y h}^{2}\right) c_{y h}^{2}-\frac{\left.\frac{\left\{\beta_{h} R_{h}\right.}{2} \sqrt{\beta_{1 x h}} c_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-c_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}}}{\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left\{\left(1-\rho_{x y h}^{2}\right) c_{y h}^{2}-\frac{\left\{\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} c_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-c_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}}} \forall h=1,2, \ldots, L \tag{4.4}\\
\operatorname{MSE}\left(\hat{\bar{Y}}_{\omega S}\right)_{O P T}=\frac{1}{n} \sum_{h=1}^{L}\left[W_{h} \bar{Y}_{h}\left\{\left(1-\rho_{x y h}^{2}\right) C_{y h}^{2}-\frac{\left\{\frac{\left\{\beta_{h} R_{h}\right.}{2} \sqrt{\left.\beta_{1 x h} c_{x h}-\frac{1}{2} \lambda_{y x h}\right\}^{2}}\right.}{\left\{\frac{1}{4}\left(\beta_{2 x h}-\beta_{1 x h}-1\right)+\left(\sqrt{\beta_{1 x h}}-C_{x h}\right)^{2}\right\}}\right\}^{\frac{1}{2}}\right]^{2} \tag{4.5}
\end{gather*}
$$

From (4.3) and (4.5), $M_{O P T}$ is always smaller than $V\left(\bar{y}_{s t}\right)_{N e y}$ except for the case when $\rho_{h}=0$ and $\frac{\beta_{h} R_{h}}{2} \sqrt{\beta_{1 x h}} C_{x h}=\frac{1}{2} \lambda_{y x h} \forall h=1,2, \ldots, L$ simultaneously.

References

1. Bahl, S. and Tuteja, R. K. (1991): Ratio and product type exponential estimator. Infrm. and Optim. Sci., XII, I, pp. 159-163.
2. Gupta, S. and Shabbir, J. (2008): On improvement in estimating the population mean in simple random sampling, J. Appl. Statist., 35(5), p. 559- 566.
3. Hartley, H.D. and Ross A. (1954): Unbiased ratio estimators; Nature, 174, $270-271$.
4. Kushwaha, K. S. and Singh, H. P. (1989): Class of almost unbiased ratio and product estimators in systematic sampling, Jour. Ind. Soc. Ag. Statistics, 41, 2, pp. 193-205.
5. Singh, D, and Chaudhary, F.S. (1986): Theory and Analysis of sample Survey Design, New Age Publication, New Delhi, India.
6. Singh, R. and Singh, H. P. (1998): Almost unbiased ratio and product type- estimators in systematic sampling. Questiio, 22, 3, pp. 403-416.
7. Sukhatme, P.V. and Sukhatme, B.V. (1970): Sampling theory of surveys with applications. Iowa State University Press, Ames, U.S.A.
