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  Abstract  

 
 We illustrate recent development in computational number theory by 

studying their implications in solving the Pell’s equation. In this 

paper, we search for finding non – trivial integral solutions to the 

Pell’s equation  𝑥2 = 73𝑦2 − 37𝑡   for all choices of 𝑡 ∈ 𝑵. 
Recurrence relations among the solutions are also obtained 
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1. Introduction  

The Pell’s equation is the equation 𝑥2 = 𝑑𝑦2 + 1  to be solved in positive integer 𝑥, 𝑦 for a non – zero 

integer 𝑑  [1,2,⋯6, 10, 11].  For example, for 𝑑 = 5 one can take  𝑥 = 9, 𝑦 = 4. We shall always assume 

that 𝑑 is positive but not a square, since otherwise there are clearly no solutions.  Pell’s equation has an extra 

ordinarily rich history to which Weil [7] is the best guide. A particularly lucid exposition of method of 

solving the Pell equation is found in Euler’s algebra [9].  

         Star prime is a star number that is prime. Here using two consecutive star primes 37 & 73 we form a 

Pell’s equation 𝑥2 = 73𝑦2 − 37𝑡 , 𝑡 ∈ 𝑵  and search for its non- trivial integer solutions. In addition, 

37 &73  are Pythagorean Primes also. 

This communication concerns with the Pell equation   𝑥2 = 73𝑦2 − 37𝑡 , 𝑡 ∈ 𝑵,   and infinitely many positive 

integer solutions are obtained for the choices of  𝑡 given by   𝑖  𝑡 = 1,  𝑖𝑖  𝑡 = 3   𝑖𝑖𝑖 𝑡 = 5    𝑖𝑣  2𝑘 and  

𝑡 = 2𝑘 + 5. A few interesting relations among the solutions are presented. Further recurrence relations on the 

solutions are derived. 

 
Proposition 1:[8] 

 Let 𝑝 be a prime. The negative Pell’s equation  

𝑥2 − 𝑝𝑦2 = −1 
is solvable if and only if 𝑝 = 2 or 𝑝 ≡ 1 𝑚𝑜𝑑 4 . 
 

 

This paper concerns with a negative Pell equation 

𝑥2 = 73𝑦2 − 37𝑡 ,   𝑡 ∈ 𝑵 
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Here we consider the prime 73 which confirms the existence of integer solutions of using Proposition 1. 
 

2. Method of Analysis 

2.1: Choice 1: 𝒕 = 𝟏 

The Pell equation is  

                                                                  𝑥2 = 73𝑦2 − 37                                                                              (1) 

Let (𝑥0 ,𝑦0) be the initial solution of (1) given by  

𝑥0 = 6 ;  𝑦0 = 1 
To find the other solutions of (1), consider the Pell equation  

𝑥2 = 73𝑦2 + 1 
 

 

whose initial solution (𝑥𝑛 , 𝑦𝑛 ) is given by 

𝑥𝑛 =
1

2
 𝑓𝑛  

           𝑦𝑛 =
1

2 73
  𝑔𝑛  

where     𝑓𝑛 =  2281249 + 267000 73 
𝑛+1 

+  2281249 − 267000 73 
𝑛+1 

 

               𝑔𝑛 =  2281249 + 267000 73 
𝑛+1 

−   2281249 − 267000 73 
𝑛+1 

,     𝑛 = 0,1,2,⋯ 

Applying Brahma Gupta lemma between (𝑥0 ,𝑦0) and  (𝑥𝑛 , 𝑦𝑛 ), the sequence of non – zero distinct integer 

solutions to (1) are obtained as 

                                                        𝑥𝑛+1 =
1

2
 6𝑓𝑛 +  73 𝑔𝑛                                                                          (2) 

                                                         𝑦𝑛+1 =
1

2 73
    73 𝑓𝑛 + 6𝑔𝑛                                                                    (3) 

The recurrence relation satisfied by the solutions of (1) are given by 

𝑥𝑛+2 − 534000𝑥𝑛+1 + 𝑥𝑛 = 0 

𝑦𝑛+2 − 534000𝑦𝑛+1 + 𝑦𝑛 = 0 
 

2.2 Choices 2: 𝒕 = 𝟑 

 The Pell equation is  

                                                                𝑥2 = 73𝑦2 − 50653                                                                         (4) 

Let (𝑥0 ,𝑦0) be the initial solution of (4) given by   

𝑥0 = 1530;   𝑦0 = 181 
  

Applying Brahma Gupta lemma between (𝑥0 ,𝑦0) and  (𝑥𝑛 , 𝑦𝑛 ), the sequence of non – zero distinct integer 

solutions  to (4) are obtained as 

                                                    𝑥𝑛+1 =
1

2
 1530 𝑓𝑛 + 181 73 𝑔𝑛                                                                 (5) 

                                                   𝑦𝑛+1 =
1

2 73
 181 73 𝑓𝑛 + 1530 𝑔𝑛                                                              (6) 

The recurrence relations satisfied by the solutions of (4) are given by  

𝑥𝑛+2 − 534000𝑥𝑛+1 + 𝑥𝑛 = 0 

𝑦𝑛+2 − 534000𝑦𝑛+1 + 𝑦𝑛 = 0 
 

2.3 Choices 3: 𝒕 = 𝟓 

 The Pell equation is  

                                                          𝑥2 = 73𝑦2 − 69343957                                                                        (7) 

Let (𝑥0 ,𝑦0) be the initial solution of (7) given by  

𝑥0 = 325326;   𝑦0 = 38089 
  

Applying Brahma Gupta lemma between (𝑥0 ,𝑦0) and (𝑥𝑛 , 𝑦𝑛 ), the sequence of non – zero distinct integer 

solutions  to (7) are obtained as 

                                                 𝑥𝑛+1 =
1

2
 325326 𝑓𝑛 + 38089 73 𝑔𝑛                                                           (8) 

                                                 𝑦𝑛+1 =
1

2 73
 38089 73 𝑓𝑛 + 325326 𝑔𝑛                                                      (9) 

The recurrence relations satisfied by the solutions of (7) are given by  

𝑥𝑛+2 − 534000𝑥𝑛+1 + 𝑥𝑛 = 0 

𝑦𝑛+2 − 534000𝑦𝑛+1 + 𝑦𝑛 = 0 
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2.4 Choices 4: 𝒕 = 𝟐𝒌,   𝒌 ∈ 𝑵 
 The Pell equation is  

                                                       𝑥2 = 73𝑦2 − 372𝑘 , 𝑘 ∈ 𝑵                                                                      (10) 

Let (𝑥0 ,𝑦0) be the initial solution of (10) given by  

𝑥0 = 37𝑘 . 1068 ;   𝑦0 = 37𝑘 . 125 
Applying Brahma Gupta lemma between (𝑥0 ,𝑦0) and  (𝑥𝑛 , 𝑦𝑛 ), the sequence of non – zero distinct integer 

solutions  to (10) are obtained as 

                                              𝑥𝑛+1 =
37𝑘

2
 1068𝑓𝑛 + 125 73 𝑔𝑛                                                                  (11) 

                                             𝑦𝑛+1 =
37𝑘

2 73
 125 73 𝑓𝑛 + 1068 𝑔𝑛                                                                 (12) 

The recurrence relations satisfied by the solutions of (10) are given by  

𝑥𝑛+2 − 534000𝑥𝑛+1 + 𝑥𝑛 = 0 

𝑦𝑛+2 − 534000𝑦𝑛+1 + 𝑦𝑛 = 0 

2.5 Choices 5: 𝒕 = 𝟐𝒌 + 𝟓,   𝒌 > 0 

The Pell equation is  

                                                    𝑥2 = 17𝑦2 − 192𝑘+5 , 𝑘 > 0                                                                      (13) 

Let (𝑥0 ,𝑦0) be the initial solution of (13) given by  

𝑥0 = 37𝑘−1 . 68826498 ;   𝑦0 = 37𝑘−1 . 8055613 
Applying Brahma Gupta lemma between (𝑥0 ,𝑦0) and  (𝑥𝑛 , 𝑦𝑛 ), the sequence of non – zero distinct integer 

solutions  to (13) are obtained as 

                                             𝑥𝑛+1 =
37𝑘−1

2
 68826498 𝑓𝑛 + 8055613 73 𝑔𝑛                                              (14) 

                                             𝑦𝑛+1 =
37𝑘−1

2 73
 8055613 73 𝑓𝑛 + 68826498 𝑔𝑛                                              (15) 

The recurrence relations satisfied by the solutions of (13) are given by  

𝑥𝑛+2 − 534000𝑥𝑛+1 + 𝑥𝑛 = 0 

𝑦𝑛+2 − 534000𝑦𝑛+1 + 𝑦𝑛 = 0 

3. Conclusion  

          Solving a Pell’s equation using the above method provides powerful tool for finding solutions of 

equations of similar type. Neglecting any time consideration it is possible using current methods to determine 

the solvability of Pell – like equation. 
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