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Brief Study of “Group” 

 

Muniya 

 

Group: - the term group was coined by Galois around 1830 to describe sets of one–to-one functions on 

finite sets that could be grouped together to form a closed set. As is the case with most fundamental 
concepts in mathematics, the modern definition of a group that follows is the result of a long evolutionary 

process. 

Definition:- Let G be a non empty set together with a binary operation that assigns to each ordered pair ( 
a,b) of elements of G an element in G denoted by ab. G is a group under this operation if the following 

four properties are satisfied. 

1. Closure property:-  ∀ 𝑎 ∈ 𝐺, ∀ 𝑏 ∈ 𝐺 s.t.  𝑎𝑏 ∈ 𝐺  

2. Associativity : -  The operation associative i.e. (ab)c=a(bc) for all a,b,c in G. 

3. Identity: - There is an element e in G s.t. ae=ea=a for all a in G. 

4. Inverses:- for each element a in G, there is an element a in G s.t. ab=ba=e 

A group is set together with an associative operation s.t. there is an identity , every element has inverse 

and any pair of element can be combined without going outside the set. 

In a group has the property that ab=ba for every pair of elements a and b, then the group is abelian group. 

A group is non abelian group if there is some pair of elements a and b for which 𝑎𝑏 ≠ 𝑏𝑎 

For example  

1. The set of integers Z is a group under ordinary addition. 

2. Gln is a group under multiplication where  

           Gln(IF) =  𝐴 =  𝑎𝑖𝑗  𝑛×𝑛  
|  𝐴 ≠ 0, 𝑎𝑖𝑗 ∈ 𝐼𝐹    

3. Sln is a group under multiplication where  

            Sln(IF) =  𝐴 =  𝑎𝑖𝑗  𝑛×𝑛  
|  𝐴 = 1, 𝑎𝑖𝑗 ∈ 𝐼𝐹    

4. U(n) is a group under multiplication modulo n, where 

U (n)= {𝑎 ∈ 𝐼𝑁| 1 ≤ 𝑎 ≤ 𝑛; gcd 𝑎, 𝑛 = 1} 
5. K4 is a group with identity e, where  

K4={𝑒, 𝑎, 𝑏, 𝑎𝑏| 𝑎2 = 𝑒, 𝑏2 = 𝑒, 𝑎𝑏 = 𝑏𝑎} 

Order of elements:- 

Order of any element a of group is the least +ve integer n s.t. a
n
=e. if no such n exist the O(a) =∞ 

For example 

1. Order of element of Z 

Z={0, ±1, ±2, ±3, ±4 … . . } is a group with identity 0 then 

O(0)=1 and 0 ≠ 𝑎 ∈ 𝑍 𝑠. 𝑡. 𝑛. 𝑎 = 0 is not possible , 𝑛 ∈ 𝐼𝑁 ⇒ 𝑂 𝑎 = ∞  
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Then Z has element of order 1 and ∞. 

Cyclic group:- A group G is cyclic group if there exist element 𝑎 ∈ 𝐺 such that every element of G is 

generated by a. Then the element a is called the generator of G. 

i.e.  𝐺 =< 𝑎 ≥ {𝑎𝑛 ; 𝑛 ∈ 𝑍} 

Theorem: - If G is finite group of order n and G has elements of order n then G is cyclic. 

Proof: - Let G be a finite group of order n and 𝑎 ∈ 𝐺 such that O(a)=O(G)=n 

Now, by closure property of group,   a, a
2 
,a

3
, a

4
,……a

n-1
,a

n
=e are elements of G 

a
n
=e as O(a)=n. 

Now a, a
2
, a

3
, a

4
,……a

n-1
,a

n
=e are distinct elements of G as  

Let these elements are not distinct elements and let any two elements are same as A
r
=a

s 

⟹ 𝑎𝑟 . 𝑎−𝑠 = 𝑒 

⟹ 𝑎𝑟−𝑠 = 𝑒 𝑎𝑛𝑑 𝑟 − 𝑠 < 𝑛 

But O(a)=n then 𝑎𝑟−𝑠 = 𝑒 is not possible. 

Then the supposition is wrong. 

 ⟹ 𝑎𝑟 ≠ 𝑎𝑠 

Then a, a
2
, a

3
, a

4
,……a

n-1
,a

n
=e are n distinct elements of G and O(G)=n then G contains exactly n distinct 

elements then every element of G is generated by a. 

Then G is cyclic. 

Theorem: - If G is cyclic group then G is abelian  But Converse need not be true. 

Proof: - Let G be cyclic group the there exist element a in G such that every element of G is generated by 

a. 

Let 𝑥 ∈ 𝐺is any element then x=a
n
; 𝑛 ∈ 𝑍 

and 𝑦 ∈ 𝐺 is any element of G then y=a
n
; 𝑛 ∈ 𝑍 

such that     𝑥. 𝑦 = 𝑎𝑛𝑎𝑚 = 𝑎𝑛+𝑚 = 𝑎𝑚+𝑛  [m+n=n+m as 𝑚, 𝑛 ∈ 𝑍 and Z is abelian group]    
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                           = 𝑎𝑚 .𝑎𝑛  

                           = y.x 

⟹ 𝑥. 𝑦 = 𝑦. 𝑥, ∀𝑥, 𝑦 ∈ 𝐺 

Then G is a abelian group. But Converse need not be true. 

For example K4={𝑒, 𝑎, 𝑏, 𝑎𝑏| 𝑎2 = 𝑒, 𝑏2 = 𝑒, 𝑎𝑏 = 𝑏𝑎} is a abelian group but not cyclic group. 

Theorem: - If G is cyclic group and a is generator of G then a
-1 

is also generator of G. 

Proof: - Let G be cyclic group and 𝑎 ∈ 𝐺 is generator of G then every element of G is generated by a. 

Let x is any element of G then x=a
n
, 𝑛 ∈ 𝑧 

⟹ 𝑥−1 = (𝑎𝑛)−1[By taking inverse on both side] 

⟹ 𝑦 = 𝑥−1 = (𝑎−1)𝑛 , 𝑛 ∈ 𝑍 

Then y is generated by a
-1

 and y is arbitrary element of G 

Then every element of G is generated by a
-1
. 

i.e. g=<a
-1

> 

then a
-1 

is also a generator of G. 

for example: - 1 ∈ 𝑧 is generator of z then 1
-1

 = -1 is also generator of Z. 

Sub group: - If a Subset H of a group G is itself a group under the operation of g, then H is Subgroup of 

G. 

Subgroup Test: - Let G be a group and H is non empty subset of G. Then  H is a sub group of G if ab
-1

  

is in H whenever a and b are in H.  

Proof: - Since the operation of H is same as that of G and H is non empty subset of G then this operation 

is associative. Since H is non empty, So Let 𝑥 ∈ 𝐻. 

Letting a=x and b=x in hypothesis we have e=x x
-1
 =ab

-1 
is in H. Therefore 𝑒 ∈ 𝐻. Now to verify x

-1 
is in 

H, whenever x is in H. Choose a=e and b=x in the statement of the theorem. Then ab
-1
=ex

-1
=x

-1
is in H.  

Finally, the proof will be complete when we show that H is closed; that is, if x,y belongs to H , we must 

show that xy is in H. As y belongs to H the y
-1 

also belongs to H. 



International Journal of Engineering, Science and Mathematics (UGC Approved) 

Vol. 6 Issue 5, September  2017, ISSN: 2320-0294 Impact Factor: 6.765 
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com                          
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed 
at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A 

 

116 International Journal of Engineering, Science and Mathematics 
http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

So Letting a=x and b=y
-1,

 we have 𝑥𝑦 = 𝑥(𝑦−1)−1 = 𝑎𝑏−1  is in H. 

For Example: - 

H=mz is a Subgroup of Z, 𝑚 ∈ 𝑍 

𝐻 = 𝑚𝑍 =  𝑚. 𝑎; 𝑎 ∈ 𝑍  

Let 𝑥 ∈ 𝐻, then x=ma, where 𝑎 ∈ 𝑍 

And 𝑦 ∈ 𝐻, then y=mb, where 𝑏 ∈ 𝑍 

Such that 

𝑥𝑦−1 = 𝑥 − 𝑦 = 𝑚𝑎 − 𝑚𝑏 = 𝑚(𝑎 − 𝑏) 

              𝑚𝑐 ∈ 𝑚𝑍, 𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑎 − 𝑏 ∈ 𝑧  
⇒ 𝑥 − 𝑦 ∈ 𝑚𝑍 

Then mZ is subgroup of Z. 

Theorem: - Intersection of two subgroup of G is subgroup of G. 

Proof: - Let H and K are two subgroup of G. 

Now 

𝐻 ∩ 𝐾 =  𝑎 𝑎 ∈ 𝐻 𝑎𝑛𝑑 𝑎 ∈ 𝐾  

As 𝑒 ∈ 𝐻 𝑎𝑛𝑑 𝑒 ∈ 𝐾 then 

𝑒 ∈ 𝐻 ∩ 𝐾 

⇒ ∅ ≠ 𝐻 ∩𝐾 ⊆ 𝐺 

Let  𝑎 ∈ 𝐻 ∩ 𝐾then 𝑎 ∈ 𝐻 𝑎𝑛𝑑 𝑎 ∈ 𝐾  

and 𝑏 ∈ 𝐻 ∩ 𝐾 𝑡ℎ𝑒𝑛 𝑏 ∈ 𝐻 𝑎𝑛𝑑  𝑏 ∈ 𝐾  

As 𝑎 ∈ 𝐻 and 𝑏 ∈ 𝐻 and H is subgroup of G then 𝑎𝑏−1 ∈ 𝐻. 

Also. 𝑎 ∈ 𝐾 and 𝑏 ∈ 𝐾 and K is also subgroup of G, then 𝑎𝑏−1 ∈ 𝐾 

As 𝑎𝑏−1 ∈ 𝐻 and 𝑎𝑏−1 ∈ 𝐾 then  

𝑎𝑏−1 ∈ 𝐻 ∩ 𝐾 
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As 

𝑎 ∈ 𝐻 ∩ 𝐾 𝑎𝑛𝑑 𝑏 ∈ 𝐻 ∩ 𝐾 

⇒ 𝑎𝑏−1 ∈ 𝐻 ∩ 𝐾 

⇒ 𝐻 ∩ 𝐾 is subgroup of G. 
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